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Tonight 

Course syllabus and schedule – first part… 



Announcements 

•  REMINDER: term paper #1 proposals are due TODAY! 
–  Still haven’t heard from a few students 
–  Remember: only 5 pages – NARROW your scope! 
–  Please send me a brief email with 

•  Topic chosen 
•  Resources to be used in your study (books, journal articles, etc) 
•  Format chosen: term paper or website 

–  You can submit a 5p paper, or build a website with the 
same amount of content 

–  For info on how to create a website @uw, see 
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Discrete Fourier transform 

•  For function sampled at N equally spaced t values, 

•  With N points, we can only find N values of the Fourier 
transform: discrete  Hn,  not continuous H(f) 
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Transform pairs 

•  The discrete inverse transform is thus: 

•  Parseval’s theorem says “energy” is conserved between 
time and frequency domains: 

 
–  Parseval’s theorem ( = “energy conservation”) 

•  Total power in signal: 
 
 
•  Power at frequency f: 
 
•  Power Spectral Density 

Recall from your E&M class:  
wave amplitude E(t)  è power ~ | E |2 
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DFT: negative f’s and Nyquist frequency 

•  Given N data samples h(t), with {tn}, n=0…N-1 
–  Discrete FT produces N values of H(f), k=0…N-1, fMAX=1/∆ 
(Note: Discrete FT implicitly assumes h(t) is periodic) 
–  But Nyquist limit allows only N/2 frequencies: max fc =1/2∆ 
–  Solution:  
Treat these FT components as representing f-N/2 

.. f+N/2  where f-N/2 = f+N/2    
 
 

n=0 n=N/2  n=N-1 

-fc fc 

-fc 0 

0 

f0 fMAX 



7

Negative and positive frequencies 

•  Mathematically, the continuous FT and inverse are defined 
symmetrically: 

–  So negative f’s are handled naturally 

•  But discrete transform sums are periodic in n: 

–  Periodicity means f-N/2 = f+N/2 , so only get N distinct f’s 
 

•  Note: “Fast Fourier Transform” (FFT) = clever algorithm to 
minimize CPU time required for DFT-ing large sample sets 
–  Requires N to be a power of 2 - otherwise, just a DFT 

∫∫
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Fn = f (tk )exp(i2π kn / N )
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∑

where  k  indexes N  signal samples, k = 0...N −1, 
and  n  indexes N  frequencies, n = (−N / 2)...0...(+N / 2)
exp(i2π kn / N )  is periodic in n, with period = N, so  F−n = FN−n
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Negative and positive frequencies 

–  We can let n=0…N/2 instead (symmetry wrt f(tk) indexing) 
–  Then  

•  n=0 èf=0 
•  n=1 è f=f1 
•  n=N/2 è f=+fc=f1N/2 
•  n=(N/2)+1 è negative freq f= -fc+1 
•  n=(N-1) è - f1  

example: say N=6, and Δ=1 ms: then fc=1/2Δ=0.5 kHz 
f-3=0.5kHz, f-2=-0.33kHz, f-1=0.16kHz,  f0=0 (DC), f1=0.16kHz, 
 f2=0.33kHz, f3=0.5kHz  
 

•  Notice that negative f’s (or n>N/2) contain no new 
information, but must be taken into account when 
computing intensity (“power”):  

2/...0,)()()( 22 NnfHfHfP nnnn =−+=



DFT: Sampling theorem and Nyquist frequency 

•  Sampling theorem: 

“If a continuous function h(t), sampled at an intervals, ∆, is bandwidth 
limited to frequencies smaller in magnitude than fc , so H(f) = 0 for |f | ≥ fc  

Then h(t) is completely determined by its samples for ∆ < 1/ (2fc ) 

–  So: If the signal is known not to contain harmonics > fc  then the Fourier 
interpolation is an exact representation (and vice-versa!) 

