

Session 5

Autocorrelation Windowing for limited signal samples Waves in strings and bars

1/17/2023

Course syllabus and schedule – first part…

See: http://courses.washington.edu/phys536/syllabus.htm

Announcements

- You can access most scientific journals, many popular journals, and books online via the UW library $-$ no need to be on campus
	- See http://www.lib.washington.edu/help/connect
	- See also http://www.lib.washington.edu/help/connect/husky-onnet for how to VPN onto campus network
- Revision in posted problem set
	- The version of problem 11 posted is too complicated and difficult (and I won't cover the details needed in class)
	- I've replaced it with:

11. A steel bar of cross section $0.0001m^2$ and $0.25m$ length is clamped at both ends. a) what is its fundamental frequency for longitudinal vibrations? b) what is the fundamental frequency for the same bar but free at both ends?

Autocorrelation and cosine averaging theorem

• If the signal is a sum of sin/cos functions only, the autocorrelation is easy to compute:

$$
corr(g, g) = \int_{-\infty}^{+\infty} g(t^1 + t)g(t^1) dt^1 = \text{autocorrelation of } g
$$

if $g(t) = \sum_{i}^{\infty} a_i \cos(\omega_i t + \phi_i)$, apply cosine averaging theorem:
 $\langle \cos(\omega_1 t + \phi_1)\cos(\omega_2 t + \phi_2) \rangle = 0$ if $\omega_1 \neq \omega_2$ (means average over time)
 $= \frac{1}{2}\cos(\phi_2 - \phi_1)$ if $\omega_1 = \omega_2$

– Since correlation integral amounts to a time average, "it can be shown" that

for
$$
g(t) = \sum_{i} a_i \cos(\omega_i t) \rightarrow \text{corr}(g, g) = \frac{1}{2} \sum_{i} a_i^2 \cos(\omega_i t)
$$

- So, if signal is a sum of sinusoids of different frequencies, its power spectrum can provide the a_i^2 values (weights) to construct its autocorrelation, or vice versa
	- Can't reconstruct original signal from a_i^2 values correlation \rightarrow information loss (sign of a_i)

Autocorrelation and cosine averaging theorem

• Interpret content of probability histogram bin p_j as average of a continuous $p(x)$ over a *uniformly weighted* window Δx

$$
p_j = \frac{n_j}{N} \cong \int_{x_j}^{x_j + dx} p(x) dx
$$

- Apply same basic idea to spectra: P_k =average value of C(f) around f_k
	- But window weight is NOT uniform for spectra:
		- Want uniform weight (constant=1.0) over one full period T in time domain
		- But FT of constant in tdomain= sinc function in f

Windows and spectra

$$
Define \quad s = f - f_k
$$

FT of constant weight
$$
w(t)
$$
 in t-domain
\n \rightarrow sinc function $W(s)$ in frequency domain

$$
w(t) = 1.0 \rightarrow W(s) = \frac{1}{N^2} \left| \sum \exp(i2\pi ks / N) \right|^2 = \frac{1}{N^2} \left[\frac{\sin(\pi s)}{\sin(\pi s) / N} \right]^2
$$

Weighted window

- Weighted windows
- $-$ Lobes of sinc² function in W(s) mean nearby frequencies outside each bin also contribute to $C_k(f_k)$
- Note: for s=integer $(f=nf_k)$, $W(s)=0$
	- No leakage if spectrum is pure sinusoids (discrete spectrum with fundamental $f =$ sample range)

To minimize "leakage" into adjacent bins, replace uniformly weighted bins (square window) with some kind of peaked weighting that minimizes side lobes in the FT

