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Course syllabus and schedule — first part...

See’ hitp:/lcourses washington.edu/phys536/syllabus.hum_

See : http://courses.washington.edu/phys536/syllabus.htm

Session date Day Readings: K=Kinsler, H=Heller Topic
Course intro, acoustics topics, overview of wave properties;
1 3-Jan Tue Kch.1 H:Ch.1, 2 pulses, transverse and longitudinal waves, overview of sound
speeds
harmonic oscillators: simple, damped, driven; complex
2 5-Jan Thu Kch.1 H: Ch.9, 10 exponential solutions, electrical circuit analogy, resonance, Q
factor
3 10-Jan Tue Kch 1 H: ch. 3 Fourier method_s: Fourier series, _integrals, _Foyrier transforms,
discrete FTs, sampling and aliasing
Frequencies and aliasing; convolution and correlation; discrete
4 12-Jan Thu K. chs 10 H: Ch. 4, 11 convolution; digital filtering, optimal filters, FIR filters, noise
spectra; power spectra. REPORT 1 PROPOSED TOPIC DUE
5 17-Jan Tue K.ch.2,3,4 H: Ch. 13, 15 waves in strings, bars and.membranes; Ac'oustic. waye equation;
speed of sound; Harmonic plane waves, intensity, impedapce.
6 19-Jan | Thu K.Ch.5,6 H: Ch. 1 Spherical waves; transmission and reflection at inter@m
. 24-Jan Tue K ch. 8 H: Ch. 7 Radiation from sme'ill .sources; Bajn‘ﬂed simple source, piston
radiation, pulsating sphere;
8 26-Jan Thu K: Ch. 10 H: Chs. 13-15 Near field, far field; Radiation impedance; resonators, filters
9 31-Jan Tue K. Ch. 9-10 H: Chs. 16-19 Musical instruments: wind, string, percussion
10 2-Feb Thu K.Ch 14 Transducers for use in air: Microphones and loudspeakers
11 7-Feb Tue K.Ch 11 H: Chs. 21-22 The ear, hearing and detection
Decibels, sound level, dB examples, acoustic intensity; noise,
12 9-Feb Thu K. Chs 5,11 detection thresholds. REPORT 1 PAPER DUE by 7 PM; REPORT 2

PROPOSED TOPIC DUE




...2"d part of class schedule

Session date Day Readings: K=Kinsler, H=Heller Topic
13 14-Feb Tue K Ch. 12 H: ch. 28 Environmental acoustlc.s and.n0|se CrItPera; industrial and
community noise regulations
14 16-Feb Thu K Ch. 15 Underwater acoustics; sound speeq in seawater; undersea sound
propagation.

15 21-Feb Tue K ch. 15 Sonar equations, unde:rsea noise; transduce.rs. for' use in water
(hydrophones and pingers), sonar and positioning systems

16 23-Feb | Thu Notes Applications: acoustical posmonl‘n_g, seafloor imaging, sub-

bottom profiling;

17 28-Feb | Tue Course wrapup. Student report 2 presentations

18 2-Mar Thu Student report 2 presentations

19 7-Mar Tue Student report 2 presentations

20 9-Mar Thu Student report 2 presentations. TAKE-HOME FINAL EXAM ISSUED

-- 17-Mar Fri FINAL EXAM ANSWERS DUE by 5 PM

Class is over after you turn in your take-home exam. No in-person final exam during finals

week.




Announcements

e Problem set 1 solutions will be posted on Feb 7 - try them
before then ...
— As mentioned, prob 11 as originally posted was not covered in class
(too complicated) so you can replace it with:

11. A steel bar of cross section 0.0001m?2 and 0.25m length is clamped at
both ends. a) what is its fundamental frequency for longitudinal vibrations?
b) what is the fundamental frequency for the same bar but free at both

ends?

e You can access most scientific journals, many popular journals,
and books online via the UW library — no need to be on campus

