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We’ll start class at 7:05 



See : http://courses.washington.edu/phys536/syllabus.htm 
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Tonight 

Course syllabus and schedule – first part… 



Course information 

•  T-Th, 7:00-8:50 pm, A110 Physics-Astronomy, and/or Zoom 
–  I will attend by Zoom only for most sessions 
–  In-person (optional) meetings on a few later dates for demonstrations 

•  R. J. Wilkes 
–  206-543-4232 , wilkes@uw.edu 

 Office hrs:  after class, or by appointment via zoom/phone 

•  Website: 
•  Books: 

–  Fundamentals of Acoustics 3rd ed. (1982) or 4th ed. (2000), Lawrence E. 
Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders; Wiley 

–  Why you hear what you hear, Eric J. Heller, Princeton University Press, 
2013, ISBN: 978-0691148595  

–  Books are on 2 hr reserve in the UW Odegaard Undergraduate Library – 
see http://www.lib.washington.edu/about/hours/  

•  Grades – see class calendar on website for due dates 
–  Two 5 p term papers (100 points each) - submit proposed topics by email 
–  End-of-term exam (100 pts, take-home; no final exam in exam week) 
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From last time: 



Announcements 

•  SPECIAL: Next Tuesday, class will start at 7:30 pm, not 7 pm. 
–  Most sessions thereafter will be Zoom only (I will not come in) 

•  HOWEVER: you are quite welcome to come to A110 PAB to meet with 
fellow students and attend the zoom sessions together 

•  Later, I will come in and some sessions in-person, when 
demonstrations are part of the show – I’ll notify you a week in advance 
of these dates 

–  You can watch me do the demos on Zoom, of course 
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Questions from a student last time 

Bubba C. figured out the answers for himself later, but for benefit of everyone else: 
•  In air, the density will be smaller when temp is higher, so why is the speed of sound 

faster in hotter air?  Or is the speed of sound faster in hotter air only if the density is 
constant between the hot and the cold air? 
–  The plots shown were for density and other parameters held constant 

•  For the SOFAR layer, I can see why there would be total internal reflection at 1000 
m below the surface, but why would there be reflection at 100 m below the surface?   

5 

–  The channel is 
centered on the 
sound speed 
minimum and 
reflection occurs 
because the sound 
speed increases 
both above and 
below the minimum 
around 1000 m – 
compare to index of 
refraction in optics. 
PS: Thanks for the 
nice picture 



Sound speed and frequency 
•  Speed of sound does not vary much with f   

–  If c depended on f, sound signals would change significantly 
depending upon how far away you are 

•  This is called “dispersion” 
–  Small f dependence  can be observed, for example in 

undersea sound transmission 
•  A pulse with many frequencies in it will spread out in time 

as it travels  
•  Pitch will vary – pulse spreads; ping becomes a “chirp” 
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Pulse moving in a 
dispersive medium  



Frequency range terminology 

•  Audible/”Acoustic” – nominally 20 Hz to 20 kHz   
(actual range for most people is closer to 50Hz-15kHz) 

•  Infrasonic  -  below audible  
(below about  0.1 Hz we call it “vibration” !) 

•  Ultrasonic   -  Above 20 kHz 
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–  Animals use infra/ultra ranges  
–  Humans use ultrasound in medicine 

and engineering/science 



Harmonic oscillators 

•  First and easiest case: simple harmonic motion  
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f = −sx =m d
2x
dt2

→
d 2x
dt2

+
s
m
x = 0

with s,m both > 0, let ω0 = s
m

→
d 2x
dt2

+ω0
2x = 0

Solutions come in three forms :
I : x = A1 cosω0t + A2 sinω0t where ω0 = angular frequency (radians / sec)

f0 =
ω0
2π

('linear ') frequency (cycles / sec = Hz)

Period : T0 =1/ f0 (time for 1cycle)
II : x = Acos(ω0t +φ0 )
where φ0 = initial phase angle ( phase at t = 0)
III : x = Aeγt , where γ 2 = −ω0

2 → γ = ± iω0

So x = A1e
+iω0t + A2e

−iω0t where A2 = A1
*, (*= complex conjugate) so

A1 = a− ib → A2 = a+ ib (only 2 independent consts.)