 \bigcap

 $P_k(f_k) = \frac{1}{N}$ *W* $\left\{ |D_k|^2 + |D_{N-k}|^2 \right\}$ for $k = 1...(N/2)-1$ $P_k(f_k) = \frac{1}{\mathbf{H}}$ *W* C_k^2 for $k = 0$ and $(N / 2)$

where $f_k = 2f_c$ $\frac{k}{N}$ *f_c* = $\frac{1}{2\Delta}$

Windowing

For audio signal analysis

- Almost always have limited sample of a long signal
- Human ear also samples in chunks properly windowed audio spectrum seems more 'faithful'
- Side lobes correspond to 'crosstalk' between frequencies Examples of time-window / frequency domain pairs:
- Rectangular window
- Hamming window
- Gaussian window

Windowing

Rectangular window

- As N increases, the
main lobe narrows $\frac{9}{2}$
(hetter frequency main lobe narrows (better frequency resolution).
- M has no effect on the height of the side lobes
- First side lobe only 13 dB down from the main peak.
- Side lobes roll off at approximately 6dB per octave.

In these and following figs, $M'' = N$

http://ccrma.stanford.edu/~jos/sasp/

More windows

41 dB down! (Hann window = same but with $\alpha=1/2$, $\beta = 1/4$: side lobes roll off gradually)

More windows

- Gaussian window
	- –Side lobes way down (80 dB for example, σ=N/8)
	- –Main lobe well represented by a simple parabola in f

 $\sigma_{\rm V}$

Examples (from Acoustic and Auditory Phonetics K. Johnson, Wiley-Blackwell, 2005)

Top: Upper= raw signal; lower= Hamming-weighted signal Bottom: Discrete sampled power spectrum (signal consists of pure sinusoids)

- 1. Exact fit: sampling window $length = integer$ multiple of signal period T
- 2. Misfit: sample window is slightly shorter than nT: mismatch
- 3. Hamming: same signal as 2 showing improved results from windowing – peak is wider, but S/N is about the same as for exact fit

 $13¹$

- Transverse waves on a string
	- Mechanics of tension

 $df_y = T(x + dx)\sin\theta - T(x)\sin\theta$

apply Taylor expansion:
$$
\rightarrow f(x+dx) = f(x) + \frac{\partial f(x)}{\partial x} dx + \frac{\partial^2 f(x)}{\partial x^2} dx^2 + \cdots
$$

\n
$$
df_y = \left(T(x) \sin \theta + \frac{\partial T(x) \sin \theta}{\partial x} dx + \cdots \right) - T(x) \sin \theta
$$
\nfor small θ , $\sin \theta \sim \tan \theta = \frac{\partial y}{\partial x} \rightarrow df_y = \frac{\partial}{\partial x} \left(T \frac{\partial y}{\partial x} \right) dx = T \frac{\partial^2 y}{\partial x^2} dx$
\nmass density of string $= \rho_L \rightarrow m = \rho_L dx$
\n
$$
F = ma \rightarrow df_y = \rho_L dx \left(\frac{\partial^2 y}{\partial t^2} \right) \rightarrow T \frac{\partial^2 y}{\partial x^2} = \rho_L \left(\frac{\partial^2 y}{\partial t^2} \right) \rightarrow \frac{g_y}{g_x} dx
$$
\n
$$
\rightarrow \frac{g_y}{g_y} = a \, dm \rightarrow \frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \left(\frac{\partial^2 y}{\partial t^2} \right)
$$
\nwhere $c = \sqrt{T/\rho_L}$ Wave eqn for a string

Waves in strings, in more detail

Reflections at ends: 2 cases, determined by end conditions

• String is rigidly held at $x=0$ (clamped end)

- Then for any time t, at x=0
\n
$$
y(x,t) = y_1(ct-x) + y_2(ct+x)
$$
\n
$$
y(0,t) = 0 = y_1(ct) + y_2(ct) \rightarrow y_2(ct) = -y_1(ct)
$$
\nso
$$
y(x,t) = y_1(ct-x) - y_1(ct+x)
$$

