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MEASUREMENT OF VELOCITY OF LIGHT

BY THE METHOD OF FOUCAULT

Revised September 27, 2010.

IMPORTANT INFORMATION

For this experiment only, the equipment will be set up in advance, everyone will do this experiment during
the same week in one hour slots, and groups can include up to 4 students. This experiment is required even
if you have done it before in Physics 231.

SOME BACKGROUND

The history of the measurement of the velocity of light is a fascinating one, both for the variety of experimental
methods that have been used and for the fundamental consequences of the results to physical theory. The
apparatus used in this experiment is traceable, in concept, to Galileo. A short pulse of light is generated
and the time it takes to cover a path of known length is measured.

Galileo

Galileo’s measurement, as it was described by him in 1638, placed two individuals A and B with lanterns
on hilltops sufficiently close that each could see the other’s lantern. A would uncover his lantern and
when B saw the light from A’s lantern he would uncover his own. A would then note the time elapsed
between uncovering his lantern and seeing the return light from B’s lantern. Presumably, they repeated the
measurement a number of times and concluded that the speed of light c exceeded their ability to measure it
by this technique. With the benefit of hindsight we can guess what lower limit they might have been able to
quote. With A and B one mile apart and a time measurement accuracy of 0.1 s, the highest velocity they
would have been able to detect is about 2 mi/0.1 s = 30 km/s. We can thus credit Galileo with setting a
value for c ≥ 30 km/s.

Rømer

In 1686 the Danish scientist Olaus Rømer astonished the astronomers of the day by predicting that an eclipse
of Jupiter’s moon, Io, by Jupiter would occur 10 minutes later than the time predicted from the eclipses
observed throughout the year. It did, and he later explained the delay as the result of the finite speed of
propagation of light, a speed almost universally thought to be infinite at the time. Although he did not
give a value for c, his contemporary Huygens used his statement that it took approximately 22 minutes
for light to travel the diameter of the earth’s orbit to calculate a velocity that we can interpret today as
c ≥ 232, 000 km/s. (A very entertaining account of the numerous misstatements of Rømer’s results has been
given by Andrzéj Wroblewski [Am. J. Phys. 53, 620–630 (1985)]. Also interesting to note: Wroblewski’s
materials were first presented in a UW Physics Department colloquium.)

Fizeau

The 19th century brought a number of quite accurate measurements of c. The French scientist Fizeau used
a rapidly rotating toothed wheel to chop a light beam and measured the time for the beam to return from
a distant mirror as the time it took the wheel to rotate sufficiently for a tooth to block the returning beam.
The value he reported in 1849 was c = 3.15 × 108 m/s.

Wheatstone, Foucault, and Michelson

A proposal to measure the speed of light that used a rotating mirror to chop a light beam came from Sir
Charles Wheatstone (developer of the Wheatstone Bridge) in 1834, but the best early measurement that
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used a rotating mirror was carried out by Foucault (better known for the Foucault pendulum) in 1862. His
published value [Compt. Rend. 55, 792 (1862)] was c = 298, 000 km/s and was thought to be accurate to
about 500 km/s. The definitive value of c from a rotating mirror experiment is that of A. A. Michelson
(of Michelson-Morley fame). The value, published by his collaborators after his death, [Michelson, Pease,
and Pearson, Astrophys. J. 82, 26 (1935)] was c = 299, 774 km/s and had a stated “average deviation” of
11 km/s. It was incorporated in a collection of physical constants and, for over a decade, the velocity of light
was quoted as c = 299, 774± 4 km/s. The striking feature of this measurement and the one most relevant
to the aims of this experiment is that the stated result differs from the modern value by 19 km/s, over four
times the stated uncertainty.

The most precise measurements of c came from direct measurements of the frequencies, ν, of optical tran-
sitions for which the wavelengths, λ, were known precisely. The speed c follows from the relation c = νλ.
The precision of these measurements was of the order of 1 part in 109 and was limited by the precision with
which the meter could be determined. In 1983 the decision was made to adopt c as a new standard. Now,
instead of the distance between two scratches on a platinum-iridium bar being exactly 1.000000000 . . . meter,
the velocity of light is given the defined value cdef = 299 792 458.000000 . . . m/s. The meter then becomes
the distance light travels in 1/299792458 seconds. (Should you be interested in details of the recent history
of measurements of c and the adoption of c as a defined quantity, consult the extensive references in the
article by Harry E. Bates, “Resource Letter RMSL-1: Recent measurements of the speed of light and the
redefinition of the meter” [Am. J. Phys. 56 682–687 (1988)]).

