

Session 4

Discrete Fourier transforms Sampling theorem Convolution and correlation Digital filtering

1/12/2023

Course syllabus and schedule – first part...

See : http://courses.washington.edu/phys536/syllabus.htm

Session	date	Day	Readings:	K=Kinsler, H=Heller	Торіс
1	3-Jan	Tue	K ch. 1	H: Ch. 1, 2	Course intro, acoustics topics, overview of wave properties; pulses, transverse and longitudinal waves, overview of sound speeds
2	5-Jan	Thu	K ch. 1	H: Ch. 9, 10	harmonic oscillators: simple, damped, driven; complex exponential solutions, electrical circuit analogy, resonance, Q factor
3	10-Jan	Tue	K ch. 1	H: Ch. 3	Fourier methods: Fourier series, integrals, Fourier transforms, discrete FTs, sampling and aliasing
4	12-Jan	Thu	K. chs 10	H: Ch. 4, 11	Frequencies and aliasing; convolution and correlation; discrete convolution; digital filtering, optimal filters, FIR filters, noise spectra; power spectra. REPORT 1 PROPOSED TOPY Tonigh
5	17-Jan	Tue	K. ch. 2, 3, 4	H: Ch. 13, 15	waves in strings, bars and membranes; Acoustic wave equation; speed of sound; Harmonic plane waves, intensity, impedance.
6	19-Jan	Thu	K. Ch. 5 <i>,</i> 6	H: Ch. 1	Spherical waves; transmission and reflection at interfaces
7	24-Jan	Tue	K. Ch. 8	H: Ch. 7	Radiation from small sources; Baffled simple source, piston radiation, pulsating sphere;
8	26-Jan	Thu	K: Ch. 10	H: Chs. 13-15	Near field, far field; Radiation impedance; resonators, filters
9	31-Jan	Tue	K. Ch. 9-10	H: Chs. 16-19	Musical instruments: wind, string, percussion
10	2-Feb	Thu	K. Ch 14		Transducers for use in air: Microphones and loudspeakers
11	7-Feb	Tue	K. Ch 11	H: Chs. 21-22	The ear, hearing and detection
12	9-Feb	Thu	K. Chs 5,11		Decibels, sound level, dB examples, acoustic intensity; noise, detection thresholds. REPORT 1 PAPER DUE by 7 PM; REPORT 2 PROPOSED TOPIC DUE

Announcements

- REMINDER: term paper #1 proposals are due TODAY!
 - Still haven't heard from a few students
 - Remember: only 5 pages NARROW your scope!
 - Please send me a brief email with
 - Topic chosen
 - Resources to be used in your study (books, journal articles, etc)
 - Format chosen: term paper or website
 - You can submit a 5p paper, or build a website with the same amount of content
 - For info on how to create a website @uw, see

https://sites.uw.edu/your-first-site/

From last time **Discrete Fourier transform**

- For function sampled at N equally spaced t values, $h_k(t) = h(k\Delta)$ Δ = sampling interval, k = 0...N, N even Nyquist: $f_c = \frac{1}{2\Delta} \rightarrow$ cannot find H(f) for $|f| > f_c$
- With N points, we can only find N values of the Fourier transform: *discrete* H_n, not *continuous* H(f)

$$f_n = \frac{n}{N\Delta}, \quad n = -\frac{N}{2}...0... + \frac{N}{2}$$

(looks like $N + 1$ fs, but $f_{-N/2} = f_{+N/2}$)
 $H(f) = \int_{-\infty}^{+\infty} h(t) \exp(i2\pi ft) dt \rightarrow \sum_{k=0}^{N-1} h_k \exp(i2\pi kn / N)\Delta$
 $H_n = \sum_{k=0}^{N-1} h_k \exp\left(i2\pi k\frac{n}{N}\right) \approx \frac{H(f_n)}{\Delta}$

• The discrete *inverse* transform is thus:

$$h_k = \frac{1}{N} \sum_{n=0}^{N-1} H_n \exp\left(-i 2\pi k \frac{n}{N}\right)$$

• Parseval's theorem says "energy" is conserved between time and frequency domains:

$$\sum_{k} \left| h_{k}(t) \right|^{2} = \frac{1}{N} \sum_{n} \left| H_{n}(f) \right|^{2}$$

