PHYS 536

R. J. Wilkes

We'll start class at 7:05

Session 2
Harmonic oscillators:
Simple, damped, driven
resonance

1/5/2023



Course syllabus and schedule — first part...

See : http://courses.washington.edu/phys536/syllabus.htm

Session date Day Readings: K=Kinsler, H=Heller Topic
Course intro, acoustics topics, overview of wave properties;
1 3-Jan Tue Kch.1 H:Ch. 1, 2 pulses, transverse and longitudinal waves, overview of sound
speeds
harmonic oscillators: simple, damped, driven; complex
2 5-Jan Thu Kch.1 H:Ch.9, 10 exponential solutions, electrical circuit analogy, resonapge, Q
factor O
Fourier methods: Fourier series, integrals, Fourier transforms,
3 10-Jan Tue Kch.1 H: Ch. 3 . . -
discrete FTs, sampling and aliasing
Frequencies and aliasing; convolution and correlation; discrete
4 12-Jan Thu K. chs 10 H: Ch. 4, 11 convolution; digital filtering, optimal filters, FIR filters, noise
spectra; power spectra. REPORT 1 PROPOSED TOPIC DUE
5 17-Jan Tue K.ch.2,3,4 H: Ch. 13, 15 waves in strings, bars and_membranes; Ac-oustic-wa.ve equation;
speed of sound; Harmonic plane waves, intensity, impedance.
6 19-Jan Thu K.Ch.5,6 H: Ch. 1 Spherical waves; transmission and reflection at interfaces
7 24-Jan Tue K Ch. 8 H: Ch. 7 Radiation from sma.lll _sources; B?fﬂed simple source, piston
radiation, pulsating sphere;
8 26-Jan Thu K: Ch. 10 H: Chs. 13-15 Near field, far field; Radiation impedance; resonators, filters
9 31-Jan Tue K. Ch. 9-10 H: Chs. 16-19 Musical instruments: wind, string, percussion
10 2-Feb Thu K.Ch14 Transducers for use in air: Microphones and loudspeakers
11 7-Feb Tue K.Ch11l H: Chs. 21-22 The ear, hearing and detection
Decibels, sound level, dB examples, acoustic intensity; noise,
12 9-Feb Thu K. Chs 5,11 detection thresholds. REPORT 1 PAPER DUE by 7 PM; REPORT 2
PROPOQOSED TOPIC DUE




From last time: Course information

e T-Th, 7:00-8:50 pm, A110 Physics-Astronomy, and/or Zoom

— I will attend by Zoom only for most sessions

— In-person (optional) meetings on a few later dates for demonstrations
R. J. Wilkes

— 206-543-4232 , wilkes@uw.edu
Office hrs: after class, or by appointment via zoom/phone

Website: hitp://courses.washington.edu/phys536

e Books:

— Fundamentals of Acoustics 3 ed. (1982) or 4t ed. (2000), Lawrence E.
Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders; Wiley

— Why you hear what you hear, Eric J. Heller, Princeton University Press,
2013, ISBN: 978-0691148595

— Books are on 2 hr reserve in the UW Odegaard Undergraduate Library —
see http://www.lib.washington.edu/about/hours/

Grades — see class calendar on website for due dates
— Two 5 p term papers (100 points each) - submit proposed topics by email
— End-of-term exam (100 pts, take-home; no final exam in exam week)
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Announcements

e SPECIAL: Next Tuesday, class will start at 7:30 pm, not 7 pm.

— Most sessions thereafter will be Zoom only (I will not come in)
e HOWEVER: you are quite welcome to come to A110 PAB to meet with
fellow students and attend the zoom sessions together

e Later, I will come in and some sessions in-person, when
demonstrations are part of the show — I'll notify you a week in advance
of these dates

— You can watch me do the demos on Zoom, of course



Questions from a student last time

Bubba C. figured out the answers for himself later, but for benefit of everyone else:

e In air, the density will be smaller when temp is higher, so why is the speed of sound
faster in hotter air? Or is the speed of sound faster in hotter air only if the density is
constant between the hot and the cold air?

— The plots shown were for density and other parameters held constant

e For the SOFAR layer, I can see why there would be total internal reflection at 1000
m below the surface, but why would there be reflection at 100 m below the surface?