EXPERIMENTAL OBJECTIVE

Before launching into the details of the experiment, it must be emphasized that the primary objective of this
experiment is to understand the operation of the apparatus well enough to derive a value for the precision
with which c can be measured by the apparatus, not to obtain a value of c equal to the defined value.

In particular, you are to obtain the standard deviation σmeas in your measured velocity of light, cmeas , as
derived from a linear fit of your measurements of spot displacement vs. the rotational frequency of the mirror
and a knowledge of the experimental parameters A, B and D.

In general, if your value cmeas , is derived from an unbiased sample (one free from systematic errors) then it
should lie within the range cdef ± σmeas approximately 68% of the times you make a measurement. If cmeas

does not lie in the range cdef ± 3σmeas you should be prepared (in principle, generally) either to repeat the
experiment or (in practice here) identify and estimate the size of a systematic error or errors that explain
the discrepancy. Note that the percentage of measurements that would lie outside the range cdef ± 3σmeas

by chance alone (no systematic error) is about 0.3%.

APPARATUS

The apparatus you will use in this experiment is a commercial unit made by PASCO Scientific.

A diagram of the experimental setup is shown in Fig. 1. With all the equipment properly aligned and with
the rotating mirror stationary, the optical path is as follows. The parallel beam of light from the laser is
focused to a point s by lens L1. Lens L2 is positioned so that light from the image at s is reflected from the
rotating mirror MR, and is refocused onto the fixed, spherical mirror MF . MF reflects the light back along
the same path and L2 focuses it at point s. In order that the reflected point image can be viewed through
the microscope, a beamsplitter is placed in the optical path, so a reflected image of the returning light is
also formed at point s′.

The lens and mirror optics are designed so that light coming from s and reflected from MF is again focused
at s. This must continue to be true even if MR is rotated slightly and the beam strikes MF at a different
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Figure 1: Schematic of the PASCO speed-of-light apparatus.

point on its surface. Because s is focused on MF , the spot on MF is the image of s. Since light rays through
any optical system are reversible, light coming from the image on MF will pass through the object at s just
as light from the source at s passes through the image spot on MF . The spherical shape of the mirror is
important for two reasons. The first is that the light rays from s are directed nearly as though they came
from the center of curvature of MF . Light originating from the center of curvature will be reflected back on
itself, so the return beam will again pass through L2. The second is that the optical path length is nearly
independent of the position of the spot on MF . It helps if the length of the optical path from s to MF is close
to 13.5 m, the radius of curvature of MF , although the shorter path available in the lab does not present a
significant problem. In all rotating mirror experiments, image quality is an important issue, especially if, as
was the case for Michelson, the optical path includes a mile or so of wavy air. In summary, the spherical
shape of MF , ensures that the beam will be reflected directly back toward MR and the return image of the
source point will be formed at points s and s′.

Now imagine that MR is rotating continuously at a very high speed. In this case, the return image of the
source point will no longer be formed at the same points s and s′ that is was when the mirror was stationary.
A light pulse that travels from MR to MF and back now finds MR at a different angle when it returns than
when it was first reflected. As shown in the following derivation, the velocity of light can be determined by
measuring the displacement of the image point caused by the rotation of MR.

A Quantitative Description

To begin the derivation, we will first look at a simplified form of the optical system consisting of only the
rotating mirror MR and the fixed mirror MF , as shown in Fig. 2. A laser is aligned to create a pencil of
light to hit the rotating mirror: the “incoming beam” in the figure. Now think of a small piece of the beam,
or “packet” of light which strikes MR when the mirror is at angle Θ1. The packet is reflected about the
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normal to the mirror, and follows the path denoted by the thick solid lines, making incident and reflected
angles α relative to the normal. The packet of light hits the fixed mirror MF and is reflected directly back
towards MR. When it reaches MR, the mirror has rotated to a new angle Θ2, and so the angles of incidence
and reflection off of MR on this return trip are different; the new path is denoted by the thick dashed lines,
and the new incident and reflected angles are β. Thus, because the light takes time to make the round trip
between MR and MF , the “returning beam” of light is tilted away from the path of the “incoming beam”.

Figure 2: Simplified diagram of the speed-of-light optics showing the important angles.