Recall from your E&M class: wave *amplitude* E(t) \rightarrow *power* ~ | E |²

- Parseval's theorem (= "energy conservation")
 - Total power in signal:

$$P = \int_{-\infty}^{+\infty} |h(t)|^2 dt = \int_{-\infty}^{+\infty} |H(f)|^2 df$$
$$dP(f) = \int_{|f|}^{|f|+df} |H(f)|^2 df$$

- Power at frequency f:
- Power Spectral Density (PSD)

$$\frac{dP}{df} = \left|H(f)\right|^2 + \left|H(-f)\right|^2$$

DFT: negative f's and Nyquist frequency

- Given N data samples h(t), with $\{t_n\}$, n=0...N-1
 - Discrete FT produces N values of H(f), k=0...N-1, $f_{MAX}=1/\Delta$
 - (Note: Discrete FT implicitly assumes h(t) is periodic)
 - But Nyquist limit allows only N/2 frequencies: max $f_c = 1/2\Delta$
 - Solution:

Treat these FT components as representing $f_{-N/2} - f_{+N/2}$ where $f_{-N/2} = f_{+N/2}$

• Mathematically, the continuous FT and inverse are defined *symmetrically*:

$$H(f) = \int_{-\infty}^{+\infty} h(t) \exp(i2\pi f t) dt \Leftrightarrow h(t) = \int_{-\infty}^{+\infty} H(f) \exp(-i2\pi f t) df$$

- So negative f's are handled naturally
- But discrete transform sums are *periodic* in n:

$$F_n = \sum_{k=0}^{N-1} f(t_k) \exp(i2\pi kn / N)$$

where k indexes N signal samples, k = 0...N - 1,

and *n* indexes *N* frequencies, n = (-N/2)...0...(+N/2)

 $\exp(i2\pi kn/N)$ is periodic in n, with period = N, so $F_{-n} = F_{N-n}$

- Periodicity means $f_{-N/2} = f_{+N/2}$, so only get N distinct f's
- Note: "Fast Fourier Transform" (FFT) = clever algorithm to minimize CPU time required for DFT-ing large sample sets
 - Requires N to be a power of 2 otherwise, just a DFT

- We can let n=0...N/2 instead (symmetry wrt $f(t_k)$ indexing)
- Then
 - n=0 **→**f=0
 - $n=1 \rightarrow f=f_1$
 - $n=N/2 \rightarrow f=\underline{+}f_c=f_1N/2$
 - $n=(N/2)+1 \rightarrow negative freq f = -f_{c+1}$
 - n=(N-1) → f₁

example: say N=6, and Δ =1 ms: then f_c=1/2 Δ =0.5 kHz

→ $f_{-3}=0.5$ kHz, $f_{-2}=-0.33$ kHz, $f_{-1}=0.16$ kHz, $f_{0}=0$ (DC), $f_{1}=0.16$ kHz, $f_{2}=0.33$ kHz, $f_{3}=0.5$ kHz

 Notice that negative f's (or n>N/2) contain no new information, but must be taken into account when computing intensity ("power"):

$$P_n(f_n) = |H(f_n)|^2 + |H(-f_n)|^2, \quad n = 0...N/2$$

• Sampling theorem:

"If a continuous function h(t), sampled at an intervals, Δ , is **bandwidth limited** to frequencies smaller in magnitude than f_c , so H(f) = 0 for $|f| \ge f_c$

Then h(t) is completely determined by its samples for $\Delta < 1/(2f_c)$

- So: If the signal is *known* not to contain harmonics > f_c then the Fourier interpolation is an exact representation (and vice-versa!)
 - Often we have a signal that is bandwidth-limited (by amplifier or cable limitations)
 - sampling theorem tells us that the entire information content of the signal can be recorded by sampling it at a rate $f_s = 2 f_c$
 - Remarkable because a continuous function seems to have infinitely more "information content" than the series
- But: if h(t) is not bandwidth limited to $f \le f_c$, all the spectral power density outside of the frequency range $-f_c \le f \le f_c$ is (falsely) pushed into that range: aliasing

(more on this later)

From last time Discrete

- Discrete FT example
- Fourier interpolation: we can derive f(t) from FT(sampled data):
 - Example:

Step fn: y={1, 1, 1, 0, 0, 0}, equally spaced on t=[0,2 π) N = 6, k = 0,1...5, and {x_k} = k(2 π /6) = {0, 1.05, 2.09, 3.14, 4.19, 5.24}

Trigonometric interpolating function is

$$f_N(t) = \frac{a_0}{2} + \sum_{j=1}^{m-1} \left(a_j \cos(jt) + b_j \sin(jt) \right) + \frac{a_m}{2} \cos(mt)$$

Where $m = N/2 \rightarrow N = 2m$ (assumes even number of pts)

$$a_{j} = \frac{2}{N} \sum_{k=0}^{N-1} y_{k} \cos(jt), \quad b_{j} = \frac{2}{N} \sum_{k=0}^{N-1} y_{k} \sin(jt)$$
or
$$c_{j} = \frac{2}{N} \sum_{k=0}^{N-1} y_{k} \exp(ijt_{k})$$

$$\Rightarrow a_{j} = \operatorname{Re}(c_{j}), \quad b_{j} = \operatorname{Im}(c_{j})$$

$$\overset{1.25}{\underbrace{0}}$$

$$\overset{0}{\underbrace{0}}$$

$$\overset{0}{\underbrace{0}$$

$$\overset{0}{\underbrace{0}}$$

$$\overset{0}{\underbrace{0}$$

$$\overset{0}{\underbrace{0}}$$

$$\overset{0}{\underbrace{0}$$

$$\overset{0}{\underbrace{0}}$$

$$\overset{0}{\underbrace{0}$$

$$\overset{0}{\underbrace{0}}$$

$$\overset{0}{\underbrace{0}$$

$$\overset{0}{\underbrace{0}}$$

$$\overset{0}{\underbrace{0}$$

$$\overset$$

- Let's revisit the earlier example of FT on a sampled square wave:

 Data: y={1, 1, 1, 0, 0, 0}, equally spaced on x=[0,2π)
 N = 6, k = 0,1...5, {x_k} = k(2π/6)
 = {0, 1.05, 2.09, 3.14, 4.19, 5.24}
 - Notice that data are *assumed to be periodic* (basis of discrete FT), so $"x_7"=2\pi \rightarrow "y_7"=y_1 \dots$ (repeat)
 - 1 - Run DFT on these data, results are: 0.75 $Y_0 = 3.0$ (constant term, baseline) Ξ 0.5 Y₁=1.0+ 1.73 i 0.25 0 $Y_{2}=0$ -0.25 $Y_3 = 1.0$ 0 1 2 3 5 6 Δ Y₄=0 $(=Y_{-2})$ Х $Y_5 = 1.0 - 1.73 i (=Y_{-1})$ - Here $\Delta = 2\pi/6$, $f_n = n/(N\Delta) = n/2\pi$, $f_c = 1/(2\Delta)$,

Example of frequency issues

We can identify the frequencies in the discrete spectrum as f₀=0, f₁=1/2π, f₂=2/2π, f₃=3/2π=f_c (Nyquist f in this example)
 But we are entitled to 6 H(k) components for 6 h(t) samples, so we get 2 more, corresponding to *negative* frequencies:

 $\begin{array}{l} f_4 = f_{-2} = -\ 2/2\pi, \quad f_5 = f_{-1} = -\ 1/2\pi\\ \mbox{Notice that } |Y_4| = |Y_2| \mbox{ and } |Y_5| = |Y_1|\\ \mbox{If we use the indexing -N/2...+N/2, we get}\\ f_{-3} = 3/2\pi, \quad f_{-2} = -2/2\pi, \quad f_{-1} = -1/2\pi, \quad f_0 = 0,\\ \qquad f_1 = 1/2\pi, \quad f_2 = 2/2\pi, \quad f_3 = 3/2\pi \ (7\ n'\ s\ but\ 6\ f'\ s) \end{array}$

Summary of FT properties

• Note: for real signal f(t): $F(-f) = F^*(f)$ (* = conjugate) - So, if F(f) does not contain any δ -functions (i.e. discrete sinusoids) $|F(-f)|^2 = |F(f)|^2 \rightarrow PSD = 2|F(f)|^2$

- Parseval's thm \rightarrow RMS f(t) = area under PSD

• Summary:

 $\{f(t_k)\}, \quad k = 0, \ 1... \ N - 1 \qquad \text{N samples of signal at intervals } \Delta \\ \{F_n\}, \quad n = -\frac{N}{2}...0...\frac{N}{2} \qquad \text{Discrete Fourier transform of } h \\ F_n = \textit{Amplitudes} \text{ in frequency domain ("spectrum" of } f): \\ F(f_n) \approx F_n \Delta, \quad \text{with frequencies } f_n = \frac{n}{N\Delta}, \quad -f_c \le f_n \le f_c, \quad f_c = \frac{1}{2N} \\ F(f) = \int_{-\infty}^{+\infty} f(t) \exp(i2\pi ft) dt \rightarrow F_n = \sum_{k=0}^{N-1} f_k \exp\left(i2\pi k\frac{n}{N}\right)$

Limited information: we have only

N numbers for $f(t_k) \rightarrow N$ numbers for $F_n \quad (F_{-N/2} = F_{N/2})$

Amplitude F_n exists from $f = -f_c$ to f_c , but

spectrum only has meaning for f = 0 to f_c :

$$P_n(f_n) = |F(f_n)|^2 + |F(-f_n)|^2$$

With $\{f_n\}$ real, $\{F_n\}$ will be all reals (eg, if f(t) is odd, cos series), or all imaginaries (if f is even, sin series)

 F_n is assumed to be periodic, with period N, so $F_{-n} = F_{N-n}$

$$n = 0...\frac{N}{2} \longrightarrow f = 0...f_c$$

$$n = \frac{N}{2}...(N-1) \longrightarrow f = -f_c...0$$

$$\begin{cases} Note : \pm f_c = f_{N/2} \text{ so we can have} \\ \text{both } k \text{ and } n \text{ run from } 0...(N-1) \end{cases}$$

Understanding frequencies and aliasing

- Let's review the meaning of frequencies in FTs
 - Signal occupies limited range of t: finite sampling
 - We know FT connects *limited* t range to *broad* freq range
 - Recall example: FT of δ -fn pulse is constant (*infinite* f range)

- But N samples of f(t) can only give N/2 samples of F(f) (Nyquist)
 - f-range limited to $\underline{+}f_c$
 - − f_c defined by range T ("period") and N: $\rightarrow f_1 = 1/T$, $f_c = (N/2)f_1$
 - True spectrum must have broader tails
 - "Power" (area under tails of true f spectrum) will get *aliased* into the limited f range of the discrete spectrum

Applying Fourier methods: Convolution and correlation

Given 2 signals, g(t) and h(t) $g * h = \int g(t')h(t - t')dt' =$ *convolution* of g and h $-\infty$ Note: minus sign multiply g by *shifted* h and integrate (notice g * h = f(t)) Then g * h = h * g, and $FT(g * h) = \int_{-\infty} \exp(i2\pi ft) dt \int_{-\infty} g(t')h(t - t') dt'$ So FT(g * h) = G(f)H(f) Convolution theorem FT of *convolution* ⇔ simple *product* of FTs in f - domain Similarly: $corr(g,h) = \int g(t'+t)h(t')dt' = correlation of g and h$ -• Note: plus sign $\operatorname{corr}(g,h) = FT \{ G(f)H(-f) \}$ Common applications For real functions g,h, $H(-f) = H^*(f)$ Convolution: describes effect of a *filter* on a signal So $\operatorname{corr}(g,h) \underset{\scriptscriptstyle FT}{\Leftrightarrow} G(f)H^*(f)$ - Correlation: identify and locate a specified waveform in noisy signal • Convolution and correlation are mathematically similar but have different interpretations:

convolution
$$g * h = \int_{-\infty}^{+\infty} g(t')h(t-t')dt' \Leftrightarrow G(f)H(f)$$

correlation $\operatorname{corr}(g,h) = \int_{-\infty}^{+\infty} g(t+t')h(t')dt' \Leftrightarrow G(f)H^*(f)$

- Convolution = smearing or smoothing "signal" h(t) with "filter" g(t)
 - Typically g covers *smaller* range than h (shorter time span or fewer samples)
- Correlation = checking for common features (modulo some unknown *shift* Δx) between 2 signals
 - Typically g and h have ~same sample size
 - *Autocorrelation* = check for cyclic behavior in signal itself
 - Important tool in acoustics (more later)