— The channel is
centered on the
sound speed
minimum and
reflection occurs
because the sound
speed increases
both above and
below the minimum
around 1000 m -
compare to index of

refraction in optics.
PS: Thanks for the
nice picture
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Sound speed and frequency

* Speed of sound does not vary much with f

— If ¢ depended on f, sound signals would change significantly
depending upon how far away you are

« This is called “dispersion”

— Small f dependence can be observed, for example in
undersea sound transmission

» A pulse with many frequencies in it will spread out in time
as it travels

« Pitch will vary — pulse spreads; ping becomes a “chirp”

Pulse moving in a q
dispersive medium




Frequency range terminology

* Audible/"Acoustic” — nominally 20 Hz to 20 kHz
(actual range for most people is closer to 50Hz-15kHz)
* Infrasonic - below audible
(below about 0.1 Hz we call it “vibration” !)

 Ultrasonic - Above 20 kHz

Frequency of Sounds (measured in hertz (Hz))

and engineering/science

Normal Hearing

— Humans use ultrasound in medicine

Vowel Sounds Like a Short “O” Medical ard Destructive
Lowhassnotes  Ariraals and Cheraistry | Diagnostic ard NDE
N 20Hz 2UK]-Izl IHz 200MHz
C t Sounds Like *S
onsonant Sounds Like l‘ I . I . . ’
Infrasound Acoustic Ultrasound
IO Seunas — Animals use infra/ultra ranges




Harmonic oscillators

I€
_ _ _ _ _ Natural :
e First and easiest case: simple harmonic motion length Equilibrium
osition
d*x d*x s Using Kinsler’s notation: “ne [I)ect friction”
f=-sx= md— — d— +—x=0 spring constantk = s 9
4 t m

with s,m both >0, let ,/ —> —+a)x 0

Solutions come in three forms :
I: x=Acoswt+Asinwt where o,=angular frequency (radians/sec)

Jo= ;0—0 (‘linear") frequency (cycles/sec = Hz)
7T

Period: 1,=1/ f, (time for1cycle)
II: x=Acos(wit+¢,)

where @, =initial phase angle (phase at t = 0)

Il: x=Ae", where y? = —a)g — y==iw,

So x= Ale”wot + Aze_iw‘)t where A, = 141*, (* = complex conjugate) so
A=a-ib — A =a+ib (only2independent consits.)



Simple harmonic oscillator %ﬂ

e SHM: position and speed of mass \ v ‘
— Initial conditions give constants needed (1)
X

Initial conditions: Att=0, x=x, speed u,=
dt |,_g

Substitutein Il : x = Acos(wt+¢,) — x,=Acos(¢,), u,=-Aw,sin(g,)

x,=A’cos’(¢,), u, =-A’w;sin’*(¢,) — A°(cos*(¢,)+sin’*(¢,))=x; +(u,/w,)’
A=x,/cos(§,)=-u,/sin(¢,) — -u,/wx,=tan(¢g,)

So A= \/xg +(u, /a)O)2 , P, = tan_l(—uO [ wyx,)

Substitute in Il :  x = A1€+iw°t sA x,=A+A4, u,=(4-A4)io,

2

1 u 1 U u, .
So =—(x -i—Y), A =—(x+i-%) — x(t)=x. cos(w.t)+—Lsin(w,t
A=), A= (i) = X0 =xcos(@,) + sinoy)

u, real — Im(x(¢))=0, andRe(x(t))=acos(w)-bsin(w,t)

xO’ 0

. . . +iw,l
Treating x,u and A as complex, can write solution compactly as x = Ae” "

dx . . it : du > 2 o it
Then speed u = = =iw x =iw,Ae’ ", acceleration a = = =-w,x =-w,Ae" "
5 5




total energy

Simple harmonic oscillator

kinetic energy

potential energy

e Simple harmonic oscillator: energy

Energy . E=FE

POT +L KIN -A 0 Position, x +A
with x=Acos(wt+¢,), u=-Usin(wi+¢,), U=Aw,

E,. = foxsx dx =%Sx2 = %SA2 cosz(wot +¢)

I, 1 2 . 2
EK[N=5mu =5mU sin”(w,t +¢)

E = %SA2 cos’(w,t +¢)+ %mU2 sin’(w,f +¢);

w,=s/m — E-= %ma)gAz cos’(w,t +¢)+ %ifn(Aa)O)2 sin’(w, ¢ + )