The difference between the mirror’s angle governing the outgoing path Θ1 and that governing the return
path Θ2 is ∆Θ. There are a couple of ways to convince yourself that the angle between the returning beam
and the incoming beam, what we will call the deflection angle, should be twice this angle, or 2∆Θ. First,
whenever the mirror angle changes, both the incident angle and the reflected angle change by the same
amount, so if the mirror angle changes by ∆Θ, then the path of the light must change by 2∆Θ. Another
way to see this is by a direct calculation from Fig. 2. It is clear by inspection of the figure that the deflection
angle is 2α − 2β. It is also clear that β = α − ∆Θ (looking at the upper angle α in the figure). Thus the
deflection angle is

2α − 2β = 2α − 2(α − ∆Θ) = 2∆Θ . (1)

Now, what is the relationship between the deflection angle and the speed of light? During the time interval
∆t, the mirror moves by an angle ∆Θ, and the light packet travels a round trip distance of 2D where D is
the distance between MR and MF . If the mirror rotation speed is ω and the speed of light is c, then we have
two relations involving ∆t:

∆Θ = ω∆t , (2)

and
2D = c∆t . (3)

When we combine these equations, we obtain for the deflection angle

2∆Θ =
4Dω

c
. (4)

This equation says that the deflection angle will increase as we make the distance between the mirrors larger
or we make the mirror rotate faster. More specifically, it says that if we measure the deflection angle 2∆Θ
for a known rotation speed ω and a known separation distance D, we can then calculate c.
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In our apparatus, the distance D is conveniently measured with a tape measure, and the rotation speed is
measured with an electronic tachometer that is part of the rotating-mirror device. We measure the deflection
angle by means of the additional optics shown in Fig. 1. To reiterate the action of these components: Lens
L1 focuses the light from the laser to a spot located at point s. The (real) image of this spot is created
by lens L2 at the surface of MF at point S. This image, in turn, acts as the object that is focused by L2

back towards s. But before the light from the round trip can return to the point s, it is reflected by the
beamsplitter to be focused to a spot s′ in front of the measuring microscope.

Figure 3: Diagram showing the image of the point on MF created by MR when it is at position Θ2. This
image is focused by L2 at point s, as shown by the construction rays.

From the point of view of the observer looking through the microscope, the lens L2 acts on light coming
from the image of the fixed mirror MF which is created by the moving mirror MR. A diagram showing
this image is given in Fig. 3. As shown in the figure, the light from the laser is focused to a point s0, and
the image of this point is created by the lens L2 at the fixed mirror surface at S when the mirror is at Θ1.
The observer sees the returning light when the mirror is at angle Θ2; the light appears to follow the path
denoted by the thick dashed lines. The image of the spot at S appears to be coming from a point displaced
from the horizontal by a distance YS . The light from this (apparent) point is refracted by the lens L2 and
creates a real image of S at the point s that is displaced from the original spot s0 by a distance ys. By using
the beamsplitter and microscope, one can measure the displacement of the image at s from the (original)
“object” at s0.

The dimensions and angles shown in Fig. 3 are not to scale. In fact, the angle 2∆Θ is typically very small:
about 0.1◦ or less. We can use this fact to allow us to calculate the angle 2∆Θ in terms of the vertical
distance ys. By geometry, in the small-angle limit, the vertical distance YS , is given by

YS = D × 2∆Θ . (5)

By means of the construction rays used to locate the image of S at the point s, which are the thin lines
going through the lens L2 centered at the point P , we can see by similar triangles located about P that

YS

D + B
=

ys

A
. (6)
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By Eqs. (5) and (6), we find

2∆Θ = ys

D + B

AD
. (7)

If we eliminate ∆Θ by combining Eqs. (4) and (7), we obtain a formula for the speed of light in terms of
measurable quantities:

c =
4AD2

D + B

(

ω

ys

)

. (8)

Any change in ys will be reflected into a change in s′, the position of the spot as seen through the microscope,
in an exactly proportional manner. In this experiment, we can get better results by plotting s′ versus ω,
and the obtaining the slope ds′/dω by a fit to the data. This eliminates the need to know the precise value
of the zero-displacement position s0. In terms of these quantities, our final result reads

c =
4AD2

(

ds′

dω

)

(D + B)
(9)

where:
c = the speed of light
A = the distance between lens L2 and lens L1 minus the focal length of L1

