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Tonight 

Course syllabus and schedule – first part… 



Announcements 

We now have a TA to help you with problems and papers: 

•  Yiyun Dong <yiyund@uw.edu>  
 
Her main job is to grade papers, but Ms Dong can help you if you 
get stuck on the homework problems 
Contact her by email if you want to make an appointment for 
phone or zoom meetings 
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Announcements 

•  REMINDER: term paper #1 proposals are due Thursday! 
–  Remember: only 5 pages – NARROW your scope! 
–  Please send me a brief email with 

•  Topic chosen 
•  Resources to be used in your study (books, journal articles, etc) 
•  Format chosen: term paper or website 

–  You can submit a 5p paper, or build a website with the 
same amount of content 

–  For info on how to create a website @uw, see 
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Driven mechanical oscillator example 

•  Driven (undamped) oscillator has mass m, spring constant s, and is 
driven by F(t) = F0 sin2(ωt). At t=0 the mass is at x = 0.  
–  What is x(t) given the above initial conditions?  
–  In terms of m and ω, what value of k produces resonance? 

•  First, let’s solve a less complicated problem: 
let the driver be just F(t) = F0 cos(ωt) – this simplifies algebra 
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m d 2x
dt2 + sx = F0 cos(ωt)→ d 2x

dt2 +
s
m
⎛

⎝
⎜

⎞

⎠
⎟x =

F0

m
cos(ωt)

d 2x
dt2 +ω0

2x = F0

m
cos(ωt);   assume solution  x(t) = Acos(ωt)

−ω 2Acos(ωt)+ω0
2Acos(ωt) = F0

m
cos(ωt)

So must have  A = F0

m ω0
2 −ω 2( )

→  x(t) = F0

m ω0
2 −ω 2( )

cos(ωt)

This can't be whole solution - there are no free parameters for initial conditions!

F0 sin2(ωt) 



Driven mechanical oscillator example 
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Full solution is x(t) = xDRIVER (t)+ x0 (t) = F0

m ω0
2 −ω 2( )

cos(ωt)+Bcos(ω0t)+Csin(ω0t)

Initial conditions   x(0) = 0,   dx(0)
dt

= 0→  C = 0,  

x(t) = F0

m ω0
2 −ω 2( )

cos(ωt)− cos(ω0t)( )

That solves the case of the simple driver F0 cos(ωt)
For the driver F(t) = F0  sin2 (ωt),  use identity   2sin2 (x) =1− cos(2x) 

→ F0  sin2 (ωt) = F0

2m
1− cos(2ωt)( ) = d

2x
dt2 +ω0

2x

Let X = x − F0

2mω0
2 →

d 2X
dt2 +ω0

2X = −cos(2ωt) F0

2m
Start with the same approach again: insert  X(t) = Acos(2ωt)
d 2X
dt2 +ω0

2X = −4ω 2Acos(ωt)+ω0
2Acos(ωt) = −cos(2ωt) F0

2m
→ A = − F0

2m ω0
2 − 4ω 2( )

Now it gets a bit messy – patience… 

Need to include x(t) of free oscillator 



Driven mechanical oscillator example 
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Go back to  x = X +
F0

2mω0
2

:   Full solution is x(t) = xDRIVER(t)+ x0(t)

x(t) = −
F0

2m ω0
2 − 4ω2( )

cos(2ωt)+ Bcos(ω0t)+C sin(ω0t)+
F0

2mω0
2

Apply initial conditions:  x(0) = 0,   dx(0)
dt

= 0→  C = 0,   and B =
F0
2m

1

ω0
2 − 4ω2( )

−
1

ω0
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

So  x(t) =
−F0 cos(2ωt)

2m ω0
2 − 4ω2( )

+
F0 cos(ω0t)

2m
1

ω0
2 − 4ω2( )

−
1

ω0
2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
−F0

2m ω0
2 − 4ω2( )

cos(ω0t)− cos(2ωt)( )+ F0

2mω0
2

1− cos(ω0t)( )

1− cos(ω0t)( ) = 2sin2(ω0t)→ x(t) =
−F0 cos(2ωt)

