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Tonight 

Course syllabus and schedule – first part… 



Announcements  
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•  You can access most scientific journals, many popular journals, 
and books online via the UW library – no need to be on campus 
–  See 
–  See also 

for how to VPN onto campus network 

•  Revision in posted problem set 
–  The version of problem 11 posted is too complicated and 

difficult (and I won’t cover the details needed in class) 
–  I’ve replaced it with: 

11. A steel bar of cross section 0.0001m2 and 0.25m length is 
clamped at both ends. a) what is its fundamental frequency for 
longitudinal vibrations? b) what is the fundamental frequency for 
the same bar but free at both ends? 
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Autocorrelation and cosine averaging theorem 

•  If the signal is a sum of sin/cos functions only, the 
autocorrelation is easy to compute: 

–  Since correlation integral amounts to a time average, “it can be 
shown” that 

–  So, if signal is a sum of sinusoids of different frequencies, its power 
spectrum can provide the ai

2 values (weights) to construct its 
autocorrelation, or vice versa  

•  Can’t reconstruct original signal from ai
2 values – correlation à 

information loss (sign of ai ) 

corr(g,g) = g(t '+ t)g(t ')dt '
−∞

+∞

∫   = autocorrelation  of g

if   g(t) = ai cos(ωi t +φi )
i
∑ ,     apply cosine averaging theorem :

cos(ω1 t +φ1)cos(ω2 t +φ2 ) = 0  if  ω1 ≠ω2 means average over time

=
1
2

cos(φ2 −φ1)  if  ω1 =ω2

for  g(t) = ai cos(ωi t)
i
∑ → corr(g,g) = 1

2
ai

2 cos(ωi t)
i
∑
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Autocorrelation and cosine averaging theorem 

•  Example: f=75Hz + 140Hz 
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Windows and spectra 

•  Interpret content of probability histogram bin pj as average of a 
continuous p(x) over a uniformly weighted window Δx 

•  Apply same basic idea to spectra: 
Pk=average value of C(f) around fk 

0
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–  But window weight is NOT 
uniform for spectra: 

•  Want uniform weight 
(constant=1.0) over one full 
period T in time domain 

•  But FT of constant in t-
domain= sinc function in f 
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Windows and spectra 

Weighted windows 
–  Lobes of sinc2 function in W(s) mean 
    nearby frequencies outside each bin also contribute to Ck(fk) 
–  Note: for s=integer (f=nfk),   W(s)=0 

•  No leakage if spectrum is pure sinusoids (discrete spectrum with 
fundamental f = sample range) 

2

2

2

2 /)sin(
)sin(1)/2exp(1)(0.1)( ⎥
⎦

⎤
⎢
⎣

⎡
==→=

−=

∑ Ns
s

N
Nksi

N
sWtw

ffsDefine k

π
π

π

To minimize “leakage” into adjacent 
bins, replace uniformly weighted bins 
(square window) with some kind of 
peaked weighting that minimizes side 
lobes in the FT 

FT of constant weight w(t) in t-domain  
à sinc function W(s) in frequency domain  



Weighted windows 
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For discrete FT  Ck = cj exp(i2π jk / N )
j=0

N-1

∑

Let   Dk = cjwj exp(i2π jk / N )
j=0

N-1

∑ ,

w = weight;    Then for  W = N wj
2

j=0

N−1

∑      

(sum-of-squares window normalization)

Pk ( fk ) =
1
W

Dk
2
+ DN−k

2{ }    for k =1...(N / 2)−1

Pk ( fk ) =
1
W

Ck
2    for k = 0 and (N / 2)

where   fk = 2 fc
k
N

fc =
1

2Δ

Leakage from window fns 

Various window fns 
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Windowing 

For audio signal analysis 
•  Almost always have limited sample of a long signal 
•  Human ear also samples in chunks – properly windowed audio 

spectrum seems more ‘faithful’ 
•  Side lobes correspond to ‘crosstalk’ between frequencies 
Examples of time-window / frequency domain pairs: 
•  Rectangular window 
•  Hamming window 
•  Gaussian window 
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Windowing 

Rectangular window 
–  As N increases, the 

main lobe narrows 
(better frequency 
resolution).  

