

Session 4

Discrete Fourier transforms Sampling theorem Convolution and correlation Digital filtering

1/12/2023

Course syllabus and schedule – first part…

See: http://courses.washington.edu/phys536/syllabus.htm

Announcements

- REMINDER: term paper #1 proposals are due TODAY!
	- Still haven't heard from a few students
	- Remember: only 5 pages NARROW your scope!
	- Please send me a brief email with
		- Topic chosen
		- Resources to be used in your study (books, journal articles, etc)
		- Format chosen: term paper or website
			- You can submit a 5p paper, or build a website with the same amount of content
			- For info on how to create a website @uw, see

https://sites.uw.edu/your-first-site/

Discrete Fourier transform From last time

- For function sampled at N equally spaced t values, Nyquist : $f_c = \frac{1}{2\Delta} \rightarrow$ cannot find $H(f)$ for $|f| > f_c$ $h_k(t) = h(k\Delta)$ Δ = sampling interval, $k = 0...N$, *N* even 1
- With N points, we can only find N values of the Fourier transform: *discrete* H_{n} , not *continuous* $H(f)$

$$
f_n = \frac{n}{N\Delta}, \quad n = -\frac{N}{2}...0... + \frac{N}{2}
$$

(looks like N + 1 f's, but $f_{-N/2} = f_{+N/2}$)

$$
H(f) = \int_{-\infty}^{+\infty} h(t) \exp(i2\pi ft) dt \rightarrow \sum_{k=0}^{N-1} h_k \exp(i2\pi kn / N) \Delta
$$

$$
H_n = \sum_{k=0}^{N-1} h_k \exp\left(i2\pi k \frac{n}{N}\right) \approx \frac{H(f_n)}{\Delta}
$$

• The discrete *inverse* transform is thus:

$$
h_k = \frac{1}{N} \sum_{n=0}^{N-1} H_n \exp\left(-i 2\pi k \frac{n}{N}\right)
$$

• Parseval's theorem says "energy" is conserved between time and frequency domains:

$$
\sum_{k} \left| h_{k}(t) \right|^{2} = \frac{1}{N} \sum_{n} \left| H_{n}(f) \right|^{2}
$$

Recall from your E&M class: wave *amplitude* $E(t) \rightarrow power \sim |E|^2$

- Parseval's theorem (= "energy conservation")
	- Total power in signal:

$$
P = \int_{-\infty}^{+\infty} \left| h(t) \right|^2 dt = \int_{-\infty}^{+\infty} \left| H(f) \right|^2 df
$$

$$
dP(f) = \int_{-\infty}^{\left| f \right| + df} \left| H(f) \right|^2 df
$$

- Power at frequency f:
- Power Spectral Density **(PSD)**

$$
\frac{dP}{df} = |H(f)|^2 + |H(-f)|^2
$$

 $|f|$

DFT: negative f's and Nyquist frequency

- Given N data samples h(t), with $\{t_n\}$, n=0...N-1
	- Discrete FT produces N values of H(f), k=0...N-1, $f_{MAX}=1/\Delta$ (Note: Discrete FT implicitly assumes h(t) is periodic)
	- But Nyquist limit allows only N/2 frequencies: max $f_c = 1/2Δ$
	- Solution:

Treat these FT components as representing $f_{-N/2}$ \cdot $f_{+N/2}$ where $f_{-N/2} = f_{+N/2}$

• Mathematically, the continuous FT and inverse are defined symmetrically:

$$
H(f) = \int_{-\infty}^{+\infty} h(t) \exp(i2\pi ft) dt \leftrightarrow h(t) = \int_{-\infty}^{+\infty} H(f) \exp(-i2\pi ft) df
$$