Convolution

 For each value t' within the selected t range, multiply g(t') by h(t-t') and add up contributions:

Continuous version:

Discrete version

Convolution

- Example: Convolution of 2 square pulses, x(v) and h(v)
- (see http://www.jhu.edu/ ~signals/convolve/)

```
In these plots, t=offset of h(v)
relative to x(v)
(reversed!)
```


Convolution (continued)

x(t - v) and h(v) • past max overlap: • small overlap -1 x(t - v) h(v) +1 Overlap area x(t - v) and h(v) small overlap again • No overlap -1 No overlap again x(t - v) h(v) ++1 Overlap area =0 Convolution = overlap area vs offset t $y(t) = \int h(v) x(t-v) dv$ Plot of overlap area vs offset t +1 = Convolution vs t

Discrete Convolution:

- Application: model effect of a filter (or any process) on a known input signal
 - Electrical signal passed through transmission line
 - Point-source (eg, distant star) imaged in optical system
 - Physical process in detector with systematic error
- For periodic signal g = s(t) (N samples), and
- Response h = r(t) with finite shorter duration (M \leq N samples):
 - *Finite impulse response* = FIR (important case in signal analysis)
 - Calculating (g^*h) is really simple! Time shift is just change of index:

$$(g^*h)_j = \sum_{k=-M/2+1}^{M/2} s_{j-k} r_k = FT(G_jH_j)$$

- Just sum of products of *shifted* elements of g & h(t)
- Can be implemented on a specialized DSP chip for real-time apps
- Can also be implemented in hardware as a *FIR filter* with only passive components

Discrete Correlation:

- Application: search for pattern in a data stream
 - Search for specified signal in noise
 - Test for similarity of signals (in time-series sense)
- Very similar to convolution, but typically M=N
 - Discrete corr:

$$\operatorname{corr}(g,h)_{j} = \sum_{k=0}^{N-1} g_{j+k} h_{k} = FT(G_{k}H_{k}^{*})$$

- Notice index shift has + sign instead of -
- corr(g,h) vs t (="lag") : correlogram
 - corr(g,h) is large when g~h at lag t (location of h in signal stream g)
- Wiener-Khinchin Theorem: autocorrelation is Fourier dual of signal's power spectral density PSD: $corr(h, h) \leftrightarrow |H(f)|^2$

- Wiener-Khinchin Theorem: $corr(h, h) \leftrightarrow |H(f)|^2$
 - Meaning (as with all FT pairs): if the autocorrelation is narrow, the PSD will be broad
- \rightarrow "Uncertainty principle" :

 Δt = width of autocorrelation in time, Δf = width of PSD in frequency

Then $\Delta f \Delta t \sim constant$

(analogous to QM uncertainty principle $\Delta x \Delta p \sim \text{constant}$, and from the same source: in QM, x and p are dual spaces \rightarrow FT partners

- Chorus effect, and fast echoes:
 - 1. If members of a chorus could all sing a given note without vibrato, we would hear it as one voice (with greater amplitude)
 - Real chorus sounds pleasantly complex, but we recognize the note
 - Variations between voices broaden the signal's autocorrelation, so PSD is relatively narrow
 - If a sound is repeated after a very short delay (few msec) we cannot register it as separate, but it "colors" the sound by altering autocorrelation – room echoes do this

Example of convolution

- Example of convolution (this is from optics, but same idea for f(t)):
 - Scene is imaged by lens with limited aperture: clips off higher spatial frequencies
 - *Point spread function* = impulse response of lens (image of ideal mathematical point) (acoustic equivalent: FT of a sharp bang)
 - Convolution = apply PSF to each point of input scene and add to get resulting image

original

Lens output (convolved with PSF of lens)

Applications of digital convolution in acoustics

Reverberation: effects of multiple reflections of a sound source arriving at listener's location, in a given room or other enclosure

Direct sound arrives first, followed by direct reflections, then multipath reflections

Convolution Reverb

- Simulate effect of room acoustics on a digitized sound stream (eg music)
 - Get impulse response of room using sharp noise (like a gunshot)
 - Convolve IR with signal of interest
 - Can predict how music will sound in room