–  M has no effect on 
the height of the 
side lobes  

–  First side lobe only 
13 dB down from 
the main peak.  

–  Side lobes roll off 
at approximately 
6dB per octave.  

http://ccrma.stanford.edu/~jos/sasp/ 

In these and following figs, “M” = N 
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More windows 

Hamming window   
w ~ α + β cos(2πn/M) 

–  Choose α=0.54 to 
cancel largest 
sidelobe (β=1-α) 

–  Discontinuous 
“slam to zero” at 
endpoints.  

–  Asymptotic roll-off 
is approximately 
-6 dB per octave  

–  Side lobes are 
close to “equal 
ripple”  

–  First side lobe is 
41 dB down!  (Hann window = same but with  α=1/2,  

β=1/4 :  side lobes roll off gradually)   
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More windows 

•  Gaussian window 
– Side lobes way down 

(80 dB for example, 
σ=N/8) 

– Main lobe well 
represented by a 
simple parabola in f  

Gaussian  FT[Gaussian]  
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Examples (from Acoustic and Auditory Phonetics 
K. Johnson, Wiley-Blackwell, 2005) 

Top:  Upper= raw signal;   
lower= Hamming-weighted signal 
Bottom: Discrete sampled power 
spectrum (signal consists of pure 
sinusoids) 

1.  Exact fit: sampling window 
length = integer multiple 
of signal period T 

2. Misfit: sample window is 
slightly shorter than nT: 
mismatch  

3.  Hamming: same signal as 
2 showing improved 
results from windowing – 
peak is wider, but S/N is 
about the same as for 
exact fit 
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Waves in strings, in more detail 

•  Transverse waves on a string 
–  Mechanics of tension 

Wave eqn for a string 

dfy = T (x + dx)sinθ −T (x)sinθ

   apply Taylor expansion:   →  f (x + dx) = f (x)+ ∂f (x)
∂x

dx + ∂
2 f (x)
∂x2 dx2 +!

dfy = T (x)sinθ + ∂T (x)sinθ
∂x

dx +!
⎛

⎝
⎜

⎞

⎠
⎟−T (x)sinθ  

   for small θ,  sinθ ~ tanθ = ∂y
∂x

→ dfy =
∂
∂x

T ∂y
∂x

⎛

⎝
⎜

⎞

⎠
⎟dx = T

∂2y
∂x2 dx

mass density of string =ρL →m = ρLdx

F =ma→ dfy = ρLdx
∂2y
∂t2

⎛

⎝
⎜

⎞

⎠
⎟→T ∂

2y
∂x2 = ρL

∂2y
∂t2

⎛

⎝
⎜

⎞

⎠
⎟

 so  dfy = a dm → ∂2y
∂x2 =

1
c2

∂2y
∂t2

⎛

⎝
⎜

⎞

⎠
⎟

  where  c = T / ρL
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Waves in strings, in more detail 

•  Transverse waves on a string 
–  Solving the wave equation 

∂2y
∂x2 =

1
c2

∂2y
∂t2

⎛

⎝
⎜

⎞

⎠
⎟   with  c2 = T / ρL

 try y(x, t) = f (ct ± x):   y(x, t) = y1(ct − x)+ y2 (ct + x)

   for the first term y1  only, ∂y1

∂t
=

∂y1

∂(ct − x)
∂(ct − x)

∂t
= c ∂y1

∂(ct − x)

   let w = (ct − x);  apply  ∂
∂t

  again:  ∂2y1

∂t2

⎛

⎝
⎜

⎞

⎠
⎟=  c2 ∂

2y1

∂w2

  similarly for  ∂y1

∂x
 , we get  ∂2y1

∂x2

⎛

⎝
⎜

⎞

⎠
⎟=  ∂

2y1

∂w2

 so   ∂
2y1

∂x2 =
1

 c2
∂2y1

∂t2   -- check! So any fn of (ct − x) is a solution of the wave eqn

Repeat for y2 (ct + x)  : same deal, any fn of (ct + x)  is also a solution
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Waves in strings: reflections 
Reflections at ends: 2 cases, determined by end conditions 
•  String is rigidly held at x=0 (clamped end) 