•  Often we have a signal that is bandwidth-limited (by amplifier or 
cable limitations) 

–   sampling theorem tells us that the entire information content of 
the signal can be recorded by sampling it at a rate fs = 2 fc  

•  Remarkable because a continuous function seems to have infinitely 
more “information content” than the series 

–  But: if h(t) is not bandwidth limited to f ≤ fc , all the spectral power 
density outside of the frequency range -fc ≤ f ≤ fc  is (falsely) pushed 
into that range: aliasing 

 (more on this later) 
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Discrete FT example 

•  Fourier interpolation: we can derive f(t) from FT(sampled data): 
–  Example: 

 Step fn: y={1, 1, 1, 0, 0, 0}, equally spaced on t=[0,2π) 
N = 6,  k = 0,1…5,  and {xk} = k(2π/6) 
                                 = {0, 1.05, 2.09, 3.14, 4.19, 5.24} 

Trigonometric interpolating function is  

fN (t) = a0

2
+ aj cos( jt)+ bj sin( jt)( )

j=1

m−1

∑ +
am
2

cos(mt)

Where  m = N / 2→ N = 2m  (assumes even number of pts)

aj =
2
N

yk cos( jt)
k=0

N−1

∑ , bj =
2
N

yk sin( jt)
k=0

N−1

∑

or   cj =
2
N

yk exp(i jtk )
k=0

N−1

∑
 → aj = Re(cj ), bj = Im(cj ) Where’s the step? 

Do we know? 

From last time 
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Example of frequency issues 

•  Let’s revisit the earlier example of FT on a sampled square wave: 
–  Data: y={1, 1, 1, 0, 0, 0}, equally spaced on x=[0,2π) 
N = 6,  k = 0,1…5, {xk} = k(2π/6) 
                                 = {0, 1.05, 2.09, 3.14, 4.19, 5.24} 
–  Notice that data are assumed to be periodic (basis of discrete FT),  so  
“x7”=2π è “y7”=y1 … (repeat) 

–  Run DFT on these data, results are: 
Y0=3.0 (constant term, baseline) 
Y1=1.0+ 1.73 i 
Y2=0 
Y3=1.0  
Y4=0   (=Y-2) 
Y5=1.0 - 1.73 i  (=Y-1) 

–  Here Δ= 2π/6,   fn=n/(NΔ)=n/2π,    fc=1/(2Δ), 
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Example of frequency issues 

–  We can identify the frequencies in the discrete spectrum as 
 f0=0,  f1=1/2π,  f2=2/2π,  f3=3/2π=fc (Nyquist f in this example) 
But we are entitled to 6 H(k) components for 6 h(t) samples, so we 

get 2 more, corresponding to negative frequencies: 
 f4 = f-2 = - 2/2π,   f5 = f-1 = - 1/2π  
Notice that |Y4| = |Y2| and |Y5| = |Y1|   
If we use the indexing -N/2…+N/2, we get 
 f-3=3/2π,  f-2= -2/2π,  f-1= -1/2π,  f0=0,  
                 f1 = 1/2π, f2 = 2/2π , f3=3/2π (7 n’s but 6 f’s) 

spectrum for positive frequencies
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Summary of FT properties 

•  Note: for real signal f(t):    F(-f) = F*(f) 
–  So, if F(f) does not contain any δ-functions (i.e. discrete sinusoids) 

–  Parseval’s thm è  RMS f(t) = area under PSD 

•  Summary: 
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Summary of DFT properties 

Limited information: we have only 

 
 
With {fn} real, {Fn} will be all reals (eg, if f(t) is odd, cos series), or 

all imaginaries (if f is even, sin series) 
Fn is assumed to be periodic, with period N, so F-n=FN-n  
 
 
 
 
 

⎩
⎨
⎧ =±

⎪
⎪
⎭

⎪⎪
⎬

⎫

−=→−=

=→=

)...(N-nk
ffNote

ffNNn

ffNn
Nc

c

c

10
:

0...)1...(
2

...0
2

...0
2/

 from run    and    both
 have can we so  

N  numbers for f (tk ) → N  numbers for  Fn F−N /2 = FN /2( )
Amplitude  Fn   exists from f = − fc  to fc  , but 
spectrum  only has meaning for f = 0  to fc :

Pn ( fn ) = F( fn ) 2
+ F(− fn ) 2



15

Understanding frequencies and aliasing 

•  Let’s review the meaning of frequencies in FTs 
–  Signal occupies limited range of t: finite sampling 
–  We know FT connects limited t range to broad  freq range 

•  Recall example: FT of δ-fn pulse is constant (infinite f range)  

–  But N samples of f(t) can only give N/2 samples of F(f) (Nyquist) 
•  f-range limited to +fc  

–   fc defined by range T (“period”) and N:    èf1=1/T,   fc = (N/2)f1 
•  True spectrum must have broader tails 

–  “Power” (area under tails of true f spectrum) will get aliased into 
the limited f range of the discrete spectrum  

Figs. from 
Numerical Recipes 
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Applying Fourier methods: Convolution and correlation 

•  Given 2 signals, g(t) and h(t) 

 Common applications 
–  Convolution: describes effect of a 

filter on a signal 
–  Correlation: identify and locate a 

specified waveform in noisy signal 

and     Then
   (notice  integrate and  by  multiply 
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Convolution and correlation in signal processing 

•  Convolution and correlation are mathematically similar but 
have different interpretations: 

–  Convolution = smearing or smoothing “signal” h(t) with 
“filter” g(t) 

•  Typically g covers smaller range than h (shorter time span 
or fewer samples) 

–  Correlation = checking for common features (modulo some 
unknown shift Δx) between 2 signals 

•  Typically g and h have ~same sample size 
•  Autocorrelation = check for cyclic behavior in signal itself 

–  Important tool in acoustics (more later) 
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Convolution 

•  For each value t' within the selected t range, multiply g(t') by 
h(t-t') and add up contributions: 

Continuous version:    Discrete version  
 

 
      note wraparound of g(t) 

NR fig. 13.1.1 

g(t) 

h(t) 

g*h 



Convolution 

Convolution amounts to 
calculating overlap vs 
displacement and integrating: 
Example: Convolution of 2 

square pulses, x(v) and 
h(v) 

(see http://www.jhu.edu/
~signals/convolve/ ) 

In these plots, t=offset  of h(v) 
relative to x(v)  
  (reversed!) 
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•  No overlap 

•  small overlap 

•  ~max overlap 

Overlap area 

Overlap area 

Overlap area =0 



20

Convolution (continued) 

•  past max overlap: 
 
 
 
 
 
 
small overlap again 
 
 
No overlap again 
 
 
 
 
Plot of overlap area vs offset t  
= Convolution vs t 
 
 
 

•  No overlap 

•  small overlap 

Overlap area 

Overlap area =0 

Convolution = overlap area vs offset t 
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Discrete convolutions and correlations 

Discrete Convolution: 
•  Application: model effect of a filter (or any process) on a known input 

signal 
–  Electrical signal passed through transmission line 
–  Point-source (eg, distant star) imaged in optical system 
–  Physical process in detector with systematic error 

•  For periodic signal g = s(t) (N samples), and 
•  Response h = r(t) with finite shorter duration (M < N samples): 

–  Finite impulse response = FIR     (important case in signal analysis) 
–  Calculating (g*h) is really simple! Time shift is just change of index:  

•  Just sum of products of shifted elements of g & h(t) 
•  Can be implemented on a specialized DSP chip for real-time apps 
•  Can also be implemented in hardware as a FIR filter with only 

passive components 

(g*h) j = sj−k rk
k=−M /2+1

M /2

∑ = FT (GjH j )
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Discrete convolutions and correlations 

Discrete Correlation: 
•  Application: search for pattern in a data stream 

–  Search for specified signal in noise 
–  Test for similarity of signals (in time-series sense) 