Using Kinsler’s notation: 
spring constant k = s   “neglect friction” 



Simple harmonic oscillator 

•  SHM: position and speed of mass 
–  Initial conditions give constants needed 
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Initial conditions : At t = 0, x = x0 , speed u0 =
dx(t)
dt t=0

Substitute in II : x = Acos(ω0t +φ0 ) → x0 = Acos(φ0 ), u0 = −Aω0 sin(φ0 )
x0
2 = A2 cos2(φ0 ), u0

2 = −A2ω0
2 sin2(φ0 ) → A2 (cos2(φ0 )+ sin

2(φ0 )) = x0
2 + (u0 /ω0 )

2

A= x0 / cos(φ0 ) = −u0 / sin(φ0 ) → −u0 /ω0x0 = tan(φ0 )

So A= x0
2 + (u0 /ω0 )

2 , φ0 = tan
−1(−u0 /ω0x0 )

Substitute in III : x = A1e
+iω0t + A2e

−iω0t → x0 = A1 + A2 , u0 = (A1 − A2 )iω0

So A1 =
1
2
(x0 − i

u0
ω0
), A2 =

1
2
(x0 + i

u0
ω0
) → x(t) = x0 cos(ω0t)+

u0
ω0
sin(ω0t)

x0 , u0 real → Im(x(t)) = 0, and Re(x(t)) = acos(ω0t)−bsin(ω0t)
Treating x, u and A as complex, can write solution compactly as x = Ae+iω0t

Then speed u = dx
dt
= iω0x = iω0Ae

+iω0t , acceleration a = du
dt
= −ω0

2x = −ω0
2Ae+iω0t



Position, x  

Simple harmonic oscillator 

•  Simple harmonic oscillator: energy 
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So SHM’s total E is constant, and equal to either its 
max kinetic E (E at x=x0) or max potential E (E at xmax) 

Undamped, 
Undriven  

Energy : E = EPOT + EKIN
with x = Acos(ω0t +φ0 ), u = −U sin(ω0t +φ0 ), U = Aω0

EPOT = sx dx =
0

x
∫ 1

2
sx2 = 1

2
sA2 cos2(ω0t +φ)

EKIN =
1
2
mu2 = 1

2
mU 2 sin2(ω0t +φ)

E = 1
2
sA2 cos2(ω0t +φ)+

1
2
mU 2 sin2(ω0t +φ);

ω0
2 = s /m → E = 1

2
mω0

2A2 cos2(ω0t +φ)+
1
2
m(Aω0 )

2 sin2(ω0t +φ)

E = 1
2
mω0

2A2 , but also E = 1
2
sA2 = 1

2
mU 2



Damped harmonic oscillator 

•  Next, more realistic case: damped harmonic oscillator 
–  Damping = friction or resistance à dissipates energy in oscillator 
–  Total energy (K + V) decreases with time until oscillator stops 

•  Compare behavior of free vs damped oscillator: 
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•  Damped oscillator 
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Damped harmonic oscillator 

fSPRING =ma→ − sx =m d 2x
dt2 →

d 2x
dt2 +

s
m
x = 0  free oscillator

Damping force (resistance) opposes motion, most commonly proportional to speed:

  fr = −Rm
dx
dt
→m d 2x

dt2 + Rm
dx
dt
+ sx = 0    damped oscillator

General complex form of solution:  x = Aeγt

Put this into eqn:  m d 2x
dt2 + Rm

dx
dt
+ sx = 0 → γ 2 +

Rm
m
γ +

s
m

⎛

⎝
⎜

⎞

⎠
⎟Aeγt = 0

Must be true for any t,  so :   γ 2 +
Rm
m
γ +

s
m

⎛

⎝
⎜

⎞

⎠
⎟= 0;     recall natural f : ω0

2 =
s
m

Solution of quadratic in γ  :    γ = −β 2± β 2 − 4ω0
2 2;     with β =   Rm 2m



Damped oscillators 

•  Notice: If Rm =0, we recover undamped case, and;  