–  Then for any time t, at x=0 

–  This is the original y1 plus an inverted duplicate moving in the 
opposite direction: a reverse-polarity reflected wave 

•  String is unconstrained in y at x=0 (free end) 
–  Then for any time t, at x=0 

–  This is the original y1 plus a reflected wave of the same polarity 

y(x, t) = y1(ct − x)+ y2 (ct + x)
y(0, t) = 0 = y1(ct)+ y2 (ct)→ y2 (ct) = −y1(ct)
 so  y(x, t) = y1(ct − x)− y1(ct + x)

Fy = 0→T (x)sinθ = ∂y(0)
∂x

= 0→ ∂y1(0)
∂x

+
∂y2 (0)
∂x

= 0

∂y1

∂x
= −

∂y1

∂(ct − x)
, ∂y2

∂x
= +

∂y2

∂(ct + x)
→−

∂y1(0)
∂(ct)

+
∂y2 (0)
∂(ct)

= 0

∂y1(0) d(ct)
0

t
∫ = ∂y2 (0) d(ct)

0

t
∫ → y1(ct) = y2 (ct)

So  y(x, t) = y1(ct − x)+ y1(ct + x)



y(x,t) = y1(ct − x),    with driving force Fy (t)= Feiωt  

y(0,t) = Aeiωt ; y1(0,t) = Aeik (ct ) (wave number  k =ω / c)

 so for all x,  y(x,t) = y1(ct − x) = Aeik (ct−x) = Aei(ωt−kx)
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Forced waves in strings: first, infinite 
Infinite string means no reflections to deal with – simplest case 
•  Solution can only include waves moving in +x direction 

–  At each x, string oscillates in SHM with f=ω/2π  and T=1/f 

–  At any time, shape is sinusoidal with amplitude A, and λ=2π/ k 
–  Waveform moves in +x direction with (phase) speed  c = T / ρL
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Forced waves in infinite string  
•  Driving force must balance tension (there is no lump m at x=0) 

–  Waveform moves in +x direction with (phase) speed  

•  Recall: mechanical impedance = F/u  so at x=0, impedance is 

–  Instantaneous and average power into string is 

 Feiωt = −T ∂y(0)
∂x

= −ikTAei(ωt−kx) → A = F
ikT

;  y(x, t) = F
ikT

ei(ωt−kx)

 transverse speed u(x, t) = ∂y
∂t
=
iωF
ikT

ei(ωt−kx) =
cF
T
ei(ωt−kx)

c = T / ρL → u(x, t) = F
ρLc

ei(ωt−kx)

Zm(0) =
F(t)
u(0, t)

=
Feiωt

F
ρLc

ei(ωt)
= ρLc Characteristic mechanical 

impedance of infinite string 

P(t) = Re(Fu) = F cosωt F
ρLc
⎛

⎝
⎜

⎞

⎠
⎟cosωt;

P
RMS

=
1
T

Pdt
0

T
∫ =

F 2

2ρLc
=
1
2
ρLcU(0), U(0) = u(0, t)
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Forced waves in a finite string  
•  More complicated – now must deal with reflected waves 
y(x,t) = Aei(ωt−kx) + Bei(ωt+kx)

 Boundary conditions: at driven end, tension must balance driving force

 so as before,  Feiωt +T ∂y(0)
∂x

= 0    for all t,  

insert solution:   F +T (−ikA+ ikB) = 0.
 At fixed end x=L, must have  y(L,t) = 0   for all t,
 so Ae−ikL + Be+ikL = 0
 solve these 2 eqns for A and B :  