•  Very similar to convolution, but typically M=N  
–  Discrete corr: 

•  Notice index shift has + sign instead of - 
•   corr(g,h) vs t (=“lag”) : correlogram 

–   corr(g,h) is large when g~h at lag t (location of h in signal 
stream g) 

•  Wiener-Khinchin Theorem: autocorrelation is Fourier dual of 
signal’s power spectral density PSD: 

)(),corr( *
1

0
kk

N

k
kkjj HGFThghg ==∑

−

=
+

corr(h, h)↔ H ( f ) 2
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Autocorrelation 

•  Wiener-Khinchin Theorem: 
–  Meaning (as with all FT pairs): if the autocorrelation is narrow, the 

PSD will be broad  

à  “Uncertainty principle” :  
  Δt = width of autocorrelation in time, Δf = width of PSD in frequency 
Then   Δf Δt ~ constant 
(analogous to QM uncertainty principle Δx Δp ~ constant, and from the 
same source: in QM, x and p are dual spaces à FT partners 

•  Chorus effect, and fast echoes: 
1.  If members of a chorus could all sing a given note without vibrato, we 

would hear it as one voice (with greater amplitude) 
•  Real chorus sounds pleasantly complex, but we recognize the note 
•  Variations between voices broaden the signal’s autocorrelation, so 

PSD is relatively narrow 
2.  If a sound is repeated after a very short delay (few msec) we cannot 

register it as separate, but it “colors” the sound by altering 
autocorrelation – room echoes do this 

 

 
 

corr(h, h)↔ H ( f ) 2



Example of convolution 

•  Example of convolution (this is from optics, but same idea for f(t)): 
–  Scene is imaged by lens with limited aperture: clips off higher spatial 

frequencies 
–  Point spread function = impulse response of lens (image of ideal 

mathematical point)     (acoustic equivalent: FT of a sharp bang) 
–  Convolution= apply PSF to each point of input scene and add to get 

resulting image 

24
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Simplest possible scene 
 = uniform bright disk 
(sharp edge) 

Point spread function = Gaussian 
(impulse response of lens)  

Image = convolution (r*s) 
(edges of disk become fuzzy) 

original 

Lens output 
(convolved with 
PSF of lens) 
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Applications of digital convolution in acoustics 

Reverberation: effects of multiple reflections of a sound source arriving 
at listener’s location, in a given room or other enclosure 
–  Direct sound arrives first, followed by direct reflections, then multipath 

reflections 

Convolution Reverb 
•  Simulate effect of room acoustics on a digitized sound stream (eg music) 

–  Get impulse response of room using sharp noise (like a gunshot) 
–  Convolve IR with signal of interest 
–  Can predict how music will sound in room 

Digital Reverb 
•  Apply any desired set of delays and frequency dependent effects to a 

digital signal stream 
–  Use specialized electronics, or computer software, to filter, attenuate 

and delay multiple copies of original signal 
–  at lag t (location of h in signal stream g)) 
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Example of correlation 

•  Example of correlation from acoustic signal processing 
–  Gaussian-shaped sonar pulse is buried in noisy data stream 
–  Find arrival time of pulse 
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Here, pulse starts at x=4, centered at x=6 

Correlogram: 
Peak location shows arrival time  
of pulse is at  x’=3 in correlation  
4-1=3 is “lag” relative to model function, 
so pulse center is located at x= 3 + 3 = 6 
in signal stream (position in model + lag 
in correlation 
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Filters in signal processing 

 

Typically we 
Measure signal s(t)       (e.g., voltage vs time from microphone) 

      FTs: 
Assume s(t)=u(t)*r(t)    à S(f) 

 u(t)= true underlying signal   à U(f) 
 r(t)= measuring system’s response fn  à R(f) 