2m ω0
2 − 4ω2( )

cos(ω0t)− cos(2ωt)( )+ F0 sin2(ω0t)

mω0
2

In terms of m and driver ω, what should spring constant be to get maximum amplitude?
amplitude of oscillation is maximized when  ω0

2 − 4ω2( ) = 0

ω0
2 = 4ω2,   s =mω0,2  so   sMAX −A = 4mω2     (then ω0 = 2ω)



Resonance 

–  Time plots for oscillators (matching colors) f1=0.4, f2=1.01, f3=1.6 
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From last time 
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Fourier methods 

•  “Fourier” = generic term for any numerical method using harmonic 
functions (sin/cos/exp(ix)) as an orthonormal basis set* 
–  Much of the following can be applied to other basis sets (e.g., 

wavelets) 
1.  Fourier interpolation (trigonometric interpolation) 

Given N equally spaced  points {xk}N on [0,2π]  (N even) 
 
 
 
 
 
 
 
–  Theorem: For truncated interpolation (jMAX<N/2) this gives the 

best fit in the sense of least squares of any trig-fn interpolant 
with the same number of terms - optimal 

xk = 2π k
N

;     interpolating function is

f (x) = a0 + aj cos( jx)+ bj sin( jx)( )
j=1

N /2

∑

j =1 has 1 cycle in x = [0, 2π ]
j = N / 2  has (N / 2) cycles in x = [0, 2π ]

* orthonormal basis: Set of vectors that 
•  Are normalized ( | Vj | = 1 ) 
•  Are orthogonal ( Vj * Vk = 0 if i≠j ) 
•  Form a basis to represent desired fns 

Why stop at N/2 instead of N? 
We’ll see later 



•  Since exp(ix) = cos(x) + i sin(x), we can write  

 

–  Get coefficients of the interpolant from 

  engineers pls note: this is a physics class so 
   (Here j is just a running index) 
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Fourier methods 

“Negative frequencies” 
are just a book-keeping 
artifact to get neat 
notation, as we’ll see later 

f (x) = c j exp(i jx)
j=−N /2

+N /2
∑

c0 = a0, c+ j =
a j − ibj
2

, c− j =
a j + ibj
2

∑

∑∑

=

==

−=

==

N

k
kj

N

k
kj

N

k
kj

jxixf
N

c

jxxf
N

bjxxf
N

a

0

00

)exp()(1

)sin()(
2
1,)cos()(

2
1

or   

−1 = i,   not j  
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Fourier interpolation: Example 

•  Data: straight line, y=x/2, at 12 points in x from –π to +π   
–  So N=12, number of coefficients = 6, aj = 0 (y=0 at x=0 à odd fn) 

•  Set y = 0 at x = +π , to make it “periodic” 
•  Results: interpolating/fit function for 3, 4, 5 terms 

Fourier series coefficients 
bj in table are for 12-pt 
interpolation; get closer 
to ∞ series (ideal) values 
as N increases 

5 terms = interpolation,  
4 and 3 terms  = least squares fits  

j b_j b(infinite)
1 0.977049 1
2 -0.45345 -0.5
3 0.261799 0.333333
4 -0.15115 -0.25
5 0.070149 0.2
6 0 0



Fourier analysis 
•  Fourier series for a periodic (but not necessarily harmonic) function: 

–  cos = even function:  f(-x)=f(x) 
•  Symmetrical about x=0, π 

–  sin = odd function:  f(-x)=-f(x) 
•  Antisymmetrical about x=0, π 

–  Find A, B coefficients from: 

f (x) = A0

2
+ An cos(nkx)

n=1

∞

∑ + Bn sin(nkx)
n=1

∞

∑

where    k = 2π
λ

    ( frequency)

∫

∫
λ

λ

λ
=

π
=λ

λ
=

0

0

)sin()(2

2)cos()(2

dxnkxxfB

k
dxnkxxfA

n

n        

(“Harmonic” = sin/cos only) 

Using f(x) rather than f(t) à uses wavelength λ instead of period T 
But  f(t) is exactly the same, just replace k with ω = 2π/T 



Fourier series – complex exponential representation 

Periodic functions: f(x+L)=f(x)       period = L 
–  orthogonality: 

Monthly sunspot numbers: 1972-97
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ns

po
ts

f(x) 

x 

We can always scale period L→ 2π :

x = [a,b]→ x ' = 2π (x − a)
b− a

= [0,  2π ]