•  Also, in most acoustics applications damping is relatively weak, 
so ω0 > β;     define ωd  

•  Exponential envelope has decay factor β, so the characteristic 
time for damping (time to drop by factor 1/e) τd= 1/β= 2m/Rm   

 

γ = ± −ω0
2 = ±iω0

ωd = ω0
2 −β2 → γ = −β ± iωd

So solution is   x = e−βt A1e
iω0t + A2e

−iω0t( )
With real part   x = Ae−βt cos(ω0t)+φ( );    

Get the real constants  A,  φ  from initial conditions.   



Damped harmonic oscillator 

•  If damping (Rm ) is 
small, oscillations 
continue, with slowly 
diminishing amplitude 

•  If damping is large, no 
oscillations, just slow 
return to equilibrium x 

•  If damping is “juuust 
right” (critical damping), 
returns to equilibrium 
x=0 smoothly and in 
shortest possible time  
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hyperphysics.phy-astr.gsu.edu 

critical damping occurs when Rm =2mω0 
–  Near-critical damping: 

few oscillations, and a 
relatively prompt return 



Damped harmonic oscillator example 

•  At t = 0, damped harmonic oscillator is displaced from equilibrium by 
0.2 m, where F=4 N, and released. Displacement vs t is shown below:  

–  Estimate  (a) The mass of the oscillator, (b) The decay factor β, (c) 
The frequencies ωd and ω0 

15 



Damped harmonic oscillator example 

•  Notice that β is small, so ωd ~ ω0 
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F = −kx  → k = 4N / 0.2m = 20N /m

 19 cycles in 60 sec so period T = 3.15s  → T = 1
f
=

2π
ωd

=
2π

ω0
2 −β 2

ω0
2 = k /m → T = 2π

k /m( )−β 2
 → ωd =

2π
T

= 2rad / s

decay : A(t) / A(0) = e−βt;   Initial amplitude A(0)=0.2m drops by 1/2 at 20s

 → 1/ 2 = e−β (20) → − ln2 = −β(20s)→ β = ln2 / (20s) = 0.035

ωd = k /m( )−β 2 → ωd
2 = k /m( )−β 2 → k /m =ωd

2 +β 2

m = k / ωd
2 +β 2( ) = 20 / 4π 2 /T 2 + 0.0352( ) ~ 5kg

ω0 = k /m = 20 / 5 = 2rad / s→ f =ω0 / 2π = 0.32Hz



Oscillator with driving force                     

•  Driven oscillator: force applied to m 
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 m d 2x
dt2 + Rm

dx
dt
+ sx = f (t) = F cos(ωt)   driving force applied to oscillator

f = Feiωt  → Again assume general complex form of solution:  x(t) = Aeiωt

Put into  m d 2x
dt2 + Rm

dx
dt
+ sx = f (t) → −Aω 2m+ iAωRm + As( )eiωt = Feiωt

 Solve for A  :   A = F
iω iωm+ Rm − is /ω( )

 → x(t) = Feiωt

iω Rm + i ωm− s /ω( )⎡⎣ ⎤⎦

 Speed :   u(t) = ∂x
∂t
=

Feiωt

Rm + i ωm− s /ω( )⎡⎣ ⎤⎦

x and u are still treated as complex quantities: define complex  mechanical  impedance 

Zm = Rm + iXm  ;      mechanical  reactance  Xm = ωm− s /ω( )

(Assume F is sinusoidal) 



Analogy - Electrical oscillators: RLC 

•  In electrical circuits, for the driven oscillator: 