A =
F
ikT

eikL

eikL + e−ikL
=

FeikL

2ikT cos(kL)
;   and  B = Fe−ikL

−2ikT cos(kL)

y(x,t) = FeikL

2ikT cos(kL)
ei[ωt+k (L−x)] − ei[ωt−k (L−x)]( ) = F sin[k(L− x)]

kT cos(kL)
eiωt

Two waves moving in 
opposite directions 

Stationary envelope, 
oscillating in place: 
standing wave 

The 2 versions of y(x,t) 
describe different pictures: or 
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Forced waves in a finite string  
•  Standing-wave solution shows locations where y=0 for all t 

Stationary envelope, 
standing wave 

y(x, t) = F
kT cos(kL)
⎛

⎝
⎜

⎞

⎠
⎟sin[k(L − x)]eiωt, k =ω / c, F = driver amplitude

y = 0 when  k(L − x) = nπ  →  xn = L −
n
2
λ, n = 0,1, 2!2L / λ

driver is at a node if L = n
2
λ,    driver is antinode if L = m

4
λ,   m =  odd integer

Amplitude blows up (resonance) when 

cos(kL) = 0→ kL = 2n−1
2

π,  

ω / k = c→ fres =
2n−1

4
c
L

Amplitude is minimal when

kL = nπ → fmin =
n
2
c
L

Resonance amplitude is limited 
because when y gets too large, 
small-θ assumption fails 



Standing waves on a string 
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1st harmonic (fundamental) 
   L = λ/2 = π        f1 = c / (2·L) 

2nd harm.   L = λ  f2 = 2·f1 = c / L 

3rd harm.   L = 3 λ / 2    f3 = 3·f1 = 3·c / (2·L) 

4th harm.   L = 2 λ,   f4 = 4·f1 = 4·c / (2·L) 

www.sengpielaudio.com/StandingWaves.htm 
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Impedance in a forced finite fixed string  
•  For fixed finite string, mechanical impedance at the driver is 

•  For small ω,  tan(kL)~kL  à  

     (same as for spring with s=T/L) 
•  Notice Z is imaginary (pure reactance): rigid fixed ends 

  à string has no way to lose energy, at least ideally 

•  Things we won’t cover in lecture: (see Kinsler) 
–  Other driven strings: forced mass-loaded or resistance-loaded 

 

Zm(0) =
F(t)
u(0, t)

=
Feiωt

iωF tan(kL)
kT

eiωt
=

kT
iω tan(kL)

=
−i ρLc
tan(kL)

Zm(0) =
−i ρLc
kL

= −i T
L
⎛

⎝
⎜

⎞

⎠
⎟
1
ω

Mass-loaded: m is constrained 
to move transversely at x=L 
Resistance-loaded: same 
picture except damper instead 
of m 
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Normal modes in a fixed-end finite string  
•  For fixed finite string without driver, when plucked or struck: 

 
  

•  So only discrete values of k=ω/c are allowed:  
 kn=nπ / L ;  k= 2 π f / c  à fn = nc / 2L 

•  For the nth frequency,  

 

Where A and B will be determined by the initial conditions 
–  These are the normal modes or eigenfrequencies of the string 

•  Fundamental = f1 =c/2L 
•  Harmonics = n f1  (n=2 à second harmonic, 3=3rd, etc) 
•  Overtones = n f1 for n=2,3… f1  (n=2 à first overtone, etc) 
•  “Partial” = any single frequency component of a sound 

y(x, t) = Aei(ωt−kx) +Bei(ωt+kx), k =ω / c
Boundary conditions are y(0, t) = 0 and y(L, t) = 0,  for all t
So,   A+B = 0 → B = −A,   and    
Ae−ikL +Be+ikL = 0→ 2isin(kL) = 0→ sin(kL) = 0→ kL = nπ,   n =1, 2... 

yn (x,t) = An sin(knx)e
iωnt , where An = An + iBn

= An cos(ωnt)+ iBn sin(ωnt)( )sin(knx)
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Energy of vibration for a fixed-end finite string  
•  Piece of string between x and x+dx has kinetic energy ½ mu 2  