Then  f (x) = a0

2
+ aj cos( jx)+ bj sin( jx) =

j=1

∞

∑ cj exp(ijx)
j=−∞

+∞

∑
  Fourier series - sum = infinite series for exact representation
[Recall: truncated sum ( jmax =m) gives best (least squares) 
    approximation for trig polynomial of m terms]
Find coefficients from

   aj =
1
π

f (x)cos( jx)dx;
−π

π

∫   bj =
1
π

f (x)sin( jx)dx
−π

π

∫

     or   cj =
1

2π
f (x)exp(ijx)dx

−π

π

∫
If f (−x) = f (x)   (even function)    then bj = 0  (cos series only)
If f (−x) = − f (x)   (odd function)    then aj = 0  (sin series only)

for   φ j = exp(ijx),     φ jφk
* dx

−π

+π
∫ = 0  if  j ≠ k  ;  

 (* = complex  conjugation)               = 2π  if j = k



Fourier synthesis examples 
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•  We can synthesize a periodic waveform using Fourier series sums 
Can generate any periodic waveform by choice of amplitudes and phase 
offsets in sum of harmonics: (phase shift term φ makes sin à cos as needed)  

f (t) = a0 + an sin(nωt +φn )
n=1

∞

∑ ,     where    ω = 2π f0 =
2π
T0

,   φn = phase offset of nth harmonic  

→with A0 =
a0

2
, An = an sin(φn ), Bn = bn cos(φn )

f (t) = A0

2
+ An cos(nωt)

n=1

∞

∑ + Bn sin(nωt),     
n=1

∞

∑
Examples: 



Fourier synthesizer demonstration 

From Michael Ruiz, U. NC/Asheville 

Sawtooth function using 16 terms  

Triangle function on ly needs 3 terms for decent approximation  



Fourier analysis 

•  Example: square wave 
 (with leading edge at x=0) 

–  odd function, so all An= 0 

 

–  so Bn=0 for n=2,4,6…,   Bn=(4/nπ) for n=1,3,5...  

))cos(1(2

cossin

)sin()1()sin()1(2

2

2

0

π−
π

=

−
=

−++
λ

=

∫

∫∫
λ

λ

λ

n
n

B

a
axax

dxnkxdxnkxB

n

n

⎟
⎠

⎞
⎜
⎝

⎛ +++
π

= !)5sin(
5
1)3sin(

3
1)sin(4)( kxkxkxxf

λ 0 

1 

•  So any periodic fn can be represented as a 
sum of sin/cos fns 
–  a0 (or c0) = “DC component” (vertical offset) 
Notice harmonics are equally spaced in frequency 

•  lowest frequency (longest wavelength) 
corresponds to 1 cycle within period L 

•   j th term has j cycles in L 



Adding terms to Fourier series
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Fourier series 
•  Coefficients in the series give a discrete spectrum for square wave 

 
Only odd terms, amplitude drops as 1/n: 

⎟
⎠

⎞
⎜
⎝

⎛ +++
π

= !)5sin(
5
1)3sin(

3
1)sin(4)( kxkxkxxf

Adding more terms (higher 
frequencies nk ) gives better 
approximation to f(x): faster 
rise, flatter tops 

If higher-n terms are missing, 
approximation is poor: tops have ripples, 
edges are curved   
(limited bandwidth : high frequencies lost) 
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Fourier analysis for non-periodic function 
•  Let λ→∞: then anything can be “periodic” 

–   λ→∞ implies k=2π/λ → dk 
•  frequencies are “infinitesimally” spaced 

–  Fourier series → Fourier integral   

 
A(k), B(k) become continuous spectra 

f (x) = 1
π

A(k)cos(kx)dx
0

∞

∫ +
1
π

B(k)sin(kx)dx
0

∞

∫

where A(k) = f (x ')cos(kx ')dx '
−∞

∞

∫     

(cosine transform  of f )

and   B(k) = f (x ')sin(kx ')dx '
−∞

∞

∫     

(sine transform   of  f )
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Fourier transforms 
•  Combine the sine and cosine integrals into the complex exponential 

form: 