— See hitp://www.lib.washington.edu/help/connect

— See also
hittp://www.lib.washington.edu/help/connect/husky-onnet

for how to VPN onto campus network




From last time [1ransverse vibrations of a bar

o Net force on a small segment dx (negative = downward)

oF 4
dFy=Fy(x)—Fy(x+a’x)=——ydx=—YSK2 8—34} dx
0x 0Xx
3y 9"y Py 4 0%y
F=ma—-YSk*| — |dx = pSdx| —% | = =—2 =-k°c*| —=|, c=.Y/
(ax“) P (aﬁ t’ dax* P
- QY , ) (W)Y L W @ 9y
(xJ):lIJ(x)ezwt% 2™ =1t oV —> _
Y £ ox* ox* K¢’ or’
4 4 A2 4
y
V= a)Kcea - =a)4 J g; try lIJ(JC)=Ae”%)/4=w—4ey=i9 or i
0x v ot v v v

W(x)=Ae'”"" + Be ™ + Ce" """ + De™ )"

—Rey= Re(\I’ei“’t) = cos(wt + ¢)[ Acosh(wx /v)+ Bsinh(wx / v) + C cos(wx / v) + Dsin(wx / v)]

— Notice nothing here is wave motion at speed ¢
— Wave moves to the right with speed v (phase velocity)
— But vis frequency dependent: v =+ wxkc Higher frequency - higher v

e Bar is a dispersive medium for transverse vibrations — different
frequencies present spread out spatially, altering wave shape



Transverse vibrations of a bar

e Example: bar clamped on one end (x=0), free on the other (L)

Fixedend: y=0, and &V _
0x
3%y 0 Y _
Freeend: M=0——=0, and F=0——
ox* ox’

Applying these at x =0 and x = L respectively, we get (skipping many steps!):
cot(wL /2v) ==xtanh(wL /2v); Solve graphically = wL/2v=2n-1)x/4

(except for n=1)
Putinv=+oxe, f =w/2x— f = ch(l 192,3%,5%.)

— For Al bar 1 m long, with circular cross section 0.01 m radius, we get
Car-vig = SArt(Y/p) =5055 m/s, x = r/2=0.005, - f, = 1509 Hz, v, = 490 m/s
— Notice overtones are not harmonics (integer multiples) of f;

Wavelength Nodal Positions
Frequency  Phase Speed (cm) (cm from clamped end)
f1 (%1 335.0 0
6.267f1 2.500, 133.4 0,78.3
17.55f, 4.180v, 80.0 0, 50.4, 86.8

34.39f1 5.87v; 57.2 0,35.8,64.4,90.6
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Graphical solutions for cot(x)=tanh(x)

=—=COT

=

==+TANH
“-TANH

2(n—1)rt/4 = wL/2v

n
2
3
4
5

2.36
3.93
5.50
7.07



Vibrations in strings and bars: summary

e Transverse vibration frequency for fixed-end strings: f = ne

n=123.. "2L
e Longitudinal vibration of fixed- or free-end bar c=y\T/p,

fn=%, c=Y/p

e Transverse vibration frequency for fixed-end bar

TKC . . |
Ju = > (1-192,32,52...), with k = radius of gyration, speed v = \ wkc
8L

— Not harmonics!

— Example: xylophone bar (not uniform bar — shaped for tuning)

rectangular bar mode frequency

first f,

Amplitude (dB)
1

second 2.76 f,

(c)

third 5.40f,



Waves in membranes and sheets

e Use the same approach, but now in 2D: y(x) =2 y(X,z)
— Define equations of motion in terms of forces, material density, etc
— Insert general solution y(X,,z, t) = ¥(x,z) exp(iwt)
— Apply boundary conditions: fixed, free, or mixed
e Equations of motion
— use Laplacian scalar differential operator:

.
For rectangular sheets, V* = — +—;
0x~ 0z
. , 0 1o 1 ¢ . .
For circular sheets, V°'=—+—-—+———, withx=rcosf and z=rsin6
_ or~- ror r- 00
Solutions:
For rectangular sheets, y(x,z,t) = P(x,z)e"
Spatial part of equations of motion = V'W+k’W=0 k’=w’/c’ =w’ (%)

This is the time-independent wave (Helmholtz) equation
Assume W is factorizable into independent 1D functions, W(x,z) = X(x)Z(z)

Results: k° =k’ +k’ and W(x,z)=Asin(k, x+¢ )sin(k_z+¢.)