Digital Reverb

- Apply any desired set of delays and frequency dependent effects to a digital signal stream
 - Use specialized electronics, or computer software, to filter, attenuate and delay multiple copies of original signal
 - at lag t (location of h in signal stream g))

Example of correlation

- Example of correlation from acoustic signal processing \bullet
 - Gaussian-shaped sonar pulse is buried in noisy data stream
 - Find arrival time of pulse

Correlogram: Peak location shows arrival time of pulse is at x' = 3 in correlation 4-1=3 is "lag" relative to model function,

so pulse center is located at x = 3 + 3 = 6in signal stream (position in model + lag in correlation

8

12

16

0.8

0.6

Filters in signal processing

Typically we Measure signal s(t) (e.g., voltage vs time from microphone) FTs: Assume s(t)=u(t)*r(t) \rightarrow S(f) u(t)= true underlying signal \rightarrow U(f) r(t)= measuring system's response fn \rightarrow R(f) Then S(f)=U(f)R(f) (simple product of FTs) So U(f)=S(f)/R(f) (S=FT[s(t)], R=FT[r(t)]) u(t)=FT⁻¹[U(f)] (deconvolve to recover true signal) This describes the action of a *filter* on a signal

signal processing acts like a filter

To find R(f), we input an impulse u(t): U(f) = flat (all f's present) Then output spectrum S(f) = filter characteristic R(f)

• R(f) = *Impulse response*

Digital filtering

- So far we have assumed *offline* filtering in f-domain (in a computer)
 - "Acausal": we have the full signal history in hand, a priori
- Often must do *realtime* filtering in t-domain (in the field!)
 - "Causal": we have only the current and a few recent samples
 - Historically: used analog devices: capacitors, inductors, transistors; or lenses, apertures, filters...
 - Currently: digital filtering using DSP chips or fast devices (GHz rates)
- Linear filter: ({ f

$$f(t_k)\}_n = \sum_{k=0}^{m} c_k t_{n-k} + \sum_{j=1}^{m} d_j f(t_{n-j})$$

- Output at $t=n\Delta$ is function of
 - Previous M+1 inputs
 - Previous N outputs
- If N=0 (no feedback), non-recursive filter
 - FIR filter: $y \rightarrow 0$, after $x \rightarrow 0$ (Finite Impulse Response)
- If N>0, f= *recursive* filter
 - IIR (infinite impulse response):

For FIR filters $g(f) = FT(f(t)) = \sum_{k=0}^{M} c_k \exp(-i2\pi f k \Delta)$

So $FT^{-1}[g]$ gives $c_k = fn \text{ of } g(f_k)$:

- Get M frequency points with an M-point sample window
- Infinite impulse response possible: feedback \rightarrow output may howl!

Sharper filtering, but at cost of potential instability

• Usually system introduces *noise* as well as distortion of signals

- Measured signal is c(t) = s(t) + n(t) (where s=u*r)

 We want an *optimal filter* φ(f) which removes noise and recovers u(t) via deconvolution of system response R(f)

 $s(t) = FT^{-1}[C(f)^*\phi(f)]$

 $U(f) = S(f)/R(f) = C(f)\phi(f)/R(f)$

 $\left| U(f) - U_{TRUE} \right| = \left| \frac{R}{R} - \frac{R}{R} \right|$

- Unlike R(f), we cannot determine noise precisely (noise = stochastic process)
 - Cannot find exact $\phi(f)$ directly, like R(f)
 - Estimate U(f) using (e.g.) least squares (LSQ) criterion:

$$\tilde{U}(f) \approx U_{TRUE}$$
 in sense of LSQ \rightarrow minimize $\int_{-\infty}^{+\infty} \left| \tilde{U}(f) - U_{TRUE} \right|^2 df$
 $\left| \tilde{U}(f) - U_{TRUE} \right|^2 = \left| \frac{(S+N)\varphi}{2} - \frac{S}{2} \right|^2$ Notice that

Optimal filtering

to minimize
$$\int_{-\infty}^{+\infty} \left| \tilde{U}(f) - U_{TRUE} \right|^2 df = \int_{-\infty}^{+\infty} \left| \frac{(S+N)\varphi}{R} - \frac{S}{R} \right|^2 df$$
$$= \int_{-\infty}^{+\infty} \frac{1}{|R|^2} \left\{ |S|^2 |\varphi - 1|^2 + |N|^2 |\varphi|^2 \right\} df$$