 
•  Gets stretched by an amount δL à potential energy 

•  Potential energy due to stretching: 

 
  

dEP =
1
2
ρLc

2 ∂y
∂x
⎛

⎝
⎜

⎞

⎠
⎟

2

dx;   the total energy per unit length is

dE
dx

=
dEK

dx
+
dEP

dx
=

1
2
ρLc

2 ∂y
∂x
⎛

⎝
⎜

⎞

⎠
⎟

2

+
1
c
∂y
∂t

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

→ total energy = integral over length L:  E = 1
2
ρLc

2 ∂y
∂x
⎛

⎝
⎜

⎞

⎠
⎟

2

+
1
c
∂y
∂t

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥L

∫ dx

y(x + dx) = y(x)+ ∂y
∂x
dx→δL = dx2 + ∂y

∂x
dx

⎛

⎝
⎜

⎞

⎠
⎟
2

− dx = 1+ ∂y
∂x
⎛

⎝
⎜

⎞

⎠
⎟
2

−1
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
dx

1+ε ≈1+ε / 2→δL = 1
2
∂y
∂x
⎛

⎝
⎜

⎞

⎠
⎟
2

dx

dx 
y(x) 

y(x+dx) 
dEK =

1
2
ρLc

2 ∂y
∂t
⎛

⎝
⎜

⎞

⎠
⎟
2

dx
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Energy of vibration for a fixed-end finite string  
•  Example: string of length L is vibrating in its nth mode: 

 
 

–  Amplitude Un of speed of motion in nth mode is 

 

yn (x,t) = An sin(knx)e
iωnt →

∂y
∂x

= kn An cos(ωnt)+ Bn sin(ωnt)( )cos(knx)
1
c
∂y
∂t
= (ωn / c) −An sin(ωnt)+ Bn cos(ωnt)( )sin(knx)

En =
1
2
ρLc

2 ∂y
∂x

⎛

⎝
⎜

⎞

⎠
⎟

2

+
1
c
∂y
∂t

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥L

∫ dx = 1
4
ρLLω

2
n An

2 + Bn
2( )

=
1
4
mω2n An

2 + Bn
2( )

 m = mass of string,   
                =max displacement amplitude An

2 +Bn
2

Un =
∂y
∂t

=ωn An
2 +Bn

2 → En =
1
4
mUn

2 → ETOT = En
n
∑

"It can be shown" that for a string plucked in the center by 

δy = h,  the amplitude of motion  An =
1
n2  8h

π 2 sin nπ
2

⎛

⎝
⎜

⎞

⎠
⎟

An ~ 1
n2 →

(only odd-n harmonics for 
string plucked at center) 

3rd harmonic has 1/9 amplitude of fundamental,  
5th harmonic has 1/25, etc 



Motion of a plucked string 
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When string is plucked, each allowed mode oscillates at its own natural frequency fn .  
The sum changes with time as the individual modes add. 
•  Thick black curve = the actual string (the sum of all of the individual modes)  
•  Colors = individual modes each with its own  fn and maximum amplitude.  
The f associated with the total (sum) motion = frequency of the fundamental mode. 
A string tuned to f Hz will repeat complete cycle of motion f times per second. 
•  Plucking at different locations enhances different harmonics.  
Relative amplitudes of harmonic components determines timbre*, so affects the perceived 
sound.  

https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html 

* Character of a musical sound as distinct from its pitch 



Motion of plucked string 
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https://youtube.com/watch?v=_X72on6CSL0&si=EnSIkaIECMiOmarE 
 
Play 24—45 sec, muted 
 
Motion of Plucked String Dan Russell, @DanRussellPSU 

 

Spectrum of plucked string 

Video: 
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Vibrations in solid bars: Longitudinal waves 