B = the distance between lens L2 and the rotating mirror (MR)
D = the distance between the rotating mirror (MR) and the fixed mirror (MF )
s′ = the position of the image point as viewed through the microscope.
ω = the rotational velocity of the rotating mirror (MR)

Equation 9 was derived on the assumption that the image point is the result of a single, short pulse of
light from the laser. But the displacement of the image point depends only on the difference in the angular
position of MR in the time it takes for the light to travel between the mirrors. The displacement does not
depend on the specific mirror angles for any given pulse. If we think of the continuous laser beam as a series
of infinitely short pulses, the image due to each pulse will be displaced by the same amount. All these images
displaced by the same amount will, of course, result in a single image. By measuring the displacement of
this image, the rate of rotation of MR, and the relevant distances between components, the speed of light
can be measured.

EXPERIMENTAL PROCEDURE

CAUTION: Do not look into the laser beam, either directly or as it reflects from either mirror.
Also, when arranging the equipment, be sure the beam path does not traverse an area where
someone might inadvertently look into the beam.

It should be possible to obtain the necessary data within an hour. This estimate is strongly dependent
on having the apparatus in alignment before you begin your measurements. It will be aligned for the first
students who use it, so it crucial that they and you and subsequent users maintain the alignment. Take
extreme care not to bump the optical bench or the spherical mirror!!!

The procedure, in outline, is to measure the deflection of the laser spot for a number of CW (clockwise)
mirror rotational speeds, then reverse the direction of rotation and repeat the measurements for CCW
(counter-clockwise) rotation. This is a two-person operation, one person to set the rotational rate, read the
frequency counter and record the data, and the second to measure the spot deflection. If you make the CW
and CCW measurements more than once, it would be a good idea if you switched jobs (but not between
CW and CCW measurements!). Finally you should measure the distances between the optical components,
including the distance between the fixed mirror at the end of the room and the rotating mirror on the track.

The first order of business is to locate the spot image at s′. This should be done with the mirror rotating.
While looking through the eyepiece, gradually increase the rotational rate and look for a fairly faint, fuzzy

6



Physics 331A Experiment 1

spot that moves in proportion to the rotational rate. You may see other spots in the field of view, but only
the one that is reflected from the rotating mirror after return from the spherical mirror will move. Each
person in the group should locate the spot even though only one or two in the group will make the actual
measurements. Ask the TA to confirm that the spot focus is as it should be. If it is not good the TA or a
technician will readjust the apparatus. Do not attempt this on your own!

When all have seen the spot, the person measuring the deflection should practice setting a line of the
crosshairs on the spot and reading the micrometer. To do this the person setting the frequency should set
it at 500 Hz and see that it stays at this value while the deflection is measured. Each member of the group
should be able to read the micrometer and have an estimate of the accuracy of the reading. Therefore, when
the crosshairs are first set on the spot for the 500 Hz frequency, each member of the group should read the
micrometer setting and estimate the accuracy of the reading. Record the group consensus on the micrometer

reading and the accuracy of the reading. Record the frequency. The sheet on which these data are recorded
should be dated and should carry a statement that this was the first measurement and was a consensus
measurement.

At this point you should get a better idea of the repeatability of the deflection measurements. Reset the

frequency to 500 Hz, reset the crosshairs on the spot and record the micrometer reading and frequency.

It is important to set the micrometer position by turning it in the same (clockwise) direction when marking
the spot direction. There is a necessary looseness in the micrometer threads that will result in a different
reading for the deflection if it is approached from higher numbers (counter-clockwise) than if it is approached
from lower numbers (clockwise). This “backlash” error can be minimized by always approching the final
reading with the same rotational direction. Repeat the deflection measurement at 500 Hz for two to three

additional times and record the results. The purpose of the repeated measurements is to obtain a statistical
measure for the uncertainty in an individual measurement. This measure will be called the standard deviation
in an individual measurement, σi , and can be compared to a similar measure to be obtained from the next
set of data you are to take.

The next step is to measure the spot deflection for increasing values of the rotational rate. The rate can be
varied continuously from 0 to about 1000 rev/s. It can then be driven at about 1500 rev/s for a short time
by pressing the MAX REV/SEC button. Plan in advance which rotational rates you will use (a reading
every 200 Hz is a reasonable choice) and check your choice by changing the rate and watching the deflection
without measuring it. Do not attempt to take data below 100 rev/s, since the rotation speed is unstable
at low values. Also, don’t struggle to set the frequency exactly on 200 Hz or 300 Hz. Pick values nearby
where the rate is steady and record deflection and frequency for them. Use the maximum revolution rate
with care. The MAX REV/SEC button should be depressed for at most one minute, and the
motor should be allowed to cool off for at least a minute between high speed uses.