 
–  This is a series RLC circuit: same I through all components 
–  In mechanical oscillator: same x and u for all parts 
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 L d
2q
dt2 + R

dq
dt
+

1
C
q =V (t)    driving voltage applied to RLC circuit

Solution for charge → q(t) = V (t)eiωt

iω R+ i ωL −1/ωC( )⎡⎣ ⎤⎦

Current :   I(t) = Fe
iωt

Z
  with Z  the complex  electrical impedance

Z = R+ iX  = Z eiΘ;  Re Z[ ] = R;   Im Z[ ] = reactance  X = ωL −1/ωC( )

Z = R2 + ωL −1/ωC( )2 ;    Θ = tan−1 X
Z

;     Resonant frequency  ω0 =
1
LC



Driven damped mechanical oscillator 

•  Analogy to electrical circuits: mechanical impedance 
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 complex impedance Zm = Rm + iXm  = Zm e
iΘ

Re Zm⎡⎣ ⎤⎦= Rm;       Im Zm⎡⎣ ⎤⎦= reactance  Xm = ωm− s /ω( )
Zm = Rm

2 + ωm− s /ω( )2 ,     

Θ = tan−1 Xm
Zm

 Displacement :   x(t) = Feiωt

iω Rm + i ωm− s /ω( )⎡
⎣

⎤
⎦

 Speed :   u(t) = Feiωt

Rm + i ωm− s /ω( )⎡
⎣

⎤
⎦
=
f (t)
Zm

  → Zm =
f (t)
u(t)

Ze = ratio of V to I 
Zm = ratio of driving 
force to speed  
“mechanical ohm” has 
units of force/speed 



Driven damped mechanical oscillator 

•  Driven oscillator differential eqn and solutions: 

–  Notice: find the (complex) impedance and you have solved 
the differential equation of motion 
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 m d 2x
dt2 + Rm

dx
dt
+ sx = f (t) = Feiωt   ..but actual displacement has to be real!

→    complex form of solution   x = Feiωt

iω Rm + i ωm− s /ω( )⎡⎣ ⎤⎦
=

f
iωZm

 Actual displacement :   x(t) = Re f
iωZm

⎡

⎣
⎢

⎤

⎦
⎥=

Feiωt

iω Zm e
iΘ =

−iFei(ωt−Θ)

ω Zm

=
F sin(ωt −Θ)

ω Zm

   Recall:    Zm = Rm
2
+ ωm − s /ω( )

2
,     Θ = tan−1 Xm

Zm

⎛

⎝
⎜

⎞

⎠
⎟

Speed :   u(t) = Re f (t)
Zm

⎡

⎣
⎢

⎤

⎦
⎥   =

F cos(ωt −Θ)
Zm

   →
F
Zm

=   Amplitude of u(t) = max speed   



Transient response 

•  Transient response of driven, damped oscillator: Full solution includes  
–  Transient term that depends on initial conditions, and damping 

–  Steady-state term that depends on driving force magnitude, and ω  
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General complex solution    x = Ae−βte
iω
d
t
+
Feiωt

iωZm
 

With real part   x = Ae−βt cos(ωdt +φ)+ F
ωZm

sin(ωt −φ)

We get the real constants  A,  φ  from initial conditions;  

ωd = ω0
2 −β2

 ;     β =   Rm 2m
 For  x = u = 0 at   t = 0,    and  β <<ω,   we get

A= F

Zm
2

Xm
2

ω2
+
Rm

2

ωd
2

,   and   φ = tan−1 ω   Rm
ωd Xm

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟



Resonance 

•  Resonance in a driven, damped oscillator: 
–  Resonant frequency = f at which reactance X goes to 0 (Z=R)  

•  Minimum of Z à maximum amplitude of speed u 
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At resonance   ω0m = s /ω0    →ω0
2 = s /m

ures =
F cos(ω0t)
Rm

   →   Amplitude 
F
Rm

= max speed

displacement :   x(t) =
F sin(ω0t)
ω0Rm

   ω0  is not  the max displacement frequency;

 max displacement occurs for  ω   such that 

ω Rm
2 + ωm− s /ω( )