•  Inverse transform: 

–  Note: some books interchange +/- in exponentials, or have 
normalization (1/√2π) on both transform and inverse – read 
carefully 

•  Signals vs x or t, and spectra vs k or f are dual spaces 
–  Fourier transform connects them: linear functions of each other  

F(k) = f (x ')eikx ' dx '
x '= −∞

∞

∫
where       F(k) = A(k)+ iB(k)

F(k) = Fourier Transform of  f(x) 

f (x) = F−1(k) = 1
2π

F(k)e−ikx dk
−∞

∞

∫



Fourier transforms 

Handy properties of FTs: 
 
•  If g(t)= f1(t) + f2(t) + f3(t) +…  then G(k)= F1(k) + F2(k) + F3(k)+… 

–  Parity: 

–  Time scaling: 

–  Time translation 

–  Frequency shift 

g(t) even↔G( f ) even (ditto for odd)

g(at)↔ 1
a
G f

a

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

g(t − t0 )↔G( f )exp −i 2π f t0( ) (2π f =ω)

g(t)exp i 2π f0 t( )↔G( f − f0 )

and  FT(a f(t) ) = a F(k)   



Famous Fourier transforms: 
–  Single square pulse centered on 0 

•  f(x)=even, so B(k)=0 

 

•  Note that 
–  As u→0, sinc u→1 
–  sinc(u) is an even function 
–  f(x) is very localized, but F(k) has infinite extent 

0

0.2

0.4
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x

f

-L/2 L/2 

E0 

-0.5

0

0.5

1
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k

F(k)

6π/L 
4π/L 

2π/L 

A(k) = E0 cos(kx)dx
−L/2

L/2

∫

=
2E0

k
sin kL

2
⎛

⎝
⎜

⎞

⎠
⎟

= E0L
sinu
u

   where  u = kL
2

= E0Lsinc kL
2

⎛

⎝
⎜

⎞

⎠
⎟

sinc function:

sinc(u) ≡ sinu
u
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Famous Fourier transforms 
•  Let width of a square pulse à0 while keeping area=const. 

–   e.g.,  let Là0 while E0=1/L 
–  So f(x)à∞ for x=0, f(x)=0 everywhere else, and 
f(x)àδ(x)   Dirac delta function 
 (=Heaviside unit impulse fn) 

f(x) is totally local, F(k) is totally un-localized! 
 

f (x)dx =1
−∞

∞

∫         F(k) = lim
L→0

E0Lsinc(kL / 2)[ ] =1

f(x) 

x 
0 

F(k) 

k 

1 

)()()()(

)0()(1)(

)()(

axafaxxf

ax
a

ax

xx

−δ=−δ

≠δ=δ

−δ=δ

     

–  Properties of delta function: 
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Famous Fourier transforms 
•  Gaussian (“normal distribution”) 

 

•  FT: 

 

–  So: narrower f(x)=broader F(k) and vice versa 
–  Both f(x) and F(k) are semi-localized: degree of localization 

depends on σ   

) ofnt (independe(at Height 

width) f(x) of inverse(~ width Full

Gaussian)(another 

(at Height 

f(at  width Full

1area has form This

     

    

     

σ

=

=

==
σπ

=

=

πσ
==

σ=

πσ
=

σπ−

σ−

1)0
2
1

)(
2
1)0

2)1

2
1)(

2

)2(

2

2

2/

2
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Fourier integrals: Review of terminology 
–  Time/frequency domains (signal processing) 

•  period T (sec) 
•  Frequency f (cycles/sec=Hz) 
•  “angular frequency” ω=2πf (radians/s) 

–  Space/Spatial frequency domains (wave motion, optics, image analysis) 
•  Spatial frequency f  (cycles/meter) 
•  Period L  (meters) 
•  Wavelength λ (meters) 
•  Wave number k=2π/λ (meters-1) 

•  Fourier series à integral  :: discrete f’s à continuous spectrum 

 
  

f (t) = cj exp(i jt)
j=−∞

+∞

∑ → f (t) = F(ω)
−∞

+∞

∫ exp(iω t)dω

F(ω)  gives the relative weight of each frequency

F(ω) = 1
2π

f (t)exp(−iω t)dt
−∞

+∞

∫
F(ω)  is the Fourier  Transform  of  f (t)  (and vice-versa)