Free vibrations in membranes with fixed edges

e For rectangular sheet with clamped edges, boundary conditions
give normal modes of vibration with

2 2
k="C k=" am=123.. = f = 2x=> 2|+ 2
L L 2\\L. ) "\L

X Z X <

e For circular sheet with clamped edges, similar solution (but in
r,6 coordinates) plus boundary conditions give results:

: . r’(0’R 10R) ,,, 1(0'©
Separation of variables y(r,0) = R(r)®(0) - —|—+—|+k'r" ' =——
d Y00 = ROO) R(8r2 ré)r) 0\06°

two sides have different variables - cannot be equal unless both = constant: m”

2
(Z;z)) =-m’® — O(0)=cos(mb+¢), (¢= initial phase)

unlike r, 0 is periodic: 0 +2nxt =60, n=1,2...— canonly have m=0,1,2...

2 2
R(r) equation of motion — (2 + l%) + (kz - m—z)R =0, m=0,1,2...
or r or r

e This is the Bessel equation: | solutions are Bessel functions

10



Free vibrations in circular sheets with fixed edges

e General solution for circular sheet of radius r=a is
R(r)=AJ (kr)+BY (kr), k=w/c, m=12,3..
J (kr),Y (kr)= Bessel functions of 1st and 2nd kind, respectively
Need R(r) finite at r =0, so must have B=0 — R(r)=AJ (kr)
Boundary condition R(r)=0 atr=a—J (k a)=0

v(r,0,0)=A T (k r)cos(mO+¢ )e ™

mn - m

Let j ~=valuesof kr whereJ (j )=0 thenk =j /a

— fnm=a)nm/2ﬂ=i‘]mn O
21 a

@
@

Normal modes (m,n) of fixed-rim (0, 1) (0, 2) (0, 3)

circular membrane: Shaded areas
are 180 deg out of phase with clear
areas, separated by nodal lines

(1,1) (1,2) (1,3

@
@

11



Bessel functions

... Arise in problems with cylindrical symmetry (“cylindrical harmonics®)
J (p)= Bessel function of the 1st kind, order «

For integer or any positive a, J (x) are finite at the origin (x = 0).
For negative non-integer a, they diverge at x = 0.

Power-series representation: I (z) = z": (—1)™ ( x )2m_n
! —~ m!l'(m+a+1) ’

2

where '(z) = gamma function (generalization of factorial)
For integer a. = n, Jn(x)

TN
J_n(x) = (—1)"Jp(2).
And an integral representation exists:

Jn(x), for integer orders

0.5+
| Y 1

J (x)= oy ) _expli(nT—xsin(r)dz

Jn(z) forn=0.5in
the complex plane
from -2-21 to 2+21




Bessel functions

* Y (p)= Bessel function of the 2nd kind, order o

have a singularity at x = 0
For non-integer o, Y, (x) is connected with J (x) by
Jo (@) cos(an) — J_,(x)
sin(ar) '
For integer order a = n, Y, (x) is defined by the limit as non-integer a—>n:
Yo(z) = limY,(z). and Y_.(z)=(-1)"Y,(x).

a—n

Yo(z) =

And an integral representation exists: “ X od~ i _
0.0 /’\\ I > /:>§;'<\':\'\ //-X}\‘\‘\\{
- / /// ,', \ ) \_:>{:./' N~ N> |

-0.5 + _f'
i I
r .I l

J (x)= % ) f: ,Expli(nT - xsin(r)dv

-1.0

i Ya(x), for integer orders a =0, 1, 2

-15 : |
R |l l
I -2.0 : -
L |1
L -2.5 : ,l YO(X)
: ' YI(X) N—
3 : -3.0 L Y (x) =+=-=
Y ,(z) with n = 0.5 in the complex plane . ]
from -2-21 to 2+21 0 5 10 15 20
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Free vibrations in circular sheets with fixed edges

e Examples of motion of first few normal modes (m,n) and

corresponding frequencies

m=1, n=1, f;1 =159f

m=number of diameter nodes
n=number of circular nodes

22018, Dan Russell

m=0, n=2, fy2=2.30fn

(2, 1)[ 2 ] 14f01 22018, Dan Russell

m=2, n=1, fyx=2.14fn 14



Fundamental mode (0,1) of a drum

(0,1) mode of a drum, such as a tympani, is excited when the
drumhead (membrane) is struck at the center.

— In (0,1) mode, membrane acts like a monopole source, and radiates energy
very efficiently.
— The membrane quickly transfers its vibrational energy into radiated sound

— The short duration (typically ~ fraction of a second) means this mode does
not contribute greatly to the musical tone quality of a drum - a "thump"
which decays quickly, with no definite pitch.