E=lma)§A2, but also E=1SA2 =lmU2
2 2 2
So SHM's total E is constant, and equal to either its Undamped,

max kinetic E (E at x=x,) or max potential E (E at x..,) Undriven
10



Damped harmonic oscillator

e Next, more realistic case: damped harmonic oscillator
— Damping = friction or resistance = dissipates energy in oscillator
— Total energy (K + V) decreases with time until oscillator stops

e Compare behavior of free vs damped oscillator:

= 10 15 20 25

time
iy modificd by D.% yssdl, 1997
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Damped harmonic oscillator

/ \/ \/s;/ \/ \f—|_

Ry -

NAANANANNNANY

e Damped oscillator )
d"x d°x s .
f sprING = A —= —SX = m— —> + —x =0 free oscillator

dt* dr* m

Damping force (resistance) opposes motion, most commonly proportional to speed:

dx d’x dx
f.=-R —— m— +R —+sx=0 damped oscillator

" dt dr’ " dt

. 4
General complex form of solution: X = Ae’

d2 dx 2 R \) vt
Put this into eqn: m—+R —+s5sx=0 — |y +2y+—|Ae" =0
dt’ dt m m

2 Rm \Y o) S
Must be true forany ¢, so: |y +—YV+— = 0; recall natural f : W, = —

m m m

Solution of quadraticin Yy : Y = —ﬁ/2i\/ﬁ2 —4603 /2; with f = Rm/2m
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Damped oscillators

e Notice: If R, =0, we recover undamped case, and;

2 .
Y =+\/—, ==iw,

e Also, in most acoustics applications damping is relatively weak,
sow, > f; define wy

a4

2 2 . Y | ' 7
wd=\/w0—ﬁ — y=—/3¢za)d%.,. /\(’

- pt ! -t
So solutionis X = € p (Ale 0 +A2e 0 )o

N
I

N
(=]
~
-
o
o
(=]
<
e
£3 5
-
=
C

In this case (1), =10and ¥ =1.The
undamped period is 0.628 s and the
period of the damped motion is only
marginally longer, 0.632 s.

o FS
" i

- pt
With real part X = Ae Z (COS(O)Ot) + ¢),
Get the real constants A, ¢ from 1nitial conditions.

e Exponential envelope has decay factor 8, so the characteristic
time for damping (time to drop by factor 1/e) t,= 1/p= 2m/R,



Damped harmonic oscillator

e If damping (R, ) is
small, oscillations
continue, with slowly
diminishing amplitude

e If damping is large, no
oscillations, just slow
return to equilibrium x

e If damping is “juuust
right” (critical damping),
returns to equilibrium
x=0 smoothly and in
shortest possible time

— Near-critical damping:
few oscillations, and a
relatively prompt return

The underdamped response of the oscillator
is described by the equation:

x=e¢"acos|w— a]

/\ + Time

Overdamped

X 0.6 0 1.0 1.2 1.4 1.6 (sec)
One-half of
critical
damping
One-tenth Oscillator with resonant
fnet gn| frequency 10 rad/s
° crmlca started from rest.
damping

After Barger & Olsson

hyperphysics.phy-astr.gsu.edu

critical damping occurs when R, =2mw,
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Damped harmonic oscillator example

At t = 0, damped harmonic oscillator is displaced from equilibrium by
0.2 m, where F=4 N, and released. Displacement vs t is shown below:

— Estimate (@) The mass of the oscillator, (b) The decay factor f3, (c)
The frequencies w4 and w,

displacement
(meters)
0.2
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’\/\/s\/\/\

Damped harmonic oscillator example

NANNNNNNNNNY
3

— H—
F=-kx = k=4N/02m=20N/m o —
19 cycles in 60 sec so period T’ =3.15s — T = 1 = 270 = 270
foos Jog-F
w,=kim — T-= 27 — a)d=2—'7r=2md/s
J(k/m)-p’ T

decay : A(t)/ A(0) = e™"; Initial amplitude A(0)=0.2m drops by 1/2 at 20s
— 1/2=¢"* = _In2=-B(20s)— L=In2/(20s)=0.035

w,=\(kIm)-p* = @} =(kim)->— kim=w]+p
m=k/(w;+pB*)=20/(47" /T*+0.035%) ~ Skg

w, =vk/m=~20/5=2rad/s— f=w,/27x=0.32Hz
e Notice that g is small, so w4 ~ w,
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Oscillator with driving force