- So negative f's are handled naturally
- But discrete transform sums are *periodic* in n:

$$
F_n = \sum_{k=0}^{N-1} f(t_k) \exp(i2\pi kn / N)
$$

where *k* indexes *N* signal samples, $k = 0...N - 1$,

and *n* indexes *N* frequencies, $n = (-N/2)...0...(+N/2)$

 $\exp(i2\pi k n / N)$ is periodic in n, with period = N, so $F_{-n} = F_{N-n}$

- Periodicity means $f_{-N/2} = f_{+N/2}$, so only get N distinct f's
- Note: "Fast Fourier Transform" (FFT) = clever algorithm to minimize CPU time required for DFT-ing large sample sets
	- Requires N to be a power of 2 otherwise, just a DFT
- We can let n=0...N/2 instead (symmetry wrt $f(t_k)$ indexing)
- Then
	- $n=0 \rightarrow f=0$
	- $n=1$ \rightarrow f=f₁
	- $n=N/2$ \rightarrow $f=+f_c=f_1N/2$
	- n=(N/2)+1 \rightarrow negative freq f= $-f_{c+1}$
	- $n=(N-1) \rightarrow -f_1$

example: say N=6, and $\Delta=1$ ms: then $f_c=1/2\Delta=0.5$ kHz

• f₋₃=0.5kHz, f₋₂=-0.33kHz, f₋₁=0.16kHz, f₀=0 (DC), f₁=0.16kHz, f_2 =0.33kHz, f_3 =0.5kHz

> • Notice that negative f' s (or $n>N/2$) contain no new information, but must be taken into account when computing intensity ("power"):

$$
P_n(f_n) = |H(f_n)|^2 + |H(-f_n)|^2, \quad n = 0...N/2
$$

DFT: Sampling theorem and Nyquist frequency

• Sampling theorem:

"If a continuous function h(t), sampled at an intervals, ∆, is **bandwidth limited** to frequencies smaller in magnitude than fc , so $H(f) = 0$ for $|f| \geq fc$

Then $h(t)$ is completely determined by its samples for $\Delta < 1/$ (2 f_c)

- So: If the signal is *known* not to contain harmonics $> f_c$ then the Fourier interpolation is an exact representation (and vice-versa!)
	- Often we have a signal that is bandwidth-limited (by amplifier or cable limitations)
		- sampling theorem tells us that the entire information content of the signal can be recorded by sampling it at a rate $f_s = 2 f_c$
	- Remarkable because a continuous function seems to have infinitely more "information content" than the series
- But: if h(t) is not bandwidth limited to $f \le f_c$, all the spectral power density outside of the frequency range $-f_c \le f \le f_c$ is (falsely) pushed into that range: aliasing

(more on this later)

Discrete FT example From last time

- Fourier interpolation: we can derive f(t) from FT(sampled data):
	- Example:

Step fn: y={1, 1, 1, 0, 0, 0}, equally spaced on t=[0,2**π**) N = 6, k = 0,1...5, and $\{x_k\} = k(2\pi/6)$ $=$ {0, 1.05, 2.09, 3.14, 4.19, 5.24}

Trigonometric interpolating function is

$$
f_N(t) = \frac{a_0}{2} + \sum_{j=1}^{m-1} \left(a_j \cos(jt) + b_j \sin(jt) \right) + \frac{a_m}{2} \cos(mt)
$$

Where $m = N/2 \rightarrow N = 2m$ (assumes even number of pts)

$$
a_{j} = \frac{2}{N} \sum_{k=0}^{N-1} y_{k} \cos(jt), \quad b_{j} = \frac{2}{N} \sum_{k=0}^{N-1} y_{k} \sin(jt)
$$
\n
$$
c_{j} = \frac{2}{N} \sum_{k=0}^{N-1} y_{k} \exp(ijt_{k})
$$
\n
$$
\Rightarrow a_{j} = \text{Re}(c_{j}), \quad b_{j} = \text{Im}(c_{j})
$$
\nwhere's the step?