Finally, make a sketch of the apparatus (or use a copy of Fig. 1) and measure the positions of and distances
between the optical components. You can use a tape measure to obtain the distance between MF and MR;
some stools and wood blocks are available to keep the tape from sagging. The component positions on the
optical track can be found by reading the measuring rule attached to the track.

Also record the focal lengths of lenses L1 and L2.

Here is a summary of the data collection tasks:

1. Set the motor for CW rotation and complete your planned set of measurements.

2. Set the motor for CCW rotation and obtain a new set of measurements (same team assignments). Take
your readings as you did in 1) and avoid backlash.

3. When the first set of CW and CCW measurements is completed you may wish to obtain other sets.
This depends on your stamina and the time available.

4. Measure the distances and record the focal length data needed to obtain the values of A, B, and D.
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DATA ANALYSIS

For this experiment, there should be two independent sets of measurements of the spot position versus
frequency (by two different microscope observers). For each set of measurements, one of the directions of
mirror rotation should be plotted as positive frequencies and the other direction as negative frequencies and
put on one graph.

The frequency counter measures the number of rotations per second; please plot your data versus this number
and then determine the slope of each of the two sets of data from a least squares fit. You will need to estimate
the uncertainty in your slope. (Several methods are described on the course website.)

You can then combine the two values for the slopes from your data and calculate the speed of light, converting
the units of your slope to angular frequency for your final calculation.

A careful, well documented estimation of the uncertainty in your measurement is essential for every every
analysis and report, especially this week’s experiment.

Remember, your primary objective is to understand how well you have made your measurement, not just to
obtain agreement with the defined value of c. You will need the uncertainty in each of your measurements
in order to work this out. Some things to keep in mind:

• The precision of your distance measurements will depend on your ruler and on how you used it.
Estimate this uncertainty, and explain in your report how and why you chose the uncertainty values
that you did.

• Assume that the focal lengths of the lenses are accurate and precise to 1 mm.

• You will notice that the mirror speed fluctuates a little when you try to make the reading. But you
will also notice that you cannot see the spot move during this fluctuation. The uncertainty in the spot
location, which depends on the spot size, focus and resolution of the micrometer is much larger than
the uncertainty in the mirror speed. Since the two quantities are used to calculate the rate ds′/dω,
you can safely ignore the uncertainty in the mirror speed.

• The uncertainty in ds′/dω will be found from the fitting uncertainty when you plot s′ versus ω.

Note that Eq. (8) can be written as a linear relation between the rotational rate ω and the vertical spot
position ys. Thus, a plot of the position s′ (i.e., s2 as seen though the microscope) vs. the rotational frequency
ν (ω = 2πν) should give a straight line. For your report you should carry out the following tasks:

1. Obtain a computer-generated, least-squares fit of your data to a straight line.

2. Provide a plot (minimum 1/2 page in size) of the data and the fitted straight line, also computer-
generated.

3. From the slope of that line and the standard deviation in the slope, along with the measurements you
took to determine the distances A, B and D and their uncertainties, calculate cmeas and the standard
deviation in cmeas , σmeas .

The major part of your write-up will then consist of a reconciliation of your value of cmeas with the defined
value cdef . Use the information you have about the uncertainties in your measurements and your knowledge
of the experimental parameters.

You may want to study some of the information on uncertainty analysis on the class website. The tutorial
“Notes on data analysis and experimental uncertainty” is a good place to start.

For simplification of the analysis it is OK to treat D + B as independent of D2. This will overestimate the
uncertainties. If you have time to be fancy you might decide whether it is important to improve on that.
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You need to realize that the relative error in D2 is twice that of D (see examples in postings or links on
course website).

Then you have four terms whose relative errors add as the square root of the sum of the squares of the
individual relative errors of 4 terms:

a) the slope of displacement vs. frequency (plot CW and CCW as + and − frequencies so you fit all
measurements from one set with one line);

b) the D2 term;

c) the A term;

d) the D + B term.

You might also ask yourself if you mis-estimated the position of the rotating mirror whether it affects D and
B is a similar way. Note also: the lens centers are displaced from the mark on their mounting on the scale
on the track.
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