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Course syllabus and schedule — first part...

See; hitp:/lcourses washington.edu/phys536/syllabus hum

See : http://courses.washington.edu/phys536/syllabus.htm

Session date Day Readings: K=Kinsler, H=Heller Topic
Course intro, acoustics topics, overview of wave properties;
1 3-Jan Tue Kch.1 H:Ch.1, 2 pulses, transverse and longitudinal waves, overview of sound
speeds
harmonic oscillators: simple, damped, driven; complex
2 5-Jan Thu Kch.1 H: Ch.9, 10 exponential solutions, electrical circuit analogy, resonance, Q
factor
3 10-Jan Tue Kch 1 H: ch. 3 Fourier methoqs: Fourier series, .integrals, .Foyrier transforms,
discrete FTs, sampling and aliasing

Frequencies and aliasing; convolution and correlation; discrete

4 12-Jan Thu K. chs 10 H: Ch. 4, 11 convolution; digital filtering, optimal filters, FIR filters, poise
spectra; power spectra. REPORT 1 PROPOSED TOP@E

5 17-Jan Tue K.ch.2,3,4 H: Ch. 13, 15 waves in strings, bars and.membranes; Ac_oustic_ wa.ve eqUation;

speed of sound; Harmonic plane waves, intensity, impedance.
6 19-Jan Thu K.Ch.5,6 H:Ch. 1 Spherical waves; transmission and reflection at interfaces
7 24-Jan Tue K Ch. 8 H: ch. 7 Radiation from smzilll .sources; szlfﬂed simple source, piston

radiation, pulsating sphere;
8 26-Jan Thu K: Ch. 10 H: Chs. 13-15 Near field, far field; Radiation impedance; resonators, filters
9 31-Jan Tue K. Ch. 9-10 H: Chs. 16-19 Musical instruments: wind, string, percussion
10 2-Feb Thu K.Ch 14 Transducers for use in air: Microphones and loudspeakers
11 7-Feb Tue K.Ch11l H: Chs. 21-22 The ear, hearing and detection
Decibels, sound level, dB examples, acoustic intensity; noise,

12 9-Feb Thu K. Chs 5,11 detection thresholds. REPORT 1 PAPER DUE by 7 PM; REPORT 2

PROPOSED TOPIC DUE




Announcements

e REMINDER: term paper #1 proposals are due TODAY!

— Still haven’t heard from a few students

— Remember: only 5 pages — NARROW your scope!

— Please send me a brief email with
e Topic chosen
e Resources to be used in your study (books, journal articles, etc)
e Format chosen: term paper or website

— You can submit a 5p paper, or build a website with the
same amount of content

— For info on how to create a website @uw, see
hittps://sites.uw.edu/your-first-site/




From last time = Discrete Fourier transform

e For function sampled at N equally spaced t values,
h, (1) = h(kA) A = samplinginterval, k£ =0..N, N even

Nyquist: £ =ie cannot find H( ) for |f|> 1.

e With N points, we can only find N values of the Fourier
transform: discrete H,, not continuous H(f)

(looks like N +1 f's,butf ., =f v, )

H(f)= Th(t)exp(ﬂ:r f1)dt — E_hk exp(i2kn | N)A

N-1
H,=Yh exp(i 2k ) _HUD
& N A



From last time Transform pairs
e The discrete inverse transform is thus:

1 E n
=— N H expl -i2mk—
N; " p( N)

e Parseval’ s theorem says “energy” is conserved between
time and frequency domains:

1 > | Recall from your E&M class:
Z‘hk (t)‘ - _E‘H . (f )‘ wave amplitude E(t) =» power ~ | E |2
— Parseval’ s theorem ( = energy conservatlon”)
e Total power in signal: P f|h(t)| dt—f|H(f)| df

|f|+df
e Power at frequency f:  dP(f)= f H(f)| df
/]

e Power Spectral Density  dP 2 >
(PsD) o IO e



DFT: negative f's and Nyquist frequency

e Given N data samples h(t), with {t,}, n=0...N-1
— Discrete FT produces N values of H(f), k=0...N-1, f,,~=1/A
(Note: Discrete FT implicitly assumes h(t) is periodic)
— But Nyquist limit allows only N/2 frequencies: max f.=1/2A
— Solution:
Treat these FT components as representing £, f, 5, where f5,=f,p0

|
I
n=0 n=N/2 n=N-1




Negative and positive frequencies

e Mathematically, the continuous FT and inverse are defined
symmetrically:

H(f) = }Oh(t) exp(i27 f1)dt <> h(t) = }OH( FYexp(-i27 fo)df

— So negative f’ s are handled naturally
e But discrete transform sums are periodic in n:

N-1
F, = f@t)exp(i2nkn/ N)
k=0

where k indexes N signal samples, k =0...N -1,

exp(i2mwkn/ N) 1is periodic in n, with period =N, so F =F,_
— Periodicity means f,, = f,y» , S0 only get N distinct f’ s

e Note: “Fast Fourier Transform” (FFT) = clever algorithm to
minimize CPU time required for DFT-ing large sample sets

— Requires N to be a power of 2 - otherwise, just a DFT



Negative and positive frequencies

— We can let n=0...N/2 instead (symmetry wrt f(t,) indexing)
— Then
e Nn=0 =>f=0
e n=1=> f=f,
e Nn=N/2 = f=+f_=f N/2
e n=(N/2)+1 =>» negative freq f= -f_;
e Nn=(N-1) > -f,
example: say N=6, and A=1 ms: then f.=1/2A=0.5 kHz
f 3=0.5kHz, f ,=-0.33kHz, f.;=0.16kHz, f,=0 (DC), f;=0.16kHz,
f,=0.33kHz, f;=0.5kHz

e Notice that negative f’ s (or n>N/2) contain no new
information, but must be taken into account when
computing intensity (“power”):

P(f)=H(f)] +|H(-f,), n=0..N/2




DFT: Sampling theorem and Nyquist frequency

e Sampling theorem:

“If a continuous function h(t), sampled at an intervals, A, is bandwidth
limited to frequencies smaller in magnitude than fc, so H(f) = 0 for [f | = fc

Then h(t) is completely determined by its samples for A < 1/ (2f¢c)

— So: If the signal is known not to contain harmonics > f_. then the Fourier
interpolation is an exact representation (and vice-versa!)

e Often we have a signal that is bandwidth-limited (by amplifier or
cable limitations)

— sampling theorem tells us that the entire information content of
the signal can be recorded by sampling it at a rate fg = 2 f,.

e Remarkable because a continuous function seems to have infinitely
more “information content” than the series

— But: if h(t) is not bandwidth limited to f < fc, all the spectral power
density outside of the frequency range -fc < f < fc is (falsely) pushed
into that range: aliasing

(more on this later)



From last time Discrete FT example

e Fourier interpolation: we can derive f(t) from FT(sampled data):
— Example:
Step fn: y={1, 1, 1, 0, 0, 0}, equally spaced on t=[0,2n)
N=6,6 k=0,1...5 and {x} = k(2n/6)
= {0, 1.05, 2.09, 3.14, 4.19, 5.24}

Trigonometric interpolating function is

fy(@®= % + g(aj cos(ji)+b, sin(jt)) + %”cos(mt)

Where m=N/2— N =2m (assumes even number of pts)

1.25 |

2 N-1 2 N-1
aj=—2ykcos(jt), bj=—Eyksin(jt) |
Nk=0 Nk=0

0.75
7 N X 05
or Cj = — E yk exp(ljtk) 0.22
N k=0
0.25 : : . :
—a;=Re(c;), b, =Im(c;) o 1 2 3 4

Where's the step? «
Do we know?



Example of frequency issues

o Let’ s revisit the earlier example of FT on a sampled square wave:
— Data: y={1, 1, 1, 0, 0, 0}, equally spaced on x=[0,2r)
N=6, k=0,1...5 {x} = k(21/6)
= {0, 1.05, 2.09, 3.14, 4.19, 5.24}

— Notice that data are assumed to be periodic (basis of discrete FT), so
“x;,"=21 > “y, =y, ... (repeat)

1.25
— Run DFT on these data, results are: 0_7; \
Y,=3.0 (constant term, baseline) X o5 \\ //
Y,=1.0+ 1.73i 0.25
Y,=0 0 \\/-vL
Y;=1.0 o 0 1 2 3 zlt 5 (;‘
Y4=0 (=Y_2) X

Y.=1.0-1.73i (=Y,)
— Here A=2n/6, f.=n/(NA)=n/2rn, f=1/(2A),
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Example of frequency issues

— We can identify the frequencies in the discrete spectrum as

fo=0, f;=1/2xn, f,=2/2xn, f3=3/2n=f. (Nyquist f in this example)

But we are entitled to 6 H(k) components for 6 h(t) samples, so we
get 2 more, corresponding to negative frequencies:

f4=f_2='2/2ﬂ:, f5=f_1='1/23t

Notice that |Y,| = |Y,| and |Y<| = |Y4]