- Let's revisit the earlier example of FT on a sampled square wave: – Data: y={1, 1, 1, 0, 0, 0}, equally spaced on x=[0,2**π**) N = 6, k = 0,1...5, { x_k } = k(2 π /6) $= \{0, 1.05, 2.09, 3.14, 4.19, 5.24\}$
	- 1.25 – Notice that data are *assumed to be periodic* (basis of discrete FT), so "x₇"=2π → "y₇"=y₁ ... (repeat)
	- -0.25 0 0.25 0.5 0.75 1 0 1 2 3 4 5 6 **x** Y_0 =3.0 (constant term, baseline) $\quad \mathfrak{S}$ – Run DFT on these data, results are: $Y_1 = 1.0 + 1.73$ i $Y_2=0$ $Y_3 = 1.0$ $Y_4=0$ $(=Y_{-2})$ $Y_5=1.0 - 1.73$ i $(=Y_{-1})$ – Here $\Delta = 2\pi/6$, $f_n = n/(N\Delta) = n/2\pi$, $f_c = 1/(2\Delta)$,

Example of frequency issues

– We can identify the frequencies in the discrete spectrum as f₀=0, f₁=1/2π, f₂=2/2π, f₃=3/2π=f_c (Nyquist f in this example) But we are entitled to 6 H(k) components for 6 h(t) samples, so we get 2 more, corresponding to *negative* frequencies:

 $f_4 = f_{-2} = -2/2\pi$, $f_5 = f_{-1} = -1/2\pi$ Notice that $|Y_4| = |Y_2|$ and $|Y_5| = |Y_1|$ If we use the indexing -N/2…+N/2, we get f₋₃=3/2π, f₋₂= $-2/2\pi$, f₋₁= $-1/2\pi$, f₀=0, $f_1 = 1/2\pi$, $f_2 = 2/2\pi$, $f_3 = 3/2\pi$ (7 n's but 6 f's)

Summary of FT properties

• Note: for real signal $f(t)$: $F(-f) = F^{*}(f)$ – So, if F(f) does not contain any δ-functions (i.e. discrete sinusoids) $(* = conjugate)$ $F(-f)^2 = |F(f)|^2 \rightarrow PSD = 2|F(f)|^2$

– Parseval's thm \rightarrow RMS f(t) = area under PSD

• Summary:

 ${f(t_k)}$, $k = 0, 1... N - 1$ N samples of signal at intervals Δ ${F_n}, n = -\frac{N}{2}$ 2 ...0... *N* 2 Discrete Fourier transform of *h* F_n = *Amplitudes* in frequency domain ("spectrum" of *f*): $F(f_n) \approx F_n \Delta$, with frequencies $f_n =$ *n N*Δ , $-f_c$ ≤ f_n ≤ f_c , f_c = 1 2*N* $F(f) = \int f(t) \exp(i2\pi f t) dt$ −∞ +∞ $\int_{0}^{\infty} f(t) \exp(i2\pi ft) dt \rightarrow F_n = \sum_{k=1}^{N-1} f_k \exp\left(i2\pi k \frac{m}{N}\right)$ *N* $\sqrt{}$ ⎝ $\left(i 2\pi k \frac{n}{\lambda} \right)$ \int \vert *k*=0 *N*−1 ∑

Limited information: we have only

N numbers for $f(t_k) \rightarrow N$ numbers for F_n $(F_{-N/2} = F_{N/2})$

Amplitude F_n exists from $f = -f_c$ to f_c , but

spectrum only has meaning for $f = 0$ to f_c :

$$
P_n(f_n) = |F(f_n)|^2 + |F(-f_n)|^2
$$

With ${f_n}$ real, ${F_n}$ will be all reals (eg, if f(t) is odd, cos series), or all imaginaries (if f is even, sin series)

 F_n is assumed to be periodic, with period N, so $F_{-n} = F_{N-n}$

$$
n = 0...\frac{N}{2} \longrightarrow f = 0...f_c
$$
\n
$$
n = \frac{N}{2}...(N-1) \rightarrow f = -f_c...0
$$
\n
$$
\left\{\begin{matrix} Note: \pm f_c = f_{N/2} \text{ so we can have} \\ both k \text{ and } n \text{ run from } 0...(N-1) \end{matrix}\right\}
$$

Understanding frequencies and aliasing

- Let's review the meaning of frequencies in FTs
	- Signal occupies limited range of t: finite sampling
	- We know FT connects *limited* t range to *broad* freq range
		- Recall example: FT of δ -fn pulse is constant (*infinite* f range)