__/\/\/s\/\/\r—-|_z_> f

Ry - L}

NNANNNNNNN\N

o Driven oscillator: force applied to m

dZ dx

driving force applied to oscillator

(Assume F is sinusoidal)

dt " dt
lwt

f =F elwt —>  Again assume general complex form of solution: X(#) = Ae

2 . .
Put into mcjl_-l_R ?+Sx f() — ( ACUZWl+iAa)Rm _I_As)elwt _ Flot
t* 5

A: A= — -
Solve for ia)(ia)m+Rm—is/a)) x(t) 'a)[Rm+i(a)m—S/a))]

0x Fe'™
Speed : u(t) = =

ot [Rm +i(a)m—s/a))]

x and u are still treated as complex quantities: define complex mechanical impedance

Zm = Rm + le ;. mechanical reactance Xm = (a)m -5/ a))

17



Analogy - Electrical oscillators: RLC

e In electrical circuits, for the driven oscillator:

2
L d— + R— dq +— : g =V (t) driving voltage applied to RLC circuit
dt’ dt C

V(t)eiwt

Solution for charge — q(l‘) B 0, [R + i(CUL -1/ a)C)]

ot

Current : I(¢) = with Z the complex electrical impedance

/Z=R+iX =|Z|€i®; RC[Z]=R; Im[Z]=reactance X=(COL—1/C()C)

X 1
|Z| = \/R2 + (CUL — 1 / CUC)Z : @ = tan‘l E’ Resonant frequenCy a)O = E
— This is a series RLC circuit: same I through all components

— In mechanical oscillator: same x and u for all parts

18



Driven damped mechanical oscillator

e Analogy to electrical circuits: mechanical impedance

complex impedance £, =R, +iX =‘Z -

Re(Z,, |- R

m

ei@

: Im[Zm] = reactance X = (a)m —s/ a))

‘Zm‘=\/R3,l+(a)m—s/a))2,

1 X

®=tan 1

Z

m

Displacement : x

Speed : U(t) =

Feia)t

()=

Fe it

ia)[Rm +i(a)m—s/a))]

Z, = ratioof Vtol
Z., = ratio of driving
force to speed

“mechanical ohm” has
units of force/speed

o ., _fo

[Rm+i(a)m—s/a))]

VA

m

™ u(t)

19



Driven damped mechanical oscillator

e Driven oscillator differential egn and solutions:

d’x dx
m—s-+R —+sx= f(@)= Fe' e .but actual displacement has to be real!
ar’r " dt
—> complex form of solution X = - : = -
za)[Rm + z(a)m -5/ a))] iz
Fe"  —iFe'"“™®  Fsin(wt-0
Actual displacement : x() = Re| - J = - = = = ( )
Iz la)|Zm|e a)|Zm| a)|Zm|
2 1 X
Recall: |Zm| \/Ri (a)m—s/a)) , O =tan I 2m
Zm

F cos(wt — ©) F
= — —— = Amplitude of #(#) = max speed

Speed : U(t)=Re
Z, Z

UAQ)
Z

— Notice: find the (complex) impedance and you have solved

the differential equation of motion
20



Transient response

e Transient response of driven, damped oscillator: Full solution includes
— Transient term that depends on initial conditions, and damping

— Steady-state term that depends on driving force magnitude, and
e 9 4

General complex solution x = Ae :
vl

With real part x = Ae P! cos(w 4t +¢) + sin(wt — ¢)

w/ "

We get the real constants A, ¢ from initial conditions;

Transient regime Steady state regime

2 2 e ~ -~
Wy = \/0)0 -p; b= Rm/zm z(t) |y
For Xx=u=0 at t=0, and/)’<<0), we get )

2 2
F | X, R _1| w
A= My M and ¢=tan 1 M| -

24 2 2 W X
Zm CU a)d d m “10

-—
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Resonance

e Resonance in a driven, damped oscillator:
— Resonant frequency = f at which reactance X goes to 0 (Z=R)
e Minimum of Z - maximum amplitude of speed u