If we use the indexing -N/2...+N/2, we get

f3=3/2rn, f,=-2/2n, f;=-1/2x, f,=0,
f,=1/2n, f,= 2/2n, f3=3/2n (7 n’s but 6 f's)

3.5

2.5

1.5

0.5

spectrum for positive frequencies PI OtS Of |YJ|2 VS fJ
3.5

spectrum for +/- frequencies

Only positive f's

Positive and negative f's

3

25

2

1.5

1

0.5

0.000

0

0.159 0.318 0.477

-0.477

-0.318 -0.159 0.000 0.159 0.318

0.477
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Summary of FT properties

e Note: for real signal f(t): F(-f) = F*(f) * = conjugate)
— So, if F(f) does not contain any d-functions (i.e. discrete sinusoids)
[F(-f) =|F(f)] = PSD=2|F(f)f
— Parseval’s thm = RMS f(t) = area under PSD
e Summary:

{f(@)}, k=0,1..N-
N N : :
£}, n= —o 0 5 Discrete Fourier transform of 4

F, = Amplitudes in frequency domain ("spectrum" of f):

F(f )=F A, withfrequencies f =—, - s Je =TT
(f,)=F, q anAfffcsz

F(f)= [ fexpnfodi—F, =3 exp(i znkl)

1 N samples of signal at intervals A

N

13



Summary of DFT properties

Limited information: we have only
N numbers for f(z,) — N numbers for F, (F.y,=F,,)
Amplitude F, exists from f =-f. to f. , but
spectrum only has meaning for f =0 tof. :

Pn(fn)_

With {f_} real, {F,} will be all reals (eg, if f(t) is odd, cos series), or
all imaginaries (if f is even, sin series)

F., is assumed to be periodic, with period N, so F_=F_,

"= O"'E = S =0 {Note: +f = f,, SOWwe canhave
N both £ and » run from0...(N-1
- N =)= f =0 " AU

14



Understanding frequencies and aliasing

e Let’ s review the meaning of frequencies in FTs
— Signal occupies limited range of t: finite sampling
— We know FT connects /imited t range to broad freq range

e Recall example: FT of 8-fn pulse is constant (infinltef range)
h(D)

0 f

& >
<

— But N samples of f(t) can only give N/2 samples of F(f) (Nyquist)
e f-range limited to +f.
— f.defined by range T (“period”) and N:  =2>f,=1/T, f. = (N/2)f,
e True spectrum must have broader tails

— “Power” (area under tails of true f spectrum) will get aliased into
the limited f range of the discrete spectrum

aliased Fourler transform

& Ttrue Fourier transform
Figs. from
Numerical Recipes

-
-~
-
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Applying Fourier methods: Convolution and correlation

e Given 2 signals, g(t) and h(t)

gxh = f g(t"h(t-1t")dt' = convolution of g and /
- Note: minus sign

multiply g by shifted h andintegrate (notice g=h = f(¢))
Then g+«h=h=*g, and

FT(g*h) = Texp(ﬂﬂ ft)dtji o (! h(t - t)dr'

So FT(g=h)=G(f)H(f) Convolution theorem
FT of convolution < simple proauct of FTs in f -domain

Similarly : corr(g,h) = f g(t'+)h(t")dt' = correlation of g and A

- Note: plus sign

corr(g,h) = FT{ G(f)H(-f) } Common applications
For real functions g,h, H(-f)=H (f) |- Convolution: describes effect of a

. filter on a signal
) h) < G(f)H
corr(g, h) e (F)H () — Correlation: identify and locate a

specified waveform in noisy signal

16



Convolution and correlation in signal processing

e Convolution and correlation are mathematically similar but
have different interpretations:

convolution g=h = Tg(t')h(t —")dt' <= G(fH(f)
correlation corr(g, i) = Tg(t +A()dt' < G()H (f)

— Convolution = smearing or smoothing “signal” h(t) with
“filter” g(t)

e Typically g covers smaller range than h (shorter time span
or fewer samples)

— Correlation = checking for common features (modulo some
unknown shift Ax) between 2 signals

e Typically g and h have ~same sample size
o Autocorrelation = check for cyclic behavior in signal itself
— Important tool in acoustics (more later)

17



r(t

res(t)

Convolution

e For each value t' within the selected t range, multiply g(t') by
h(t-t') and add up contributions:

Continuous version:

yAAN

Vv

t

/‘—\ g*h
N’ t

(r

NR fig. 13.1.1

o(t)