Then S(f)=U(f)R(f)        (simple product of FTs) 
So U(f)=S(f)/R(f)         (S=FT[s(t)], R=FT[r(t)] )  
 u(t)=FT-1[U(f)]     (deconvolve to recover true signal) 
This describes the action of a filter on a signal 
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 S(f)=U(f)R(f) 

s(t) 
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signal processing acts like a filter 
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Idealized 
input signal 

R(f) 
System acts  
like a filter 
described by R(f)  

Observed 
output signal 

 u=Impulse d(t) 
      U(f)=1 

 u(t) 
 U(f) 

 s(t) 
 S(f)=U(f)R(f) 

S(f)=R(f) 

To find R(f), we input an impulse u(t): U(f) = flat (all f’s present) 
Then output spectrum S(f) = filter characteristic R(f) 

•   R(f) = Impulse response 
 

R(f) 

Impulse response 

 f(t):  
 FT = F(f): 
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Digital filtering 

•  So far we have assumed offline filtering in f-domain (in a computer) 
–  “Acausal”: we have the full signal history in hand, a priori 

•  Often must do realtime filtering in t-domain (in the field!) 
–  “Causal”:  we have only the current and a few recent samples 
–  Historically: used analog devices: capacitors, inductors, transistors; or 

lenses, apertures, filters… 
–  Currently: digital filtering using DSP chips or fast devices (GHz rates) 

•  Linear filter: 

–  Output at t=nΔ is function of 
•  Previous M+1 inputs 
•  Previous N outputs 

–  If N=0 (no feedback), non-recursive filter 
•  FIR filter: y → 0, after x → 0 
(Finite Impulse Response) 

–  If N>0, f= recursive filter 
•  IIR (infinite impulse response):  
Infinite impulse response possible: feedback à output may howl! 
Sharper filtering, but at cost of potential instability 

({ f (tk )}n = cktn−k
k=0

M

∑ + dj f (tn− j
j=1

N

∑ )

For FIR filters 
 
 
So FT-1[g] gives ck = fn of g(fk):  

•  Get M frequency points with an 
M-point sample window 

g( f ) = FT ( f (t)) = ck exp(−i2π fkΔ)
k=0

M

∑
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Optimal filtering 

•  Usually system introduces noise as well as distortion of signals 
–  Measured signal is c(t) = s(t) + n(t)   (where s=u*r) 

•  We want an optimal filter φ(f) which removes noise and recovers 
u(t) via deconvolution of system response R(f) 
 s(t) = FT-1[C(f)*φ(f)] 
 U(f) = S(f)/R(f) = C(f)φ(f)/R(f) 
–  Unlike R(f), we cannot determine noise precisely (noise = 

stochastic process) 
•  Cannot find exact φ(f) directly, like R(f) 
•  Estimate U(f) using (e.g.) least squares (LSQ) criterion: 

•  Notice φ(f) is not dependent upon R(f)  
–  Problem: we need S(F) and N(F) but have only the FT of their 

sum,  C(f)=FT[s(t)+n(t)] 

!U( f ) ≈UTRUE  in sense of LSQ→   minimize !U( f )−UTRUE

2
df

−∞

+∞

∫

!U( f )−UTRUE

2
=

(S + N )ϕ
R

−
S
R

2

         Notice that 

n(t) and s(t) are uncorrelated  by definition (else n(t) is not noise!)
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Optimal filtering 

 

• Notice φ(f) does not depend on R(f)  
–  Problem: we need S(F) and N(F) but have only the FT 

of their sum,  C(f)=FT[s(t)+n(t)] 

 to minimize !U( f )−UTRUE

2
df

−∞

+∞

∫ =
(S + N )ϕ

R
−
S
R

2

df
−∞

+∞

∫

=
1
R 2 S 2

ϕ −1 2
+ N 2

ϕ
2{ }df

−∞

+∞

∫

( n(t) and s(t) are uncorrelated, so cross terms integrate to 0)