•  Compression waves in “slender” bars with fixed ends 
–  For long, thin bars, each slice of the bar can be treated as moving 

as a unit 
–  Longitudinal displacement of a slice at position x along bar is 

δ l = ξ (x,t)→ξ (x + dx,t)−ξ (x,t) = ∂ξ
∂x

⎛

⎝
⎜

⎞

⎠
⎟dx

Strain ≡

∂ξ
∂x
⎛

⎝
⎜

⎞

⎠
⎟dx

dx
=
∂ξ
∂x

⎛

⎝
⎜

⎞

⎠
⎟; Stress ≡ f

S
; Hooke 's Law : Stress∝ Strain

→
f
S
= −Y ∂ξ

∂x

⎛

⎝
⎜

⎞

⎠
⎟; (convention:  + f = compression, − f = stretching)

f = −SY ∂ξ
∂x

⎛

⎝
⎜

⎞

⎠
⎟; The net force on slice (positive = +x direction) is     

df = f (x)− f (x + dx) = f − f + ∂f
∂x
dx

⎛

⎝
⎜

⎞

⎠
⎟=

∂f
∂x
dx = −SY ∂2ξ

∂x2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
dx

F =ma→ ρ S dx( )∂
2ξ

∂t2
= −SY ∂2ξ

∂x2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
dx;      S dx = volume of slice; ρ = volume density 

fixed free 
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Longitudinal waves in fixed-end bar 

•  So F=ma leads to 

–  General solution of wave equation = some function of (ct + x)   

–  Approximation only works for L >> diameter << wavelength 
–  Follow usual path: apply boundary conditions  

(Same as for fixed-fixed string) 

ρS ∂
2ξ

∂t2
= −SY ∂2ξ

∂x2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
 → looks like 1D wave equation:  ∂

2ξ

∂x2
=

1

c2
∂2ξ

∂t2
, with  c2 =

Y
ρ

ξ (x,t) = ξ1(ct − x)+ξ2(ct + x),    with phase speed c = Y / ρ
   Complex harmonic solution is

ξ (x,t) = Aei(ωt−kx) + Bei(ωt+kx)    with wave number  k =ω / c

ξ (0,t) = 0→ A+ B = 0, B = −A

ξ (x,t) = Aeiωt e−ikx − e+ikx( ) = − Aeiωt( )2i sin(kx)
ξ (L,t) = 0→ sin(kL)→ knL = nπ , n =1,2,3...

ωn = knc =
nπc
L

→ fn =
nc
2L

Re ζ (x,t)( ) = An cosωnt + Bn sinωnt( )sin knx
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Longitudinal waves in free-end bar 

•  If end of bar is free, must have F=0 at ends, so 

–  Fixed ends must be nodes  
–  Free ends must be antinodes (maxima) 
–  If bar is clamped at x, must be node there 

•  Other modes will be suppressed 

(Same as for fixed-end bar) 

fixed 
free 

f = −SY ∂ξ
∂x

⎛

⎝
⎜

⎞

⎠
⎟= 0→ ∂ξ

∂x
= 0;   Applied at x = 0 :

∂
∂x

Aei(ωt−kx) + Bei(ωt+kx)( ) = 0→−A+ B = 0→ B = A

ξ (x,t) = Aeiωt e−ikx + e+ikx( ) = 2Aeiωt cos(kx)

  Applied at x = L :

sin(kL) = 0→ωn =
nπc
L

→ fn =
nc
2L



Longitudinal and transverse waves in bars 
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https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html 



Transverse vibrations of a bar 

•  When a uniform straight bar (length L, cross-section S) is bent, 
the lower part is compressed and the upper part stretched, but 
there will be a neutral axis at the center: 

δxr =
∂ξ
∂x
dx =  increment in length of bar at radius r from neutral axis

df = −YdS
δxr
dx

= −YdS ∂ξ
∂x

⎛

⎝
⎜

⎞

⎠
⎟= 0  (sign: − for tension, + for compression) 

dx / R = (dx +δxr ) / (R+ r)  (same opening angle) so  δxr / dx = r / R

→ df = −Y r
R
dS      net force is 0, but there is a bending moment M

32 

Y = Young’s modulus = slope of stress vs strain curve 



Transverse vibrations of a bar 

•  Bending bar produces shear forces as well as bending moment 
–  Equilibrium à no net force or torque on bar as a whole 