When struck somewhere between the center and outer edge, the (1,1)
mode is excited.
— This mode takes longer to decay and drum “rings” for a while

— Sound has a definite pitch which lingers for a several seconds. This mode is
what we hear as the “principal tone” of the timpano. only five or six of

Preferred modes that mainly contribute to the sound spectrum and
give the tympani its pitch are in the lower diametric modes (1,1), (2,1),

(3,1), (4,1), (5,1).
https://youtu.be/UYCC8xvTBck preferred modes 1—6
Applet to demonstrate combining modes of circular membrane

hitp://www.falstad.com/circosc/fullscreen.html

15



Chladni plates

Chladni (c. 1790--1800) showed nodal lines by putting sand on
vibrating membranes and plates

— Sand accumulates where u,=0 (nodes)

(Robert Hooke first did this with flour in 1680)

— Napoleon was fascinated — supported his research

— Public was fascinated — charlatans sold “vibration science” cures
— Application: testing design of guitar backs and violin plates

SBBE0E

60Hz 72Hz 95Hz 109Hz 128Hz 175Hz

SIS

240Hz 378Hz 338Hz 352Hz 426Hz 478Hz

16



Chladni plates as sound sources

e Speed of vibration in Chladni plate is slower than speed of sound in air
e Sound emitted by segment reaches opposite phase segment quickly
— Cancellation due to phase difference — sound emitted is diminished

— Place a mask over one phase’s segments to baffle sound — overall
volume is greatly increased

22018, Dan Russell

m=2, n=1, fxn=214fn

— Demonstration of Chladni plates excited with violin bow
hitps://youtu.be/IRFysSAXWXI

brass plates on a wooden platform: circular (8in, 10in D), square (10in), and
"stadium" (a 8in square with 8in D semicircle at each end); plates are 1/16in

thick, and bolted through the center to the wooden base by a 10cm brass rod.

17



Acoustic wave equation

e Acoustic waves propagating in a compressible fluid (air, water)
e Need to develop equations of motion in 3D

e Many new quantities to define along the way

— “Particle” of fluid: dV small enough so acoustic variables are ~ constant but
large enough to contain billions of molecules - molecular-scale physics ignored

— Waves are pressure disturbances: small enough amplitude so no significant
change in fluid density or other properties

— Equation of state relates forces to deformations, as in solids
P=prT

P =pressure (Pa), p= density (kg/m3 ), T = temperature (K)
r = constant depending upon fluid properties
(eq, forideal gas: r=R/M, R= universal gas constant, M = molecular weight)

— Typically acoustical disturbances are ~adiabatic processes

Y
: : C : .
Adiabatic egn of state: r_le , y=|—£| ratio of specific heats
Py Cy

P =Py
Po
B = adiabatic bulk modulus, p ="acoustic pressure"

Assume APxAp—p=P-F,=8B

) — p=Bs, s=density fluctuation

18



Acoustic wave equation

e Continuity equation: fluid can’t just disappear!
— Fluid into volume dV (fixed in space) = fluid out

d;"x = pu_dA, m= mass, p= density, u= fluid speed, dA =dydz
4
0 0
{pux - pu, + ('Oux) dx }dA = - (pux) dV, same for flow in y and z
0x 0x
so net rate of change of mass inside dV is Z—’O =-V-(pu)
4

(Non-linear! p and u are both variables)
For acoustic pressure waves, Ap 1s very small, so assume p = p,(1+5)

s
—+V-u=0 (linearized continuity equation)

ot

Combine equations of state and continuity: f (8_ +V: u)d =0
5

U= _S, & = fluid particle displacement

fv udt=V- fudt—V fagdt—v E—>s=-V-E—=p=-BV-&

19



Acoustic wave equation

e Another justifiable simplification: neglect viscosity

— Already non-adiabaticity, now assume no viscosity: both reasonable
assumptions, effects can be added later

Net force on a ‘particle of fluid” dV :

df. = {P - lP + gdx }dA = —gdv where dV moves with the fluid

0x 0x

same for y and z forces — df =-VPdV
Velocity is function of time and position, u(x,y,z,t)
acceleration is a(x,y,z) = du +u, du +u, du +u, du _du +(u-V)u

ot ox dy dz ot
F =ma — df = adm —-VPdV = ((z—u+(ﬁ-V)ﬁ)pdV

4
, : U ;. o\
—| Euler's equation: — VP = (8_ +(u V)u)p
4
for small-amplitude disturbances (s <<1), (ii*V)i << g_u p=p, and VP = p
4

ou

o "Linear inviscid force eqn”
4

Euler's equation = -Vp = p,

20



Acoustic wave equation

* We have eqgn of state, adiabatic continuity, and inviscid force egns
— Combine to give a linearized 3D wave equation