- $-$ This is the original y_1 plus an inverted duplicate moving in the opposite direction: a reverse-polarity reflected wave
- String is unconstrained in y at x=0 (free end)
	- $-$ Then for any time t, at $x=0$

$$
F_y = 0 \rightarrow T(x)\sin\theta = \frac{\partial y(0)}{\partial x} = 0 \rightarrow \frac{\partial y_1(0)}{\partial x} + \frac{\partial y_2(0)}{\partial x} = 0
$$

$$
\frac{\partial y_1}{\partial x} = -\frac{\partial y_1}{\partial (ct - x)}, \quad \frac{\partial y_2}{\partial x} = +\frac{\partial y_2}{\partial (ct + x)} \rightarrow -\frac{\partial y_1(0)}{\partial (ct)} + \frac{\partial y_2(0)}{\partial (ct)} = 0
$$

$$
\int_0^t \partial y_1(0) \ d(ct) = \int_0^t \partial y_2(0) \ d(ct) \rightarrow y_1(ct) = y_2(ct)
$$

So $y(x,t) = y_1(ct - x) + y_1(ct + x)$

 $-$ This is the original y_1 plus a reflected wave of the same polarity

Forced waves in strings: first, infinite

Infinite string means no reflections to deal with – simplest case

 $y(x,t) = y_1(ct-x)$, with driving force $F_y(t) = Fe^{i\omega t}$ Solution can only include waves moving in $+x$ direction

 $y(0,t) = Ae^{i\omega t}$; $y_1(0,t) = Ae^{ik(ct)}$ (wave number $k = \omega / c$) so for all x, $y(x,t) = y_1(ct - x) = Ae^{ik(ct-x)} = Ae^{i(\omega t - kx)}$

- At each x, string oscillates in SHM with $f=\omega/2\pi$ and T=1/f
- At any time, shape is sinusoidal with amplitude A, and $\lambda = 2\pi / k$
- Waveform moves in +x direction with (phase) speed $c = \sqrt{T/\rho_{I}}$

• Driving force must balance tension (there is no lump m at $x=0$) – Waveform moves in $+x$ direction with (phase) speed

$$
Fe^{i\omega t} = -T \frac{\partial y(0)}{\partial x} = -ikTAe^{i(\omega t - kx)} \rightarrow A = \frac{F}{ikT}; \quad y(x,t) = \frac{F}{ikT}e^{i(\omega t - kx)}
$$

transverse speed $u(x,t) = \frac{\partial y}{\partial t} = \frac{i\omega F}{ikT}e^{i(\omega t - kx)} = \frac{cF}{T}e^{i(\omega t - kx)}$

$$
c = \sqrt{T/\rho_L} \rightarrow u(x,t) = \frac{F}{\rho_L c}e^{i(\omega t - kx)}
$$

• Recall: mechanical impedance $=$ F/u so at $x=0$, impedance is

$$
Z_{m(0)} = \frac{F(t)}{u(0,t)} = \frac{Fe^{i\omega t}}{\frac{F}{\rho_L c}e^{i(\omega t)}} = \rho_L c
$$

Characteristic mechanical impedance of infinite string

– Instantaneous and average power into string is

$$
P(t) = \text{Re}(Fu) = F\cos\omega t \left(\frac{F}{\rho_L c}\right) \cos\omega t;
$$

$$
\left\langle P \right\rangle_{RMS} = \frac{1}{T} \int_0^T P dt = \frac{F^2}{2\rho_L c} = \frac{1}{2} \rho_L c U(0), \quad U(0) = |u(0, t)|
$$

• More complicated – now must deal with *reflected* waves $y(x,t) = Ae^{i(\omega t - kx)} + Be^{i(\omega t + kx)}$ Boundary conditions: at driven end, tension must balance driving force so as before, *Fe i*ω*t* $+T\frac{\partial y(0)}{\partial x}$ ∂*x* $= 0$ for all *t*, insert solution: $F + T(-ikA + ikB) = 0$. At fixed end x=L, must have $y(L,t) = 0$ for all *t*, so $Ae^{-ikL} + Be^{+ikL} = 0$ solve these 2 eqns for *A* and *B* : $A =$ *F ikT e ikL* $e^{ikL} + e^{-ikL}$ = *Fe ikL* 2*ikT* cos(*kL*) ; and $B =$ *Fe*[−]*ikL* −2*ikT* cos(*kL*) $y(x,t) =$ *Fe ikL* 2*ikT* cos(*kL*) $e^{i\left[\omega t + k(L-x)\right]} - e^{i\left[\omega t - k(L-x)\right]}$ $F \sin[k(L-x)]$ *kT* cos(*kL*) *e i*ω*t* Two waves moving in opposite directions Stationary envelope, oscillating in place: **standing wave** The 2 versions of $y(x,t)$ describe different pictures: opposite directions and or