- But N samples of $f(t)$ can only give N/2 samples of $F(f)$ (Nyquist)
	- f-range limited to $\pm f_c$
		- $-$ f_c defined by range T ("period") and N: \rightarrow f₁=1/T, f_c = (N/2)f₁
	- True spectrum must have broader tails
		- "Power" (area under tails of true f spectrum) will get *aliased* into the limited f range of the discrete spectrum

Applying Fourier methods: Convolution and correlation

Given 2 signals, $q(t)$ and $h(t)$ Common applications – Convolution: describes effect of a filter on a signal – Correlation: identify and locate a specified waveform in noisy signal Then $g * h = h * g$, and multiply g by *shifted* h and integrate (notice $g * h = f(t)$) $g * h = \int g(t')h(t-t')dt'$ = convolution of g and h +∞ −∞ Note: minus sign FT of *convolution* ⇔ simple *product* of FTs in f - domain So $FT(g * h) = G(f)H(f)$ *Convolution theorem* * h) = $\int \exp(i2\pi ft)dt \int g(t')h(t -$ +∞ −∞ −∞ +∞ $FT(g * h) = \int exp(i2\pi ft) dt \int g(t')h(t-t')dt'$ $\operatorname{corr}(g, h) \Leftrightarrow G(f)H^*(f)$ For real functions g,h , $H(-f) = H^*(f)$ $corr(g, h) = FT\{ G(f)H(-f) \}$ Similarly : $\text{corr}(g, h) = \int g(t'+t)h(t')dt' = \text{correlation of } g \text{ and } h$ *FT* $\mathsf{so} \quad \text{corr}(g, h) \Leftrightarrow$ +∞ −∞ Note: plus sign

• Convolution and correlation are mathematically similar but have different interpretations:

convolution
$$
g * h = \int_{-\infty}^{+\infty} g(t')h(t-t')dt' \Leftrightarrow G(f)H(f)
$$

\ncorrelation $\text{corr}(g, h) = \int_{-\infty}^{+\infty} g(t+t')h(t')dt' \Leftrightarrow G(f)H^*(f)$

- $-$ Convolution $=$ smearing or smoothing "signal" h(t) with "filter" g(t)
	- Typically g covers *smaller* range than h (shorter time span or fewer samples)
- Correlation = checking for common features (modulo some unknown $shift \Delta x)$ between 2 signals
	- Typically g and h have \sim same sample size
	- *Autocorrelation* = check for cyclic behavior in signal itself
		- Important tool in acoustics (more later)

Convolution

• For each value t' within the selected t range, multiply g(t') by h(t-t') and add up contributions:

Continuous version: Discrete version

Convolution

Convolution (continued)

 $x(t - v)$ and h(v) • past max overlap: • small overlap -1 x(t - v) h(v) $+1$ Overlap area $x(t - v)$ and h(v) small overlap again • No overlap -1 No overlap again $x(t - v) h(v)$ $++1$ Overlap area $=0$ Convolution = overlap area vs offset t $y(t) = \int h(v)x(t-v) dv$ Plot of overlap area vs offset t $+1$ = Convolution vs t

Discrete Convolution:

- Application: model effect of a filter (or any process) on a known input signal
	- Electrical signal passed through transmission line
	- Point-source (eg, distant star) imaged in optical system
	- Physical process in detector with systematic error
- For periodic signal $g = s(t)$ (N samples), and
- Response h = $r(t)$ with finite shorter duration (M \leq N samples):
	- $-$ Finite impulse response $=$ FIR (important case in signal analysis)
	- $-$ Calculating (g*h) is really simple! Time shift is just change of index:

$$
(g * h)_j = \sum_{k=-M/2+1}^{M/2} s_{j-k} r_k = FT(G_j H_j)
$$

- Just sum of products of *shifted* elements of g & h(t)
- Can be implemented on a specialized DSP chip for real-time apps
- Can also be implemented in hardware as a FIR filter with only passive components

Discrete Correlation:

- Application: search for pattern in a data stream
	- Search for specified signal in noise
	- Test for similarity of signals (in time-series sense)
- Very similar to convolution, but typically M=N
	- Discrete corr:

$$
corr(g,h)_j = \sum_{k=0}^{N-1} g_{j+k} h_k = FT(G_k H_k^*)
$$

- Notice index shift has + sign instead of -
- corr(g,h) vs $t (= "lag") : correlogram$
	- corr(g,h) is large when g~h at lag t (location of h in signal stream g)
- Wiener-Khinchin Theorem: autocorrelation is Fourier dual of signal's power spectral density PSD: $corr(h, h) \leftrightarrow |H(f)|^2$
- Wiener-Khinchin Theorem: $corr(h, h) \leftrightarrow |H(f)|^2$
	- Meaning (as with all FT pairs): if the autocorrelation is narrow, the PSD will be broad
- \rightarrow "Uncertainty principle" :

 Δt = width of autocorrelation in time, Δf = width of PSD in frequency

Then Λ f Λ t ~ constant

(analogous to QM uncertainty principle $\Delta x \Delta p \sim$ constant, and from the same source: in QM, x and p are dual spaces \rightarrow FT partners

- Chorus effect, and fast echoes:
	- 1. If members of a chorus could all sing a given note without vibrato, we would hear it as one voice (with greater amplitude)
		- Real chorus sounds pleasantly complex, but we recognize the note
		- Variations between voices broaden the signal's autocorrelation, so PSD is relatively narrow
	- 2. If a sound is repeated after a very short delay (few msec) we cannot register it as separate, but it "colors" the sound by altering autocorrelation – room echoes do this

Example of convolution

- Example of convolution (this is from optics, but same idea for $f(t)$):
	- Scene is imaged by lens with limited aperture: clips off higher spatial frequencies
	- Point spread function = impulse response of lens (image of ideal mathematical point) (acoustic equivalent: FT of a sharp bang)
	- Convolution= apply PSF to each point of input scene and add to get resulting image 0.15

original

Lens output (convolved with PSF of lens)

Applications of digital convolution in acoustics

Reverberation: effects of multiple reflections of a sound source arriving at listener's location, in a given room or other enclosure

– Direct sound arrives first, followed by direct reflections, then multipath reflections

Convolution Reverb

- Simulate effect of room acoustics on a digitized sound stream (eg music)
	- Get impulse response of room using sharp noise (like a gunshot)
	- Convolve IR with signal of interest
	- Can predict how music will sound in room

Digital Reverb

- Apply any desired set of delays and frequency dependent effects to a digital signal stream
	- Use specialized electronics, or computer software, to filter, attenuate and delay multiple copies of original signal
	- at lag t (location of h in signal stream g))

Example of correlation

- Example of correlation from acoustic signal processing
	- Gaussian-shaped sonar pulse is buried in noisy data stream
	- Find arrival time of pulse

Pulse buried in white noise (25% signal, 75% noise) Here, pulse starts at $x=4$, centered at $x=6$

Correlogram: Peak location shows arrival time of pulse is at $x' = 3$ in correlation 4-1=3 is "lag" relative to model function, so pulse center is located at $x= 3 + 3 = 6$ in signal stream (position in model $+$ lag in correlation

Filters in signal processing

Typically we Measure signal s(t) (e.g., voltage vs time from microphone) **FTs:** The contract of the contract of the contract of the **FTs:** Assume $s(t)=u(t)^*r(t)$ \rightarrow $S(f)$ $u(t)$ = true underlying signal $\rightarrow U(f)$ $r(t)$ = measuring system's response fn $\rightarrow R(f)$ Then $S(f)=U(f)R(f)$ (simple product of FTs) So $U(f)=S(f)/R(f)$ (S=FT[s(t)], R=FT[r(t)]) $u(t)=FT^{-1}[U(f)]$ (deconvolve to recover true signal) This describes the action of a *filter* on a signal

signal processing acts like a filter

To find R(f), we input an impulse $u(t)$: $U(f) = flat$ (all f's present) Then output spectrum $S(f)$ = filter characteristic R(f)