Note:  There are other conventions, 
for example in Numerical Recipes 

 f (t) = F(ω)exp(−iω t)dω
−∞

+∞

∫ ;

F( f ) = f (t)
−∞

+∞

∫ exp(−iω t)dt

frequency domain (“spectrum”) time domain (signal) 
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Sampling signals 

•  Common case: signal is sampled N times, at equally-spaced 
intervals: 
–  Data set = {f(tk} N    N samples of f(t)  
–  Sampling interval Δ = tk+1 - tk for all k è tk = t0+ kΔ  
–  We need 2 coefficients for each freq (aj and bj, or c+j ) 
–  So we can Fourier-interpolate N intervals with N/2 harmonics: 

•  Cannot get any meaningful information by trying to include 
higher frequencies 

 

t0 → tN−1  corresponds to phase  0→ 2π   for lowest  f

Cycle length for max   f →  λMIN =
2π
N / 2

= 2 2π
N

⎛

⎝
⎜

⎞

⎠
⎟= 2Δ

∴ fMAX =
1
2Δ

=Nyquist  frequency

(Here, k=index, not freq.) 
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Sampling and aliasing 

•  So, to get max frequency (bandwidth)  = f, we must sample 
at frequency 2f 
–  Sample at least 2 pts/cycle of the highest f component 

•  If we try to use harmonics j > N/2 (f > fNyq), we get aliasing 
(phony matching of sampled points): 
 Example: 

- cos(5πx) and 
+cos(4πx) have the 
same values at 10 
equally-spaced points on 
[-1,1] 
(10 pts = 9 intervals,  
so only 9/2= 4 
harmonics are valid) -1.2

-0.8

-0.4

0

0.4

0.8

1.2

-1 -0.5 0 0.5 1

x

f(x
)

-cos(5πx) +cos(4πx) 
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Discrete Fourier transform 

•  For function sampled at N equally spaced t values, 

•  With N points, we can only find N values of the Fourier 
transform: discrete  Hn,  not continuous H(f) 

cc

k

fffHf

NNkkhth

>→
Δ

=

==ΔΔ=

for   findcannot     :Nyquist

 interval sampling

)(
2
1

,...0,)()( even

fn =
n
NΔ

, n = − N
2

...0...+ N
2

  

(looks like N +1  f's, but f−N /2 = f+N /2  )

H ( f ) = h(t)exp(i2π f t)dt
−∞

+∞

∫ → hk exp(i2π kn / N )
k=0

N−1

∑ Δ

Hn = hk exp i 2π k n
N

⎛

⎝
⎜

⎞

⎠
⎟

k=0

N−1

∑ ≈
H ( fn )
Δ



28 

Discrete Fourier transform 

•  Hn is periodic in n 
–  Period = N 
–  So HN-n = Hn   

 
 
 
–  So we can let n=0,1…N-1 (same index range as for hk) 

0
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0 1 2 3

f
H
(f
)

Discrete Hn 

Continuous H(f) 

Δ

-fc fc 

n=0 

-fc 0 

n=N/2  n=N 

Hn = hk exp i 2π k n
N

⎛

⎝
⎜

⎞

⎠
⎟

k=0

N−1

∑ ≈
H ( f ~ fn )

Δ

0 
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Transform pairs 

•  The discrete inverse transform is thus: 

•  Parseval’s theorem says “energy” is conserved between 
time and frequency domains: 

 
–  Parseval’s theorem ( = “energy conservation”) 

•  Total power in signal: 
 
 
•  Power at frequency f: 
 
•  Power Spectral Density 

Recall from your E&M class:  
wave amplitude E(t)  è power ~ | E |2 

∑
−

=

⎟
⎠

⎞
⎜
⎝

⎛−=
1

0

2exp1 N

n
nk N

nkiH
N

h π

∑∑ =
n

n
k

k fH
N

th 22 )(1)(

P = h(t) 2 dt
−∞

+∞

∫ = H ( f ) 2 df
−∞

+∞

∫

 dP( f ) = H ( f ) 2 df
f

f +df

∫

dP
df

= H ( f ) 2
+ H (− f ) 2

(PSD) 
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Discrete FT example 

•  Fourier interpolation: we can derive f(t) from FT(sampled data): 
–  Example: 