Minimize integrand:   ∂
∂ϕ

S 2
ϕ −1 2

+ N 2
ϕ

2{ }= 0

→ϕ( f ) =
S( f ) 2

S( f ) 2
+ N( f ) 2
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Noise spectra 

•  Must make an hypothesis about the form of n(t) 
–  Typically choose one of: 

•  Flat spectrum (white noise, Johnson* noise) 
•  Exponential spectrum (pink noise, "1/f noise") 
•  Power-law noise (eg, 1/f2 = red noise) 

(Power of f = 0 for white, 1 for pink, 2 for red) 

•  Study the spectrum of raw measurements C(f): 

Usually signal S(f) has limited f range 
–  Fit hypothesis to tail of C, 

where N dominates 
–  Extrapolate fit back into signal 

range to estimate N 
–  Estimate |S|2 = |C|2 - |N|2   
–  Use fitted |N|2 and estimated |

S|2  to find φ(f)  

* first observed by J. 
Johnson in 1926. He 
described his findings 
to H. Nyquist, who 
explained them - both 
worked at Bell Labs. 
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Representing spectra 

•  Recall that for N samples {cj}N we get 

•  How to describe the “power” at a given fk? 
–  Simple intensity calculation (plot = “periodogram”) 

Δ
==

Δ
=

== ∑
=

2
1...0

)/2exp()]([
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0

NYQUISTk
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j
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N
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  sfrequencieat   is  amplitude complex

π

Pk ( fk ) =
1
N 2 Ck

2
+ CN−k

2{ }    

Note:  CN−k  term is absent for k = 0  and  N / 2
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Representing spectra 

•  Example: random example of 
the signal stream and 
corresponding periodogram 
from LIGO gravitational wave 
detector at Hanford, WA 

Spikes in periodogram are for various 
common sources of local vibration or 
electrical noise (60 Hz, trucks, etc)  

https://dcc.ligo.org/public/0118/T1500123/001/SURFpaper.pdf 
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Representing spectra 

–  Note we get discrete Ck, not a continuous C(f) 
•  Sampled data → sampled spectrum 

–  Each Ck contains “power” (area under C(f)) for a bin in 
frequency 

•  Like histogram vs probability density function 

Parseval's theorem says

cj (t)
2∑ =

1
N

Ck ( f )∑
2
→ N 2 Pk ( fk )∑ = N cj (t)∑

2

So  Pk ( fk )∑ =
1
N

cj (t)∑
2
     i.e.,  

Pk ( fk )∑ =  mean squared amplitude of signal in t-domain

→ Pk ( fk )∑ = c(t) 2 dt
0

T

∫
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Frequency resolution vs bandwidth 

•  Fourier analysis reminds us of “conservation of 
information”: you never get something for free 
–   fc (Nyquist f) depends only on sampling rate: fc=1/2Δ  
–  Number of frequencies sampled within 0 -> fc (frequency 

resolution) depends only on number of samples N   
–  So: 

•  Increasing length of sample does not improve bandwidth 
–  For Δ = 1 µs,  fc=0.5 MHz regardless of whether we take 

1 sec or 1 year of data 
•  Increasing rate of sampling does not improve frequency 

resolution of the spectrum 
–  For 100 samples, we get 100 points on the spectrum, 

whether we sample at 1 Hz or 1 MHz 
•  Neither increasing rate nor sample size improves accuracy of 

continuous spectrum estimation from discrete spectra  
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Frequency resolution vs bandwidth 

•  We can improve accuracy or resolution, but not both 
–  “It can be shown” that variance on spectrum estimate is P2

k(fk), 
so σ = 100%, regardless of N or Δ  

•  Trick to improve accuracy:  
We can break N samples into K distinct sets of M (so MK=N) 
and find spectrum for each set, then average over K estimates 
•  Breaking set of N samples into K distinct sets gives 

independent subsamples, so
–  error on mean is ~ sqrt(K)*sigma   
–  Improved accuracy, at cost of f resolution 
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