• $R(f) = Impulse response$

Digital filtering

- So far we have assumed *offline* filtering in f-domain (in a computer)
	- "*Acausal":* we have the full signal history in hand, a priori
- Often must do *realtime* filtering in t-domain (in the field!)
	- "Causal": we have only the current and a few recent samples
	- Historically: used analog devices: capacitors, inductors, transistors; or lenses, apertures, filters…
	- Currently: digital filtering using DSP chips or fast devices (GHz rates)

j=1

N

- Linear filter: $(\{f(t_k)\}_n = \sum c_k t_{n-k}$ *k*=0 *M* $\sum c_k t_{n-k} + \sum d_j f(t_{n-j})$ $\sum d_j f(t_{n-j})$
	- Output at $t=n\Delta$ is function of
		- Previous M+1 inputs
		- Previous N outputs
	- If N=0 (no feedback), non-recursive filter
		- FIR filter: $y \rightarrow 0$, after $x \rightarrow 0$ (Finite Impulse Response)
	- If N>0, f= *recursive* filter
		- IIR (infinite impulse response):

For FIR filters $g(f) = FT(f(t)) = \sum c_k \exp(-i2\pi f k\Delta)$ *k*=0 *M* ∑

So FT⁻¹[g] gives $c_k = fin$ of g(f_k):

- Get M frequency points with an M-point sample window
- Infinite impulse response possible: feedback \rightarrow output may howl!

Sharper filtering, but at cost of potential instability

• Usually system introduces *noise* as well as distortion of signals

– Measured signal is $c(t) = s(t) + n(t)$ (where s=u*r)

• We want an *optimal filter* $\phi(f)$ which removes noise and recovers u(t) via deconvolution of system response R(f)

 $s(t) = FT^{-1}[C(f)*\phi(f)]$

 $U(f) = S(f)/R(f) = C(f)\phi(f)/R(f)$

- $-$ Unlike R(f), we cannot determine noise precisely (noise $=$ stochastic process)
	- Cannot find exact $\phi(f)$ directly, like R(f)
	- Estimate U(f) using (e.g.) least squares (LSQ) criterion:

$$
\tilde{U}(f) \approx U_{TRUE} \text{ in sense of LSQ} \rightarrow \text{ minimize } \int_{-\infty}^{+\infty} \left| \tilde{U}(f) - U_{TRUE} \right|^2 df
$$

$$
\left|\tilde{U}(f) - U_{TRUE}\right|^2 = \left|\frac{(S+N)\varphi}{R} - \frac{S}{R}\right|^2 \qquad \text{Notice that}
$$

n(t) and s(t) are *uncorrelated* by definition (else n(t) is not noise!)

Optimal filtering

to minimize
$$
\int_{-\infty}^{+\infty} |\tilde{U}(f) - U_{TRUE}|^2 df = \int_{-\infty}^{+\infty} \left| \frac{(S+N)\varphi}{R} - \frac{S}{R} \right|^2 df
$$

$$
= \int_{-\infty}^{+\infty} \frac{1}{|R|^2} \left\{ |S|^2 |\varphi - 1|^2 + |N|^2 |\varphi|^2 \right\} df
$$

(n(t) and s(t) are uncorrelated, so cross terms integrate to 0)

Minimize integrand:
$$
\frac{\partial}{\partial \varphi} \left\{ |S|^2 |\varphi - 1|^2 + |N|^2 |\varphi|^2 \right\} = 0
$$

$$
\Rightarrow \varphi(f) = \frac{|S(f)|^2}{|S(f)|^2 + |N(f)|^2}
$$

- Notice $\phi(f)$ does not depend on R(f)
- Problem: we need $S(F)$ and $N(F)$ but have only the FT of their **sum**, $C(f) = FT[s(t) + n(t)]$
- Must make an *hypothesis* about the form of $n(t)$
	- Typically choose one of:
		- Flat spectrum (white noise, Johnson* noise)
		- Exponential spectrum (pink noise, "1/f noise")
		- Power-law noise (eg, $1/f^2$ = red noise)

* first observed by J. Johnson in 1926. He described his findings to H. Nyquist, who explained them - both worked at Bell Labs.