®8)y
"0

Discrete version

0

L I *—&

o rrrrtr, .,

hy i I

a8
1

n
1

note wraparound of g(t)
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Convolution

¥(t- ) and hiv)

Convolution amounts to | H |
calculating overlap vs
displacement and integrating: | e No overlap

Example: Convolution of 2 Kt hy)
square pulses, x(v) and Overlap area =0
h(v)

kit - v) and hiv)
(see http://www.jhu.edu/ , ( \ |
~signals/convolve/ ) |

In these plots, t=offset of h(v)
relative to x(v) Bt i hiv

(reversed!)

e small overlap

Overlap area ﬂ

¥(t-v) and hiy)

(-

e ~max overlap

¥(t- ) hiv)

Overlap area




Convolution (continued)

e past max overlap:

small overlap again

No overlap again

Plot of overlap area vs offset t
= Convolution vs t

H(t- ) and hiv)

» smalloverlap [~ [T ]

it - ) i)

Overlap area [

(- v) and hiv)

¢ No overlap | | |

b(t - ) hi(v)

Overlap area =0

Convolution = overlap area vs offset t

-
- D
’

vi(2) = T}z(v)x(: -v)dv

-
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Discrete convolutions and correlations

Discrete Convolution:

Application: model effect of a filter (or any process) on a known input
signal

— Electrical signal passed through transmission line

— Point-source (eg, distant star) imaged in optical system

— Physical process in detector with systematic error
For periodic signal g = s(t) (N samples), and
Response h = r(t) with finite shorter duration (M < N samples):

— Finite impulse response = FIR  (important case in signal analysis)

— Calculating (g*h) is really simple! Time shift is just change of index:
M/2

(g*h), = E s, =FT(G,H))
k=—M/2+1
e Just sum of products of shifted elements of g & h(t)
e Can be implemented on a specialized DSP chip for real-time apps

e Can also be implemented in hardware as a FIR filter with only
passive components

21



Discrete convolutions and correlations

Discrete Correlation:
o Application: search for pattern in a data stream

— Search for specified signal in noise

— Test for similarity of signals (in time-series sense)
e Very similar to convolution, but typically M=N

— Discrete corr:
N-1

corr(g, h), = Egj+khk = FT(G,H))

k=0
e Notice index shift has + sign instead of -
e corr(g,h) vst (="lag”) : correlogram

— corr(g,h) is large when g~h at lag t (location of h in signal
stream Q)

e Wiener-Khinchin Theorem: autocorrelation is Fourier dual of
signal’s power spectral density PSD:
J P P Y corr(h, h) <= |H(f)|2

22



Autocorrelation

e Wiener-Khinchin Theorem: corr(h, h)e|H(f)|2

— Meaning (as with all FT pairs): if the autocorrelation is narrow, the
PSD will be broad

- “Uncertainty principle” :
At = width of autocorrelation in time, Af = width of PSD in frequency
Then Af At ~ constant

(analogous to QM uncertainty principle Ax Ap ~ constant, and from the
same source: in QM, x and p are dual spaces - FT partners

e Chorus effect, and fast echoes:

1. If members of a chorus could all sing a given note without vibrato, we
would hear it as one voice (with greater amplitude)

¢ Real chorus sounds pleasantly complex, but we recognize the note

e Variations between voices broaden the signal’s autocorrelation, so
PSD is relatively narrow

2. If a sound is repeated after a very short delay (few msec) we cannot
register it as separate, but it “colors” the sound by altering
autocorrelation — room echoes do this

23



Example of convolution

e Example of convolution (this is from optics, but same idea for f(t)):

— Sceneis imaged by lens with limited aperture: clips off higher spatial
frequencies

— Point spread function = impulse response of lens (image of ideal
mathematical point)  (acoustic equivalent: FT of a sharp bang)

— Convolution= apply PSF to each point of input scene and add to get

resulting image 015
Simplest possible scene 01
= uniform bright disk Z
(sharp edge) oo
z:z I/\\ i 0 4 é 1‘2 16
T Point spread function = Gaussian
‘Zz |\ (impulse response of lens)
NI 0.15

00/ ;\ : . y / N\ Lens output
0.1

(convolved with
\ PSF of lens)

f(x)
\

Image = convolution (r*s) 0.05
(edges of disk become fuzzy) /




Applications of digital convolution in acoustics

Reverberation: effects of multiple reflections of a sound source arriving
at listener’s location, in a given room or other enclosure