Forced waves in a finite string

Standing-wave solution shows locations where $y=0$ for all t $y(x,t) = \frac{F}{\sqrt{2\pi}}$ *kT* cos(*kL*) $\sqrt{2}$ ⎝ $\left(\frac{F}{kT\cos(kL)}\right)$ ⎠ $\left|\sin[k(L-x)]e^{i\omega t}\right|$, $k = \omega/c$, $F =$ driver amplitude

$$
y = 0 \text{ when } k(L - x) = n\pi \implies x_n = L - \frac{n}{2}\lambda, \quad n = 0, 1, 2 \cdots 2L / \lambda
$$

driver is at a node if $L = \frac{n}{2}$ 2 λ , driver is antinode if $L = \frac{m}{4}$ 4 λ , $m =$ odd integer

Amplitude blows up (resonance) when

$$
\cos(kL) = 0 \rightarrow kL = \frac{2n-1}{2}\pi,
$$

\n
$$
\omega / k = c \rightarrow f_{res} = \frac{2n-1}{4}\frac{c}{L}
$$

Amplitude is minimal when

$$
kL = n\pi \rightarrow f_{\min} = \frac{n}{2} \frac{c}{L}
$$

Resonance amplitude is limited because when y gets too large, small-θ assumption fails

Standing waves on a string

Impedance in a forced finite fixed string

• For fixed finite string, mechanical impedance at the driver is

$$
Z_{m(0)} = \frac{F(t)}{u(0,t)} = \frac{Fe^{i\omega t}}{i\omega F \tan(kL)} \frac{dT}{e^{i\omega t}} = \frac{kT}{i\omega \tan(kL)} = \frac{-i \rho_L c}{\tan(kL)}
$$

• For small ω , $\tan(kL) \sim kL$ $\rightarrow Z_{m(0)} = \frac{-i \rho_L c}{L}$ *kL* $=-i\left(\frac{T}{I}\right)$ *L* $\sqrt{}$ ⎝ $\left(\frac{T}{I}\right)$ \int \vert 1 ω

(same as for spring with $s=T/L$)

- Notice Z is imaginary (pure reactance): rigid fixed ends \rightarrow string has no way to lose energy, at least ideally
- Things we won't cover in lecture: (see Kinsler)
	- Other driven strings: forced mass-loaded or resistance-loaded

Mass-loaded: m is constrained to move transversely at x=L

Resistance-loaded: same picture except damper instead of m

Normal modes in a fixed-end finite string

- For fixed finite string without driver, when plucked or struck: $y(x,t) = Ae^{i(\omega t - kx)} + Be^{i(\omega t + kx)}, \quad k = \omega / c$ Boundary conditions are $y(0,t) = 0$ and $y(L,t) = 0$, for all *t* So, $A + B = 0 \rightarrow B = -A$, and $Ae^{-ikL} + Be^{+ikL} = 0 \rightarrow 2i\sin(kL) = 0 \rightarrow \sin(kL) = 0 \rightarrow kL = n\pi, \ \ n = 1, 2...$
	- So only discrete values of $k=\omega/c$ are allowed:

$$
k_n=n\pi/L; \ k=2\pi f/c \Rightarrow f_n=nc/2L
$$

• For the nth frequency,

$$
y_n(x,t) = A_n \sin(k_n x) e^{i\omega_n t}, \quad where \quad A_n = A_n + iB_n
$$