(Power of $f = 0$ for white, 1 for pink, 2 for red)

H(f)

Study the spectrum of raw measurements $C(f)$:

Usually signal S(f) has limited f range

- $-$ Fit hypothesis to tail of C, where N dominates
- Extrapolate fit back into signal range to estimate N
- Estimate $|S|^2 = |C|^2 |N|^2$
- Use fitted $|N|^2$ and estimated $|N|$ S|² to find $\phi(f)$

• Recall that for N samples ${c_j}_{N}$ we get $=\frac{k}{N} = 0... f_{NYOUIST} = \frac{1}{2}$ $[c(t)] = C_k = \sum_{j=0}^{\infty} c_j \exp(i2\pi jk/N)$ 1 $\bar{0}$ C_k is *complex amplitude* at frequencies *Nj* $FT[c(t)] = C_k = \sum_{j} c_j \exp(i2\pi jk/N)$ $f_k = \frac{k}{\sqrt{k}}$

$$
f_k = \frac{k}{N\Delta} = 0...f_{NYQUIST} = \frac{1}{2\Delta}
$$

- How to describe the "power" at a given f_k ?
	- Simple intensity calculation (plot = "periodogram")

$$
P_{k}(f_{k}) = \frac{1}{N^{2}} \left\{ \left| C_{k} \right|^{2} + \left| C_{N-k} \right|^{2} \right\}
$$

Note: C_{N-k} term is absent for $k = 0$ and $N/2$

Representing spectra

Time Series $8(1e-17)$ Example: random example of the signal stream and corresponding periodogram from LIGO gravitational wave detector at Hanford, WA Strain PSD for L1 data starting at GPS 84265779 10^{-16} 10^{-17} 10^{-18} 10^{-19} PSD (strain / Sqrt(Hz)) 10 12 14 10^{-20} 6 8 16 2 4 Time since GPS 842657792.0 10^{-21} 10^{-22} 10^{-23} Spikes in periodogram are for various light storage arm 10^{-24} common sources of local vibration or test mass test mass electrical noise (60 Hz, trucks, etc) 10^{-25} photodetector 10^{-26} $10³$ 10^0 $10¹$ 10^{2} 10 Frequency (Hz)

https://dcc.ligo.org/public/0118/T1500123/001/SURFpaper.pdf

Parseval's theorem says

$$
\sum |c_j(t)|^2 = \frac{1}{N} \sum |C_k(f)|^2 \to N^2 \sum P_k(f_k) = N \sum |c_j(t)|^2
$$

So
$$
\sum P_k(f_k) = \frac{1}{N} \sum |c_j(t)|^2 \quad \text{i.e.,}
$$

 $\sum P_k(f_k)$ = mean squared amplitude of signal in t-domain

$$
\longrightarrow \sum P_k(f_k) = \int_0^T \left| c(t) \right|^2 dt
$$

- Note we get discrete C_{k} , not a continuous $C(f)$
	- Sampled data \rightarrow sampled spectrum
- Each C_k contains "power" (area under $C(f)$) for a *bin* in frequency
	- Like histogram vs probability density function
- Fourier analysis reminds us of "conservation of information": you never get something for free
	- f_c (Nyquist f) depends only on sampling rate: $f_c=1/2\Delta$
	- Number of frequencies sampled within $0 \rightarrow f_c$ (frequency resolution) depends only on number of samples N
	- So:
		- Increasing length of sample does not improve bandwidth
			- For $\Delta = 1$ µs, f_c=0.5 MHz regardless of whether we take 1 sec or 1 year of data
		- Increasing rate of sampling does not improve frequency resolution of the spectrum
			- For 100 samples, we get 100 points on the spectrum, whether we sample at 1 Hz or 1 MHz
		- Neither increasing rate nor sample size improves accuracy of continuous spectrum estimation from discrete spectra

Frequency resolution vs bandwidth

- We can improve accuracy or resolution, but not both
	- $-$ "It can be shown" that variance on spectrum estimate is $P^2_{\kappa}(f_k)$, so σ = 100%, regardless of N or Δ
		- Trick to improve accuracy:
		- We can break N samples into K distinct sets of M (so MK=N) and find spectrum for each set, then average over K estimates
		- Breaking set of N samples into K distinct sets gives independent subsamples, so
			- error on mean is \sim sqrt(K)*sigma
			- Improved accuracy, at cost of f resolution

38

and the control of the