(n(t) and s(t) are uncorrelated, so cross terms integrate to 0)

Minimize integrand:
$$\frac{\partial}{\partial \varphi} \left\{ \left| S \right|^2 \left| \varphi - 1 \right|^2 + \left| N \right|^2 \left| \varphi \right|^2 \right\} = 0$$
$$\Rightarrow \varphi(f) = \frac{\left| S(f) \right|^2}{\left| S(f) \right|^2 + \left| N(f) \right|^2}$$

- Notice $\phi(f)$ does not depend on R(f)
- Problem: we need S(F) and N(F) but have only the FT of their sum, C(f)=FT[s(t)+n(t)]

- Must make an *hypothesis* about the form of n(t)
 - Typically choose one of:
 - Flat spectrum (white noise, Johnson* noise)
 - Exponential spectrum (pink noise, "1/f noise")
 - Power-law noise (eg, 1/f² = red noise)

* first observed by J. Johnson in 1926. He described his findings to H. Nyquist, who explained them - both worked at Bell Labs.

(Power of f = 0 for white, 1 for pink, 2 for red)

H(f)

• Study the spectrum of raw measurements C(f):

Usually signal S(f) has limited f range

- Fit hypothesis to tail of C, where N dominates
- Extrapolate fit back into signal range to estimate N
- Estimate $|S|^2 = |C|^2 |N|^2$
- Use fitted $|N|^2$ and estimated $|S|^2$ to find $\phi(f)$

• Recall that for N samples $\{c_j\}_N$ we get $FT[c(t)] = C_k = \sum_{j=0}^{N-1} c_j \exp(i2\pi jk/N)$ C_k is complex amplitude at frequencies

$$f_k = \frac{k}{N\Delta} = 0...f_{NYQUIST} = \frac{1}{2\Delta}$$

- How to describe the "power" at a given f_k ?
 - Simple intensity calculation (plot = "periodogram")

$$P_{k}(f_{k}) = \frac{1}{N^{2}} \left\{ \left| C_{k} \right|^{2} + \left| C_{N-k} \right|^{2} \right\}$$

Note: C_{N-k} term is absent for k = 0 and N/2

Representing spectra

Parseval's theorem says

$$\sum |c_j(t)|^2 = \frac{1}{N} \sum |C_k(f)|^2 \rightarrow N^2 \sum P_k(f_k) = N \sum |c_j(t)|^2$$

So
$$\sum P_k(f_k) = \frac{1}{N} \sum |c_j(t)|^2$$
 i.e.,

 $\sum P_k(f_k) =$ mean squared amplitude of signal in t-domain

$$\rightarrow \sum P_k(f_k) = \int_0^T \left| c(t) \right|^2 dt$$

- Note we get discrete C_k , not a continuous C(f)
 - Sampled data \rightarrow sampled spectrum
- Each C_k contains "power" (area under C(f)) for a *bin* in frequency
 - Like histogram vs probability density function

- Fourier analysis reminds us of "conservation of information": you never get something for free
 - f_c (Nyquist f) depends only on sampling *rate:* $f_c=1/2\Delta$
 - Number of frequencies sampled within 0 -> f_c (frequency resolution) depends only on number of samples N
 - So:
 - Increasing length of sample does not improve bandwidth
 - For $\Delta = 1 \ \mu$ s, f_c=0.5 MHz regardless of whether we take 1 sec or 1 year of data
 - Increasing rate of sampling does not improve frequency resolution of the spectrum
 - For 100 samples, we get 100 points on the spectrum, whether we sample at 1 Hz or 1 MHz
 - Neither increasing rate nor sample size improves accuracy of continuous spectrum estimation from discrete spectra

Frequency resolution vs bandwidth

- We can improve accuracy or resolution, but not both
 - "It can be shown" that variance on spectrum estimate is $P_k^2(f_k)$, so $\sigma = 100\%$, regardless of N or Δ
 - Trick to improve accuracy:
 - We can break N samples into K distinct sets of M (so MK=N) and find spectrum for each set, then average over K estimates
 - Breaking set of N samples into K distinct sets gives independent subsamples, so
 - error on mean is ~ sqrt(K)*sigma
 - Improved accuracy, at cost of f resolution