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Tonight 

Course syllabus and schedule – first part… 



…2nd part of class schedule 
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Class is over after you turn in your take-home exam. No in-person final exam during finals 
week. 
 



Announcements  
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•  Problem set 1 solutions will be posted on Feb 7 
 try them 
before then … 
–  As mentioned, prob 11 as originally posted was not covered in class 

(too complicated) so you can replace it with: 
11. A steel bar of cross section 0.0001m2 and 0.25m length is clamped at 
both ends. a) what is its fundamental frequency for longitudinal vibrations? 
b) what is the fundamental frequency for the same bar but free at both 
ends? 

•  You can access most scientific journals, many popular journals, 
and books online via the UW library – no need to be on campus 
–  See 
–  See also 

for how to VPN onto campus network 
 
 



Transverse vibrations of a bar 

•  Net force on a small segment dx (negative = downward) 

–  Notice nothing here is wave motion at speed c 
–  Wave moves to the right with speed v (phase velocity)  
–  But v is frequency dependent:                      Higher frequency à higher v    

•  Bar is a dispersive medium for transverse vibrations – different 
frequencies present spread out spatially, altering wave shape 

→Re y = Re Ψeiω t( ) = cos(ω t +φ) Acosh(ωx / v)+Bsinh(ωx / v)+C cos(ωx / v)+Dsin(ωx / v)[ ]

v = ωκc
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dFy = Fy (x)−Fy (x + dx) = −
∂Fy
∂x

dx = −YSκ 2 ∂4y
∂x4

⎛

⎝
⎜

⎞

⎠
⎟dx

F =ma→−YSκ 2 ∂4y
∂x4

⎛

⎝
⎜

⎞

⎠
⎟dx = ρSdx

∂2y
∂t2

⎛

⎝
⎜

⎞

⎠
⎟→ =

∂2y
∂t2 = −κ

2c2 ∂4y
∂x4

⎛

⎝
⎜

⎞

⎠
⎟, c = Y / ρ

y(x, t) =Ψ(x)eiω t → ∂2Ψ
∂t2 ω

2eiω t =κ 2c2 ∂4Ψ
∂x4

⎛

⎝
⎜

⎞

⎠
⎟eiω t →

∂4Ψ
∂x4 =

ω 2

κ 2c2
∂2y
∂t2

v = ωκc→ ∂4Ψ
∂x4 =

ω 4

v4
∂2y
∂t2 ;   try  Ψ(x) = Aeγx → γ 4 =

ω 4

v4 → γ = ±
ω
v

 or ± iω
v

Ψ(x) = Ae(ω /v)x +Be−(ω /v)x +Cei(ω /v)x +De−i(ω /v)x

From last time 



Transverse vibrations of a bar 

•  Example: bar clamped on one end (x=0), free on the other (L) 

 
 
–  For Al bar 1 m long, with circular cross section 0.01 m radius, we get  
 cAL-VIB = sqrt(Y/ρ) =5055 m/s, κ = r/2=0.005,  à  f1 = 1509 Hz,  v1 = 490 m/s 
–  Notice overtones are not harmonics (integer multiples) of f1    

Fixed end:   y = 0,   and   ∂y
∂x

= 0

Free end:   M = 0→ ∂2y
∂x2 = 0,   and   F = 0→ ∂3y

∂x3 = 0

Applying these at x = 0 and x = L  respectively, we get (skipping many steps!):  
cot(ωL / 2v) = ± tanh(ωL / 2v);   Solve graphically→ωL / 2v ≈ (2n−1)π / 4

Put in v = ωκc,     fn =ω / 2π → fn =
π κc
8L2 1.192,32, 52...( )

(except for n=1) 
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Graphical solutions for cot(x)=tanh(x)  
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n      ��	���π���= ωL/2v 
2  2.36 
3  3.93 
4  5.50 
5  7.07 



Vibrations in strings and bars: summary 
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fn =
nc
2L
,

c = T / ρL

fn =
π κc
8L2

1.192,32,52...( ),   with κ = radius of gyration, speed v = ωκc

fn =
nc
2L

,     c = Y / ρ

•  Transverse vibration frequency for fixed-end strings: 
 n = 1,2,3…      

•  Longitudinal vibration of fixed- or free-end bar 

 
•  Transverse vibration frequency for fixed-end bar 

 
–  Not harmonics! 
–  Example: xylophone bar (not uniform bar – shaped for tuning) 
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Waves in membranes and sheets 

•  Use the same approach, but now in 2D: y(x) à y(x,z)  
–  Define equations of motion in terms of forces, material density, etc 
–  Insert general solution y(x,,z, t) = Ψ(x,z) exp(iωt) 
–  Apply boundary conditions: fixed, free, or mixed 

•  Equations of motion 
–  use Laplacian scalar differential operator:  

 

 For rectangular sheets,  ∇2 =
∂2

∂x2 +
∂2

∂z2 ;