 Step fn: y={1, 1, 1, 0, 0, 0}, equally spaced on t=[0,2π) 
N = 6,  k = 0,1…5,  and {xk} = k(2π/6) 
                                 = {0, 1.05, 2.09, 3.14, 4.19, 5.24} 

Trigonometric interpolating function is  

fN (t) = a0

2
+ aj cos( jt)+ bj sin( jt)( )

j=1

m−1

∑ +
am
2

cos(mt)

Where  m = N / 2→ N = 2m  (assumes even number of pts)

aj =
2
N

yk cos( jt)
k=0

N−1

∑ , bj =
2
N

yk sin( jt)
k=0

N−1

∑

or   cj =
2
N

yk exp(i jtk )
k=0

N−1

∑
 → aj = Re(cj ), bj = Im(cj ) Where’s the step? 

Do we know? 



Discrete FT example 

•  Connection between FT coeffs and f(t) coeffs: 

  

–  Run FT on these data, results are: 
Yj={3.0, 1.0+1.73i, 0, 1.0, 0, 1.0-1.73i} 
cj=(1/3) Yj ={1.0, 1.0+1.73i, 0, 1.0, 0, 1.0-1.73i} 

–  So coefficients of interpolating function are: 
 a0/2=Re(Y0/3)/2=0.5,  a1=Re(Y1/3)=0.333, a2=0, a3=Re(Y3/3)/2=0.167;    

b1=Im(Y1/3)=0.577, b2=0    

-0.25

0

0.25

0.5

0.75

1

1.25

0 1 2 3 4 5 6

x

f(x
)

fN=6 (x) = 0.5+0.33cos(t)+0.167cos(3t)+0.577sin(t)

Yj = yk exp i 2π k j
N

⎛

⎝
⎜

⎞

⎠
⎟

k=0

N−1

∑ = yk exp i jtk( )
k=0

N−1

∑

cj =
2
N

yk exp(i jtk )
k=0

N−1

∑ → cj =
2
N
Yj

aj =
2
N
Re(Yj ), bj =

2
N
Im(Yj )

fN (t) = a0

2
+ aj cos( jt)+ bj sin( jt)( )

j=1

m−1

∑ +
am
2

cos(mt),      m = N / 2 = 3
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Summary of FT properties 

•  Note: for real f(t):    F(-f) = F*(f) 
–  So, providing F(f) does not contain any δ-functions (i.e. discrete 

sinusoids) 

–  Parseval’s thm è  RMS f(t) = area under PSD 

•  Summary: 

(* = conjugate) 

F(− f ) 2 = F( f ) 2 → PSD = 2 F( f ) 2

{ f (tk )}, k = 0,  1... N −1       N samples of signal at intervals Δ

{Fn}, n = − N
2

...0... N
2

    Discrete Fourier transform of h

Fn = Amplitudes  in frequency domain (spectrum of h):  

F( fn ) ≈ FnΔ,    with frequencies  fn =
n
NΔ

,   − fc ≤ fn ≤ fc, fc =
1

2N

F( f ) = f (t)exp(i2π f t)dt
−∞

+∞

∫ → Fn = fk exp i 2π k n
N

⎛

⎝
⎜

⎞

⎠
⎟

k=0

N−1

∑
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Summary of FT properties 

Limited information: we have 

 
 
For {h} real, {H} will be all reals (if h is odd, cos series), or all 

imaginaries (if h is even, sin series) 
Hn is explicitly periodic with period N, so F-n=FN-n 

⎩
⎨
⎧ =±

⎪
⎪
⎭

⎪⎪
⎬

⎫

−=→−=

=→=

)...(N-nk
ffNote

ffNNn

ffNn
Nc

c

c

10
:

0...)1...(
2

...0
2

...0
2/

 from run    and    both
 have can we so  

N  numbers for f (tk ) → N  numbers for  Fn F−N /2 = FN /2( )
Amplitude  Fn   exists from f = − fc  to fc  , but 
spectrum  only has meaning for f = 0  to fc :

Pn ( fn ) = F( fn ) 2
+ F(− fn ) 2
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