— Direct sound arrives first, followed by direct reflections, then multipath
reflections

Convolution Reverb

e Simulate effect of room acoustics on a digitized sound stream (eg music)
— Get impulse response of room using sharp noise (like a gunshot)
— Convolve IR with signal of interest
— (Can predict how music will sound in room

Digital Reverb

e Apply any desired set of delays and frequency dependent effects to a
digital signal stream

— Use specialized electronics, or computer software, to filter, attenuate
and delay multiple copies of original signal

— at lag t (location of h in signal stream g))

25



f(x)

Example of correlation

e Example of correlation from acoustic signal processing
— Gaussian-shaped sonar pulse is buried in noisy data stream

— Find arrival time of pulse 08

0.6
Gaussian-shaped pulse model: =, /\

Starts at x=1, centered at x=3

—
—

0.2

0.8 /\

[
L\

0 T4 8 12
X

NEVAW

N / \ / \ Pulse buried in white noise

NV

\
\/ V1] \ | (25% signal, 75% noise)

. | T v V - Here, pulse starts at x=4, centered at x=6
0 4 8 12 16

Correlogram: 08 N

Peak location shows arrival time 2 08 </ \

of pulse is at x’ =3 in correlation " 04 \/\\

4-1=3 is “lag” relative to model function, 02 . NG

so pulse center is located at x=3 + 3 =6 0 . . .

in signal stream (position in model + lag

in correlation
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Filters in signal processing

Typically we
Measure signal s(t) (e.g., voltage vs time from microphone)
FTs:
Assume s(t)=u(t)*r(t) - S(f)
u(t)= true underlying signal - U(f)
r(t)= measuring system’ s response fn -> R(f)

Then S(f)=U(f)R(f) (simple product of FTs)

So U(f)=S(f)/R(f) (S=FT[s(t)], R=FT[r(t)] )
u(t)=FT-1[U(f)] (deconvolve to recover true signal)
This describes the action of a filter on a signal

0.15

O~/
o / \ S(f)=U(f)R(f)

0.05 /
0 T

0 4 8 12 16

(%)
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0.15

f: .

u(t)

FT = F(f): &

0.05

u(f)

Idealized
input signal

0

16

System acts
like a filter
described by R(f)

[N

s(t) / \

Observed

S(f>7IU(f>R<f)

output signal

0

4 8 12

16

signal processing acts like a filter

u=Impulse d(t)

‘ U(f)=1

|

R(f)

i

f\

S(f)=R(f)

[
[
[

Impulse response

/

\

/

A\

0

4

8 12

To find R(f), we input an impulse u(t): U(f) = flat (all f’ s present)
Then output spectrum S(f) = filter characteristic R(f)
o R(f) = Impulse response

16
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Digital filtering

e So far we have assumed offline filtering in f-domain (in a computer)
— “Acausal”: we have the full signal history in hand, a priori

e Often must do realtime filtering in t-domain (in the field!)
— “Causal”: we have only the current and a few recent samples

— Historically: used analog devices: capacitors, inductors, transistors; or
lenses, apertures, filters...

— Currently: digital filtering usmg DSP chlps or fast devices (GHz rates)
e Linear filter:
{f(t)}, = Eck - +2d 1)

k=0

— Output at t=nA is function of _

e Previous M+1 inputs For FIF}4flIters

e Previous N outputs g(f)=FT(f(t)= Eck exp(—i2m fkA)
— If N=0 (no feedback), non-recursive filter =

e FIR filter: y — 0, after x — 0 So FT-1[g] gives ¢, = fn of g(fy):

(Finite Impulse Response) o Get M frequency points with an
— If N>O, f= recursive filter M-point sample window

e IIR (infinite impulse response):
Infinite impulse response possible: feedback - output may howl!
Sharper filtering, but at cost of potential instability

29



Optimal filtering

Usually system introduces noise as well as distortion of signals
— Measured signal is c(t) = s(t) + n(t) (where s=u*r)

e We want an optimal filter ¢(f) which removes noise and recovers

u(t) via deconvolution of system response R(f)
s(t) = FT[C(F)*¢(f)]
U(f) = S(FA/R(F) = C(F)o(f)/R(f)

— Unlike R(f), we cannot determine noise precisely (noise =
stochastic process)

e Cannot find exact ¢(f) directly, like R(f)
e Estimate U(f) using (e.g.) least squares (LSQ) criterion:

U(f)=Usgy in sense of LSQ — minimize [[0(f)~Upeys| df
2
‘(j(f) ~Urpus ‘2 = S +I§V)§0 - % Notice that

n(t) and s(t) are uncorrelated by definition (else n(t) is not noise!)