1. p=Bs, equation of state: s=density fluctuation (’0 — ), B =bulk modulus

Po
ds . . 9F_ OoF, 9F
2. —+V-u=0 linearized continuity equation |4, F_vep - x v 97
ot ; ax dy oz
where u = a—g, & = fluid particle displacement — p=-BV &
4
U : S 0
3. =Vp=p, M "Linear inviscid force eqn” grad f = Vf = o i+ /. Y i+ 9, k
ot ox  dy 0z
Divergence of (3): p,V- (2—”) =-V-Vp=-V°p
4
2 — —
Time derivative of (2): 8_;9 +V- (a_u) =0 note V- =V- a_u
ot ot ot ot
2
—V’p= pog—f; use (1) to eliminate s=p/B : V’p= %Z—p
4
where c=./B/p, — canrewrite (1)as: p=p,c’s

— Since p and s are proportional, s also satisfies the wave equation

21




Acoustic wave equation| 4 . iF -V x F —
(8F§ BFE)A (apg 6F1)3+_(8F§ BFH)R

1_

Oy 0z ox 0z

, 1d°p o )
Vip=—=—5, P|—|=-Vp., and p=p.’s
c” ot ot

Ox Oy

e So far, we have

where ¢=./B/p,, and s=density fluctuation (p —Fo )
Do

J (Vxﬁ)=—Vpr=O

X
recall that VxVf =0 foranyf — p, o
5
so Vxu=0 (u must be irrotational)
— u can be expressed as gradient of a scalar function ®

u=V® where @ is a scalar velocity potential
o Adiabatic, inviscid fluid has no rotational flow = no turbulence, shear
waves, or boundary layers

— Real fluids have viscosity, velocity u is not curl-free everywhere, but small
rotational effects at boundaries do not affect propagation of sound waves

(VD
( )+Vp=O%V(p0@+p)=O%trueif p=—p0@
ot ot ot

...S0 @ also satisfies the wave egn

Force eqn — p,

22



p=p,c’s where s = (

Speed of sound in more detail

Speed of sound is related to thermodynamic variables:

Meaning: evaluate
derivative at equilibrium
apiaparic N terms of P and p

%C =
Po

P~ Py 2 %
Ip

For ideal gas,

14
£ = (ﬁ) , V= (&) ratio of specific heats — oF = y£
By \p 4 0 spiap P
— evaluated at equilibrium pressure and density, ¢ = yi
Po

Example: for air at 0°C and P, =1 atm =1.013x10°Pa,
0,=1.293 kg/m®, y =1.402, /yi =331.6 m/s
Po

See if you can google an actually measured value: I couldn't!
— Everyone just quotes this theoretical value...

— I found a student lab report that gave c=326m/s — but they forgot
to report temperature !
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Sound speed measurement @ home

e The student report* described using a loudspeaker aimed at two
microphones with measured separation

o They used Audacity freeware (see Heller book’s website for link); has 2
inputs with 20 microsec resolution, so they used these to measure At

o S
> A )
N} e - 2LrP AR £,
3.180 3.185 3.190 3.195 3.200 3.205 3.710]
.00 S AN \/ \ VAVAY \\/\ \/ VA VAYAVAVAVAYAVA
y = 326*x + 0.026864 P i
12| W
0.10
L -4,\‘,‘/4/':;*,",-«%‘J‘,“f_‘lﬁ".ﬁ;“v“;f»‘ﬂ./‘w)“.,»'x‘*f\f,"ffrr,*'.,v-"\mqnﬂfwf,‘,fv*w_ AR
1 to.0s
.0.10
2
g s
g 08| < N
o
£
=
-
g 06} G. N
z o
04f o .
* www.physlab.org/wp-content/
02 P 1 uploads/2016/04/Speed_sound.pdf
0 V 1 1 1 1 1 1
0 05 1 15 2 25 3 35
delta time(seconds) * 10-3
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Harmonic plane waves

e Harmonic plane waves = sin/cos waves in 1 direction:
p(x,y,z,t)=p(x,t) > y-zplanes have constant p value