When we get into 3rd derivatives, 
math is getting too messy...  
Let’s just quote results 
(see Kinsler for details) 

bending moment:

M =  r df∫ = −
Y
R

r2 dS∫       let κ =
r2 dS∫
S

  (~ radius of gyration of bar)

(for rectangular bar, κ = thickness/ 12;   for circular rod, κ = radius /2) 

M = −
YSκ 2

R
     R depends on position x: for small displacements in  y

R ≈1/ ∂2y
∂x2

⎛

⎝
⎜

⎞

⎠
⎟→M = −YSκ 2 ∂2y

∂x2

⎛

⎝
⎜

⎞

⎠
⎟  

bending moment related to shear:

Fy ≈ −
∂M
∂x

= −YSκ 2 ∂3y
∂x3

⎛

⎝
⎜

⎞

⎠
⎟
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Transverse vibrations of a bar 

•  Net force on a small segment dx (negative = downward) 

–  Notice nothing here is wave motion at speed c 
–  Wave moves to the right with speed v (phase velocity)  
–  But v is frequency dependent:                      Higher frequency à higher v    

•  Bar is a dispersive medium for transverse vibrations – different 
frequencies present spread out spatially, altering wave shape 

→Re y = Re Ψeiω t( ) = cos(ω t +φ) Acosh(ωx / v)+Bsinh(ωx / v)+C cos(ωx / v)+Dsin(ωx / v)[ ]

v = ωκc
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dFy = Fy (x)−Fy (x + dx) = −
∂Fy
∂x

dx = −YSκ 2 ∂4y
∂x4

⎛

⎝
⎜

⎞

⎠
⎟dx

F =ma→−YSκ 2 ∂4y
∂x4

⎛

⎝
⎜

⎞

⎠
⎟dx = ρSdx

∂2y
∂t2

⎛

⎝
⎜

⎞

⎠
⎟→ =

∂2y
∂t2 = −κ

2c2 ∂4y
∂x4

⎛

⎝
⎜

⎞

⎠
⎟, c = Y / ρ

y(x, t) =Ψ(x)eiω t → ∂2Ψ
∂t2 ω

2eiω t =κ 2c2 ∂4Ψ
∂x4

⎛

⎝
⎜

⎞

⎠
⎟eiω t →

∂4Ψ
∂x4 =

ω 2

κ 2c2
∂2y
∂t2

v = ωκc→ ∂4Ψ
∂x4 =

ω 4

v4
∂2y
∂t2 ;   try  Ψ(x) = Aeγx → γ 4 =

ω 4

v4 → γ = ±
ω
v

 or ± iω
v

Ψ(x) = Ae(ω /v)x +Be−(ω /v)x +Cei(ω /v)x +De−i(ω /v)x



Transverse vibrations of a bar 

•  Example: bar clamped on one end (x=0), free on the other (L) 

 
 
–  For Al bar 1 m long, with circular cross section 0.01 m radius, we get  
 cAL-VIB = sqrt(Y/ρ) =5055 m/s, κ = r/2=0.005,  à  f1 = 1509 Hz,  v1 = 490 m/s 
–  Notice overtones are not harmonics (integer multiples) of f1    

Fixed end:   y = 0,   and   ∂y
∂x

= 0

Free end:   M = 0→ ∂2y
∂x2 = 0,   and   F = 0→ ∂3y

∂x3 = 0

Applying these at x = 0 and x = L  respectively, we get (skipping many steps!):  
cot(ωL / 2v) = ± tanh(ωL / 2v);   Solve graphically→ωL / 2v ≈ (2n−1)π / 4

Put in v = ωκc,     fn =ω / 2π → fn =
π κc
8L2 1.192,32, 52...( )

(except for n=1) 
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Graphical solutions for cot(x)=tanh(x)  
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n      2(n-1)π/4 = ωL/2v 
2  2.36 
3  3.93 
4  5.50 
5  7.07 
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