= $(A_n \cos(\omega_n t) + iB_n \sin(\omega_n t)) \sin(k_n x)$

Where A and B will be determined by the initial conditions

- These are the normal modes or eigenfrequencies of the string
	- Fundamental = $f_1 = c/2L$
	- Harmonics = $n f_1$ (n=2 \rightarrow second harmonic, 3=3rd, etc)
	- Overtones = n f_1 for n=2,3... f_1 (n=2 \rightarrow first overtone, etc)
	- "Partial" = any single frequency component of a sound

Energy of vibration for a fixed-end finite string

- Piece of string between x and $x+dx$ has kinetic energy $\frac{1}{2}$ mu² dx y(x) $y(x+dx)$ $dE_K = \frac{1}{2}$ 2 $\rho_{L}c$ ² ∂*y* ∂*t* $\sqrt{2}$ ⎝ $\left(\frac{\partial y}{\partial t}\right)$ ⎠ \vert 2 *dx*
- Gets stretched by an amount $\delta L \rightarrow$ potential energy

$$
y(x+dx) = y(x) + \frac{\partial y}{\partial x} dx \rightarrow \delta L = \sqrt{dx^2 + \left(\frac{\partial y}{\partial x} dx\right)^2} - dx = \left(\sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^2} - 1\right) dx
$$

$$
\sqrt{1 + \varepsilon} \approx 1 + \varepsilon / 2 \rightarrow \delta L = \frac{1}{2} \left(\frac{\partial y}{\partial x}\right)^2 dx
$$

• Potential energy due to stretching:

$$
dE_p = \frac{1}{2} \rho_L c^2 \left(\frac{\partial y}{\partial x}\right)^2 dx; \text{ the total energy per unit length is}
$$

\n
$$
\frac{dE}{dx} = \frac{dE_K}{dx} + \frac{dE_p}{dx} = \frac{1}{2} \rho_L c^2 \left[\left(\frac{\partial y}{\partial x}\right)^2 + \left(\frac{1}{c}\frac{\partial y}{\partial t}\right)^2 \right]
$$

\n
$$
\rightarrow \text{total energy} = \text{integral over length } L; \ E = \int_L \frac{1}{2} \rho_L c^2 \left[\left(\frac{\partial y}{\partial x}\right)^2 + \left(\frac{1}{c}\frac{\partial y}{\partial t}\right)^2 \right] dx
$$

24

Energy of vibration for a fixed-end finite string

• Example: string of length L is vibrating in its *n*th mode:
\n
$$
y_n(x,t) = A_n \sin(k_n x)e^{i\omega_n t} \rightarrow \lim_{\substack{\text{at the number of\nof } \alpha}} \frac{\partial y}{\partial x} = k_n (A_n \cos(\omega_n t) + B_n \sin(\omega_n t)) \cos(k_n x)
$$
\n
$$
\frac{1}{\omega} \frac{\partial y}{\partial t} = (\omega_n / c) (-A_n \sin(\omega_n t) + B_n \cos(\omega_n t)) \sin(k_n x)
$$
\n
$$
E_n = \int_{L} \frac{1}{2} \rho_L c^2 \left[\left(\frac{\partial y}{\partial x} \right)^2 + \left(\frac{1}{c} \frac{\partial y}{\partial t} \right)^2 \right] dx = \frac{1}{4} \rho_L L \omega_n^2 (A_n^2 + B_n^2)
$$
\n
$$
= \frac{1}{4} m \omega_n^2 (A_n^2 + B_n^2) \sqrt{A_n^2 + B_n^2} = -\max \text{ displacement amplitude}
$$
\n
$$
= \text{Amplitude } U_n \text{ of speed of motion in nth mode is}
$$
\n
$$
U_n = \left| \frac{\partial y}{\partial t} \right| = \omega_n \sqrt{A_n^2 + B_n^2} \rightarrow E_n = \frac{1}{4} m U_n^2 \rightarrow E_{TOT} = \sum_n E_n
$$
\n
$$
Tt \text{ can be shown}^n \text{ that for a string plucked in the center by}
$$
\n
$$
\delta y = h, \text{ the amplitude of motion } A_n = \frac{1}{n^2} \frac{8h}{\pi^2} \sin\left(\frac{n\pi}{2}\right) \quad \text{(only odd-n harmonics for string)}
$$
\n
$$
A_n \sim \frac{1}{n^2} \rightarrow \frac{3^{rd} \text{ harmonic has 1/9 amplitude of fundamental}}{5^n \text{ harmonic has 1/25, etc}}
$$