2
At resonance @ m=s/a)0 — W, =s/m

0

Fcos(w,t) _
u = —>  Amplitude — = max speed
res R
m m
Fsin(w,t
displacement : x(7) = (@)
wORm

, 1s not the max displacement frequency;

0
max displacement occurs for @ such that

2
2 .. 2 2
R +(a)m—s/a)) }= minimum — @ =\/a) -2p
m max-—x 0

0y

(...homework exercise)
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Resonance

Resonance in a driven oscillator:
— Identical damped oscillators, all with natural frequency f,=1.
— Harmonic driving force F=F,cos(2 = f t) is applied
— The driving frequencies of the applied forces are (matching colors)
f1=0.4, f2=1.01, f3=1.6

www.acs.psu.edu/drussell/
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Resonance

— Time plots for oscillators (matching colors) f1=0.4, f2=1.01, f3=1.6

AN ,/\
v

-0.5F

t axis on these plots seems

1 to be 1 sec = ~6 units
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Displacement amplitude vs damping g and w/w,

e Resonance in a driven oscillator: frequency for max displacement

2 2
0, =03 =28, B=R,/2m
6 4 0 T T
|l '
R "
R B maxima|
2 [ -- 7=0.0
= . — 7=0.1
= ey — 7=0.2 |
S : — 6503
0 e R A — =05 | ]
S 2pes g U s e :
~ : & =p/ay
1 (zeta)
0 ; ; ; ; S—
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Relative frequency w/w,,



Phase shift vs (o / w, )

1.0
| e
l =) cmcemieom.
15 et e
Qf 216 =
0.8 -
0.6 -
=
S~
=
0.4 -
0.2
0.0 : ,
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

wcarrier/ wload wcarrier / wload

e Resonance amplitude and phase shift in a driven oscillator

Watch https://www.youtube.com/watch?v=aZNnwQ8HIHU
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Resonant behavior and Q

e Sharpness of resonance peak is described by the ‘quality factor’ Q

w, ,
Q= , ,, 0, are points above and below resonance
W, — @
U L

where average power drops to 1/2 the resonance peak value.
This happens when Z> =2R’ =X =wm-s/w==R,

wo,m-s/w,=R , and wom-s/w,=-R —w,-w, =R _Im

wym _mk _ (T
So Q= R = R w,(t/2)=(27/T)(t/2) J'L’(T)

So

e Q is directly proportional to decay time of the undriven oscillator T
e Q isrelated to (energy stored)/(energy lost) ~ X/R

27



Resonant behavior and Q

Q is dimensionless (ratio of times or energies)
Low resistance (dissipation) - High Q

i

high Q

medium Q

Amplitude

low Q

0.6 0.8 1.0 1.2

1.4
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Displacement amplitude vs time for resonance: human ear

e Example of resonance in a driven oscillator: Amplitude vs t, for
natural frequency 1 kHz and Q = 12.7 (values reflecting those of
the cochlea). a = delay before start, b = resonance build-up time

The oscillator takes Q/m cycles (=4 cycles) to reach the half-power amplitude of 0.707
and Q cycles to reach the 96% criterion. - A. Bell, PLoS One 7(11):e47918, 2012

A e

amplitude

AAANRRRR RN

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time (ms)
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Stiffness, Resistance, Mass dominance

e Often want some response to be ‘flat’ over a range of frequencies
— Stiffness-controlled system
s/o>> wmand R, =2 x(t) ~ (F/s) cos(wt)
o Amplitude of displacement ~ independent of w
— Resistance-controlled system
R, >>X_, and R, 2 x ~ (F/wR,) sin(wt), u ~ (F/R.) cos(wt)
o Amplitude of speed ~ independent of w
— Mass-controlled system
ow m>>s/wand R, 2 x ~ (F/w’R,) cos(wt), u ~ (F/wR) sin(wt)

e Neither amplitude of u or x is independent of w (but
amplitude of acceleration is)

e Driven oscillators are
— stiffness-controlled for o << w,
— Resistance-controlled for o ~ w,
— mass-controlled for o >> w,
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Discussion of resonance wouldnt be complete...

e ...without the Tacoma Narrows Bridge 1940
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Reminder

SPECIAL: Next Tuesday, class will start at 7:30 pm, not 7 pm.
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