2 2
1D wave equation I p(x1) = ! (8 P ) with ¢* =B/ p,, B=bulk modulus of fluid

ox*  c’\or . .
5 , , . adiabatic B of air = 1.42x10° Pa
p=Bs=p,c’s, s=density fluctuation relative to 0, > ¢ = 331 m/s, same as before

wave equation has complex solution p=p, + p_

with wave in +x direction p, = Ae"“™, and wave in -x direction p = Be'“"**
+
I't. 1 d = p+ = p_ s (YR oo

particle speeds are u, =+, u =--— it T AR K 0 IR
0,C 0,C PP A DA e N
S S5 S A
. . . p ol X4 .:.,.. :;.' g1 Ty ..:. ~ &2.‘-. - ih‘.',". o -:-.; E'., Aty
density fluctuation relative to p, are s, ==——— LG BRI SAIPARTEY

2
PoC
. . . . - 7 i(wt-kx—ky-k,

plane wave in arbitrary direction p = Ae ( T

. 1é’p . .
3D wave equation V’p = —2—12? 18 satistied 1f \/ kl+kl+k; =wlc
c” ot ’
k=kx+ky+kz propagation vectorand 7 =xx+yy+zZ position vector

i(wt—k7)

— p= Ae plane wave, and surfaces of constant phase have k-7 = constant

k=V(k-T) points in the direction of propagation: k=k/ ‘E ‘ 1s the ray direction
25



Energy transported by plane waves

e Energy carried by small parcel V, that moves with fluid:

\%
KE and PE: E, = %pOVouz, and E, = —fpdV (compression from V, to V)

Yo

must have p,V, = pV —=dV = —&dp
Po

p=p,c’s and s=(p-p, )p, =dp=dp/p,c’—dV =- Vozdp

PoC

" -V p’V. 1
E,=- f p—>dp= > —> total acoustic energy in V, =E;,, = 5 AN

0o Po€ 2p,¢

2
instantaneous energy density E. =FE. . /V, = % Oo (u2 + L ) J/m’

2 2

PoC
time average gives energy density E=(E,) = % f E. dt , T =rperiod of wave
T

so for plane harmonic wave in the +x direction p=p,cu—E, = p,u’ = pu/c

for p = Pe"™ and u=Ue""™, E=(E) = EPU/C == E'OOUz
PoC

(These simple results only valid for plane waves)

Po€

|
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Intensity of acoustic waves

e Intensity of acoustic wave = time rate of energy flow (power)
through a unit area normal to propagation direction

1 Amplitude = max Ap in wave
E =pulc—1=(pu) = ?fp”dt Intensity = power/area ~Ap?
T
. - 1 1 P’
for plane wave in +x direction, [ =—PU_ =——
2 2 p,Cc
. - 1 1 P’
for plane wave in -x direction, [ =——PU_=—-——
2 p,C
The wave intensity a Plane waves
RMS values \/lff2 dt this surface il\ / l'/’/(l./. of [;l(fwerlS
T+,
are useful time averages
providing effective intensities: |
PU, P’
P, rus =Pi/\/§%IiRMS =——=—
2 2p,¢
dd4d4

Area a A
27



Specific acoustic impedance

e We found acoustic impedance = driving force/resulting speed

e In terms of acoustical pressure p, we get
Specific acoustical impedance z=p/u

For plane waves u, ==

p,¢ = Characteristic impedance of medium

P,
PoC

— z==xp,c (for +x or -x direction)

Remember: lower case p, p, u etc are relative to baseline values P, p, , etc

e SI units for z : Pa-s/m

z is real for plane waves,
but standing waves or
diverging waves have
complex values:

Z=r+1x
(r, x = specific acoustic
resistance, reactance)

characteristic of medium
for non-planar wave type
considered

(1 Pa-s/m =1 rayl, named after Rayleigh)

Sound Acoustical

Velocity Density Impredance

Material (in./sec.) (Ibs./In.?) (Ibs./In.’ sec.)
Steel 206,500 0.283 58,400
Copper 140,400 0.320 45,000
Cast Iron 148,800 0.260 38,700
Lead 49 800 0.411 20,400
Glass 216,000 0.094 20,300
Concrete 198,000 0.072 14,200
Water 56,400 0.036 2,030
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