When string is plucked, each allowed mode oscillates at its own natural frequency f_n . The sum changes with time as the individual modes add.

- Thick black curve $=$ the actual string (the sum of all of the individual modes)
- Colors = individual modes each with its own f_n and maximum amplitude. The f associated with the total (sum) motion $=$ frequency of the fundamental mode. A string tuned to f Hz will repeat complete cycle of motion f times per second.
- Plucking at different locations enhances different harmonics.

Relative amplitudes of harmonic components determines *timbre**, so affects the perceived sound.

https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

Motion of plucked string

Video:

https://youtube.com/watch?v=_X72on6CSL0&si=EnSIkaIECMiOmarE

Play 24—45 sec, muted

Motion of Plucked String Dan Russell, @DanRussellPSU

Vibrations in solid bars: Longitudinal waves

- Compression waves in "slender" bars with fixed ends
	- For long, thin bars, each slice of the bar can be treated as moving as a unit
	- Longitudinal displacement of a slice at position x along bar is

$$
\delta l = \xi(x, t) \rightarrow \xi(x + dx, t) - \xi(x, t) = \left(\frac{\partial \xi}{\partial x}\right)dx
$$
\n
$$
\text{Strain} = \frac{\left(\frac{\partial \xi}{\partial x}\right)dx}{\left(\frac{\partial \xi}{\partial x}\right)^2} = \left(\frac{\partial \xi}{\partial x}\right); \quad \text{Stress} = \frac{f}{S}; \quad \text{Hooke's Law: \quad \text{Stress} \propto \text{Strain}}
$$
\n
$$
\Rightarrow \frac{f}{S} = -Y\left(\frac{\partial \xi}{\partial x}\right); \quad \text{(convention: + } f = \text{compression, - } f = \text{stretching})
$$
\n
$$
f = -SY\left(\frac{\partial \xi}{\partial x}\right); \quad \text{The net force on slice (positive = +x direction) is}
$$
\n
$$
df = f(x) - f(x + dx) = f - \left(f + \frac{\partial f}{\partial x}dx\right) = \frac{\partial f}{\partial x}dx = -SY\left(\frac{\partial^2 \xi}{\partial x^2}\right)dx
$$
\n
$$
F = ma \rightarrow \rho\left(S dx\right) \frac{\partial^2 \xi}{\partial t^2} = -SY\left(\frac{\partial^2 \xi}{\partial x^2}\right)dx; \quad S dx = \text{volume of slice; } \rho = \text{volume density}
$$

free fixed

Longitudinal waves in fixed-end bar

• So $F=ma$ leads to

$$
\rho S \frac{\partial^2 \xi}{\partial t^2} = -SY \left(\frac{\partial^2 \xi}{\partial x^2} \right) \rightarrow \text{ looks like 1D wave equation: } \frac{\partial^2 \xi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \xi}{\partial t^2}, \text{ with } c^2 = \frac{Y}{\rho}
$$

– General solution of wave equation = some function of $(ct \pm x)$ $\xi(x,t) = \xi_1(ct-x) + \xi_2(ct+x)$, with phase speed $c = \sqrt{Y/\rho}$ Complex harmonic solution is

 $\xi(x,t) = Ae^{i(\omega t - kx)} + Be^{i(\omega t + kx)}$ with wave number $k = \omega / c$

– Approximation only works for L >> diameter << wavelength

- Follow usual path: apply boundary conditions
\n
$$
\xi(0,t) = 0 \rightarrow A + B = 0, \quad B = -A
$$