Optimal filtering

df

R R

- TRUE‘Z df = T

f AIS] @ =17 +[N[ [l }af
- |R[
( n(t) and s(t) are uncorrelated, so cross terms integrate to 0)

Minimize integrand: ai{‘S‘z @ - 1‘2 + ‘N‘z ‘q&‘z} =0
@

Nealk
S +|NGH|

 Notice ¢(f) does not depend on R(f)

— Problem: we need S(F) and N(F) but have only the FT
of their sum, C(f)=FT[s(t)+n(t)]

—=@(f)=
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Noise spectra

Must make an hypothesis about the form of n(t)
— Typically choose one of:
e Flat spectrum (white noise, Johnson* noise)
e Exponential spectrum (pink noise, "1/f noise")
e Power-law noise (eg, 1/f2 = red noise)

* first observed by J.
Johnson in 1926. He
described his findings
to H. Nyquist, who

explained them - both
worked at Bell Labs.

(Power of f = 0 for white, 1 for pink, 2 for red)

Study the spectrum of raw measurements C(f):

100 1

Usually signal S(f) has limited f range

— Fit hypothesis to tail of C,
where N dominates £ 10;

— Extrapolate fit back into signal
range to estimate N

Fit to tail

— Estimate |S|2 = |C|? - |N|? 1

— Use fitted |N|2 and estimated | © 2 4

S|2 to find ¢(f)

32




Representing spectra

 Recall that for N samples {c;}y we get

N-1
FT[c(H)]=C, = E ¢, exp(i27 jk/ N)
7=0
C, is complex amplitude at frequencies
k 1
fk = M = O"'fNYQU[ST = ﬂ

e How to describe the “power” at a given f?
— Simple intensity calculation (plot = “periodogram”™)

Pk(fk)=%{‘Ck‘2+‘CN_k‘z}

Note: C,_, term1s absent for k=0 and N /2
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PSD (strain / Sqrt(Hz))

Representing spectra

Example: random example of
the signal stream and
corresponding periodogram
from LIGO gravitational wave
detector at Hanford, WA

101 PSD for L1 data starting at GPS 8426577¢

10"
108 B
107
1020 |
102

10-22 |

1023 L. SERT R P . U - SORR—
Spikes in periodogram are for various

1024 _CommonSourcesoflocaIVIbratlonOr ................... |
102 | electrical noise (60 Hz, trucks, etc)..

Strain

le—17 Time Series

8

2 4 6 8 10 12 14 16
Time since GPS 842657792.0

10726 ; ; ;
10° 10! 10° 10°
Frequency (Hz)

10

https://dcc.ligo.org/public/0118/T1500123/001/SURFpaper.pdf
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Representing spectra

Parseval's theorem says

Fle, @) = %E\Ckmf >N NP(f)=NY|e,0)f
1

So Y R.(f,)= ﬁz\cj(r)f ie.,

EPk (f,) = mean squared amplitude of signal in t-domain

= Y P.(f) = [le@)| at

— Note we get discrete C,, not a continuous C(f)
e Sampled data — sampled spectrum

— Each C, contains “power” (area under C(f)) for a binin
frequency

e Like histogram vs probability density function
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Frequency resolution vs bandwidth

e Fourier analysis reminds us of “conservation of
information”: you never get something for free
— f. (Nyquist f) depends only on sampling rate: f.=1/2A
— Number of frequencies sampled within 0 —> f_ (frequency
resolution) depends only on number of samples N
— So:
e Increasing length of sample does not improve bandwidth

— For A=1us, f.=0.5 MHz regardless of whether we take
1 sec or 1 year of data

e Increasing rate of sampling does not improve frequency
resolution of the spectrum

— For 100 samples, we get 100 points on the spectrum,
whether we sample at 1 Hz or 1 MHz

e Neither increasing rate nor sample size improves accuracy of
continuous spectrum estimation from discrete spectra
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Frequency resolution vs bandwidth

e We can improve accuracy or resolution, but not both

— “It can be shown” that variance on spectrum estimate is P?(f,),
so o = 100%, regardless of N or A

e Trick to improve accuracy:

We can break N samples into K distinct sets of M (so MK=N)
and find spectrum for each set, then average over K estimates

e Breaking set of N samples into K distinct sets gives
independent subsamples, so

— error on mean is ~ sqrt(K)*sigma
— Improved accuracy, at cost of f resolution
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