2⎡
⎣⎢

⎤
⎦⎥
=  minimum   →  ωmax−x = ω0

2 − 2β 2  

    (...homework exercise)



Resonance 

•  Resonance in a driven oscillator: 
–  Identical damped oscillators, all with natural frequency f0=1.  
–  Harmonic driving force F=F0cos(2 π f t) is applied  
–  The driving frequencies of the applied forces are (matching colors) 

   f1=0.4, f2=1.01, f3=1.6 
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www.acs.psu.edu/drussell/ 



Resonance 

–  Time plots for oscillators (matching colors) f1=0.4, f2=1.01, f3=1.6 
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t axis on these plots seems 
to be 1 sec = ~6 units 



Displacement amplitude vs damping β and ω/ω0  
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Relative frequency ω/ω0 

ζ = β/ω0  R
el

at
iv

e 
am

pl
itu

de
 

•  Resonance in a driven oscillator:  frequency for max displacement  

ωmax−x = ω0
2 − 2β 2 ,      β = Rm / 2m

(zeta) 



Phase shift vs (ω / ω0 ) 
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•  Resonance amplitude and phase shift  in a driven oscillator 

Watch 



Resonant behavior and Q 
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•  Sharpness of resonance peak is described by the ‘quality factor’ Q 

So 

•  Q is directly proportional to decay time of the undriven oscillator τ   
•  Q is related to (energy stored)/(energy lost) ~ X/R   

Q =
ω0

ωU −ωL

,     ωU ,  ωL  are points above and below resonance 

where average power drops to 1/2 the resonance peak value. 
 This happens when   Zm

2 = 2Rm
2 → Xm =ωm− s /ω = ±Rm

ωUm− s /ωU = Rm,  and   ωLm− s /ωL = −Rm →ωU −ωL = Rm /m

 So   Q =
ω0m
Rm

=
mk
Rm

=ω0 (τ / 2) = 2π /T( )(τ / 2) = π  τ
T
⎛

⎝
⎜

⎞

⎠
⎟



Resonant behavior and Q 
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•  Q is dimensionless (ratio of times or energies) 
•  Low resistance (dissipation) à High Q 



Displacement amplitude vs time for resonance: human ear 
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•  Example of resonance in a driven oscillator: Amplitude vs t, for 
natural frequency 1 kHz and Q = 12.7 (values reflecting those of 
the cochlea).   a = delay before start, b = resonance build-up time 

The oscillator takes Q/π cycles (∼4 cycles) to reach the half-power amplitude of 0.707 
and Q cycles to reach the 96% criterion.   - A. Bell, PLoS One 7(11):e47918, 2012 



Stiffness, Resistance, Mass dominance 
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•  Often want some response to be ‘flat’ over a range of frequencies 
–  Stiffness-controlled system 
s/ω>> ω m and  Rm à x(t) ~ (F/s) cos(ωt) 

•  Amplitude of displacement ~ independent of ω  
–  Resistance-controlled system 
Rm >> Xm  and  Rm à x ~ (F/ωRm) sin(ωt), u ~ (F/Rm) cos(ωt) 

•  Amplitude of speed ~ independent of ω  
–  Mass-controlled system 
ω  m >> s/ω and  Rm à x ~ (F/ω2Rm) cos(ωt), u ~ (F/ωRm) sin(ωt) 

•  Neither amplitude of u or x  is independent of ω (but 
amplitude of acceleration is) 

•  Driven oscillators are  
–  stiffness-controlled for ω << ω0   
–  Resistance-controlled for ω ~ ω0  
–  mass-controlled for  ω >> ω0   



Discussion of resonance wouldn’t be complete… 

•  ...without the Tacoma Narrows Bridge 1940 
https://www.youtube.com/watch?v=XggxeuFDaDU 
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Reminder 

SPECIAL: Next Tuesday, class will start at 7:30 pm, not 7 pm. 
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