\n $\xi(x,t) = Ae^{i\omega t} \left(e^{-ikx} - e^{+ikx} \right) = -\left(Ae^{i\omega t} \right) 2i \sin(kx)$
\n $\overline{\xi}(L,t) = 0 \rightarrow \sin(kL) \rightarrow k_n L = n\pi, \quad n = 1,2,3...$
\n $\omega_n = k_n c = \frac{n\pi c}{L} \rightarrow f_n = \frac{nc}{2L}$ (Same as for fixed-fixed string)
\nRe($\xi(x,t)$) = $(A_n \cos \omega_n t + B_n \sin \omega_n t)$ sin $k_n x$

Longitudinal waves in free-end bar

• If end of bar is free, must have $F=0$ at ends, so $f = -SY \frac{\partial \xi}{\partial \xi}$ ∂*x* $\sqrt{2}$ ⎝ $\left(\frac{\partial \xi}{\partial x}\right)$ ⎠ $\vert = 0 \rightarrow$ $\partial \xi$ $\frac{\partial^2 S}{\partial x^2} = 0$; Applied at *x* = 0 : ∂ ∂*x* $Ae^{i(\omega t - kx)} + Be^{i(\omega t + kx)} = 0 \rightarrow -A + B = 0 \rightarrow B = A$ $\xi(x,t) = Ae^{i\omega t} \left(e^{-ikx} + e^{+ikx} \right) = 2Ae^{i\omega t} \cos(kx)$ Applied at $x = L$:

$$
\sin(kL) = 0 \rightarrow \omega_n = \frac{n\pi c}{L} \rightarrow f_n = \frac{nc}{2L}
$$

(Same as for fixed-end bar)

- Fixed ends must be nodes
- Free ends must be antinodes (maxima)
- If bar is clamped at x , must be node there
	- Other modes will be suppressed

Longitudinal and transverse waves in bars

https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

Transverse vibrations of a bar

• When a uniform straight bar (length L, cross-section S) is bent, the lower part is compressed and the upper part stretched, but there will be a neutral axis at the center:

• Bending bar produces shear forces as well as bending moment Equilibrium \rightarrow no net force or torque on bar as a whole bending moment:

$$
M = \int r \, df = -\frac{Y}{R} \int r^2 \, dS \quad \text{let } \kappa = \frac{\int r^2 \, dS}{S} \quad (\sim \text{ radius of gyration of bar})
$$
\n
$$
\text{(for rectangular bar, } \kappa = \text{ thickness}/\sqrt{12}; \text{ for circular rod, } \kappa = \text{radius } / 2)
$$
\n
$$
M = -\frac{YS\kappa^2}{R} \quad R \text{ depends on position } x \text{: for small displacements in } y
$$
\n
$$
R \approx 1 / \left(\frac{\partial^2 y}{\partial x^2}\right) \rightarrow M = -YS\kappa^2 \left(\frac{\partial^2 y}{\partial x^2}\right)
$$

bending moment related to shear:

$$
F_y \approx -\frac{\partial M}{\partial x} = -YS\kappa^2 \left(\frac{\partial^3 y}{\partial x^3}\right)
$$

When we get into 3rd derivatives, math is getting too messy... Let's just quote results (see Kinsler for details)

Transverse vibrations of a bar

• Net force on a small segment dx (negative $=$ downward) $dF_y = F_y(x) - F_y(x + dx) = -$ ∂ F_y ∂*x* $dx = -YS\kappa^2 \left(\frac{\partial^4 y}{\partial x^4}\right)$ ∂x^4 $\sqrt{2}$ ⎝ $\left(\frac{\partial^4 y}{\partial x^4}\right)$ ⎠ ⎟*dx* $F = ma \rightarrow -YS\kappa^2 \left(\frac{\partial^4 y}{\partial x^4}\right)$ ∂x^4 $\sqrt{2}$ ⎝ $\left(\frac{\partial^4 y}{\partial x^4}\right)$ \int $\int dx = \rho S dx$ $\partial^2 y$ ∂t^2 $\sqrt{2}$ ⎝ $\left(\frac{\partial^2 y}{\partial t^2}\right)$ ⎠ $\Rightarrow = \frac{\partial^2 y}{\partial x^2}$ ∂*t* $\frac{y}{2} = -\kappa^2 c$ 2 \int ∂⁴ y ∂x^4 $\sqrt{2}$ ⎝ $\left(\frac{\partial^4 y}{\partial x^4}\right)$ \int \int , $c = \sqrt{Y/\rho}$ $y(x,t) = \Psi(x)e^{i\omega t} \rightarrow$ $\partial^2 \Psi$ ∂*t* $\frac{\mathbf{r}}{2} \omega^2 e^{i\omega t} = \kappa^2 c$ $_{2}\big/\partial^{4}\Psi$ ∂x^4 $\sqrt{2}$ ⎝ $\left(\frac{\partial^4 \Psi}{\partial x^4}\right)$ ⎠ $e^{i\omega t} \rightarrow$ $\partial^4 \Psi$ ∂*x* $\frac{W}{4} = \frac{\omega^2}{\kappa^2 c^2}$ $\partial^2 y$ ∂t^2 $v = \sqrt{\omega K c}$ \rightarrow $\partial^4 \Psi$ ∂*x* $\frac{\Psi}{4} = \frac{\omega^4}{v^4}$ v^4 $\partial^2 y$ ∂*t* $\frac{y}{2}$; try $\Psi(x) = Ae^{\gamma x} \rightarrow \gamma^4 = \frac{\omega^4}{x^4}$ $\frac{\omega}{v^4} \rightarrow \gamma = \pm \frac{\omega}{v}$ *v* or $\pm i \frac{\omega}{\omega}$ *v* $\Psi(x) = Ae^{(\omega/v)x} + Be^{-(\omega/v)x} + Ce^{i(\omega/v)x} + De^{-i(\omega/v)x}$

 \rightarrow Re y = Re $(\Psi e^{i\omega t})$ = cos($\omega t + \phi$)[$A \cosh(\omega x / v) + B \sinh(\omega x / v) + C \cos(\omega x / v) + D \sin(\omega x / v)$]

- Notice nothing here is wave motion at speed c
- Wave moves to the right with speed v (phase velocity)
- $-$ But v is frequency dependent: $v = \sqrt{\omega Kc}$ Higher frequency \rightarrow higher v
	- Bar is a dispersive medium for transverse vibrations different frequencies present spread out spatially, altering wave shape

Transverse vibrations of a bar

- Example: bar clamped on one end $(x=0)$, free on the other (L) Fixed end: $y = 0$, and $\frac{\partial y}{\partial x}$ ∂*x* $= 0$ Free end: $M = 0 \rightarrow$ $\partial^2 y$ ∂*x* $\frac{y}{2} = 0$, and $F = 0 \rightarrow$ $\partial^3 y$ ∂*x* $\frac{y}{3} = 0$ Applying these at $x = 0$ and $x = L$ respectively, we get (skipping many steps!): $\cot(\omega L / 2v) = \pm \tanh(\omega L / 2v)$; Solve graphically $\rightarrow \omega L / 2v \approx (2n - 1)\pi / 4$ Put in $v = \sqrt{\omega Kc}$, $f_n = \omega / 2\pi \rightarrow f_n = \frac{\pi Kc}{8L^2}$ $\frac{\pi \kappa c}{8L^2} (1.19^2, 3^2, 5^2...)$ (except for n=1)
	- For Al bar 1 m long, with circular cross section 0.01 m radius, we get c_{AL-VIB} = sqrt(Y/ ρ) =5055 m/s, $\kappa = r/2$ =0.005, \rightarrow f₁ = 1509 Hz, v_1 = 490 m/s

Notice overtones are not harmonics (integer multiples) of f_1

Graphical solutions for $cot(x)=tanh(x)$

37

and the control of the control of the control of the control of the control of