 For circular sheets,    ∇2 =
∂2

∂r2 +
1
r
∂
∂r
+

1
r2

∂2

∂θ 2 ,     with x = rcosθ   and z = rsinθ

For rectangular sheets,  y(x, z, t) =Ψ(x, z)eiωt

 Spatial part of equations of motion→  ∇2Ψ+ k2Ψ = 0 k2 =ω 2 / c2 =ω 2 ρ
T
⎛

⎝
⎜

⎞

⎠
⎟

 This is the time-independent wave (Helmholtz) equation
 Assume Ψ is factorizable into independent 1D functions,  Ψ(x, z) = X(x)Z(z)
 Results:    k2 = kx

2 + kz
2 and   Ψ(x, z) = Asin(kxx x +φx )sin(kzz z+φz )

Solutions: 
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Free vibrations in membranes with fixed edges 

•  For rectangular sheet with clamped edges, boundary conditions 
give normal modes of vibration with 

 
•  For circular sheet with clamped edges, similar solution (but in 

r,θ coordinates) plus boundary conditions give results: 

•  This is the Bessel equation:  solutions are Bessel functions 

 kx =
nπ
Lx

, kz =
mπ
Lz

, n,m =1, 2,3...   →   fnm =ωnm / 2π = c
2

n
Lx

⎛

⎝
⎜

⎞

⎠
⎟

2

+
m
Lz

⎛

⎝
⎜

⎞

⎠
⎟

2

Separation of variables y(r,θ ) = R(r)Θ(θ ) →  r
2

R
∂2R
∂r2 +

1
r
∂R
∂r

⎛

⎝
⎜

⎞

⎠
⎟+ k2r2 = −

1
Θ

∂2Θ
∂θ 2

⎛

⎝
⎜

⎞

⎠
⎟    

 two sides have different variables - cannot be equal unless both = constant:  m2

∂2Θ
∂θ 2

⎛

⎝
⎜

⎞

⎠
⎟= −m2Θ→  Θ(θ ) = cos(mθ +φ),    (φ =  initial phase)

 unlike r,  θ  is periodic:  θ + 2nπ =θ, n =1, 2...→  can only have  m = 0,1, 2...

R(r) equation of motion →    ∂2R
∂r2 +

1
r
∂R
∂r

⎛

⎝
⎜

⎞

⎠
⎟+ k2 −

m2

r2

⎛

⎝
⎜

⎞

⎠
⎟R = 0,    m = 0,1, 2...
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Free vibrations in circular sheets with fixed edges 

•  General solution for circular sheet of radius r = a is 

 

R(r) = AJm (kr)+BYm (kr), k =ω / c, m =1, 2,3...
Jm (kr), Ym (kr) =  Bessel functions of 1st and 2nd kind, respectively
 Need R(r) finite at r = 0, so must have B = 0 →  R(r) = AJm (kr)
Boundary condition R(r) = 0  at r = a→ Jm (kmna) = 0

y(r,θ, t) = AmnJm (kmnr)cos(mθ +φmn )e
iωmn t

 Let  jmn = values of kr  where Jm ( jmn ) = 0  then kmn = jmn / a 

→   fnm =ωnm / 2π = 1
2π

 jmn
a

Normal modes (m,n) of fixed-rim 
circular membrane: Shaded areas 
are 180 deg out of phase with clear 
areas, separated by nodal lines 



Bessel functions 

•  ... Arise in problems with cylindrical symmetry (“cylindrical harmonics”) 
•    
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Jα (ρ) =   Bessel  function  of the 1st kind, order α     

For integer or any positive α, Jα(x) are finite at the origin (x = 0).  
For negative non-integer α, they diverge at x = 0. 
Power-series representation: 
 
 where Γ(z) = gamma function (generalization of factorial) 
For integer α = n,  
 
 
And an integral representation exists: 
 
Jn (x) = 1

2π
exp[i(nτ − xsin(r)dτ

τ=0
π
∫  

Jn(z) for n = 0.5 in 
the complex plane 
from -2-2i to 2+2i 

Jn(x), for integer orders 



Bessel functions 

•     
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Yα (ρ) =   Bessel  function  of the 2nd kind, order α     

Jn (x) = 1
2π

exp[i(nτ − xsin(r)dτ
τ=0
π
∫  

have a singularity at x = 0 
For non-integer α,  Yα(x)  is connected with Jα(x) by 
 
 
For integer order α = n, Yα(x) is defined by the limit as non-integer αàn:  
 
 
And an integral representation exists: 
 

and  

Yn(z) with n = 0.5 in the complex plane 
from -2-2i to 2+2i  

Yα(x), for integer orders α = 0, 1, 2 
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Free vibrations in circular sheets with fixed edges 

•  Examples of motion of first few normal modes (m,n) and 
corresponding frequencies 

 

(0,1), f01  

(1,1), 1.59f01  

(0,2), 2.3f01  

(2,1), 2.14f01  

m=number of diameter nodes 
n=number of circular nodes 



Fundamental mode (0,1) of a drum 

•  (0,1) mode of a drum, such as a tympani, is excited when the 
drumhead (membrane) is struck at the center.  
–  In (0,1) mode, membrane acts like a monopole source, and radiates energy 

very efficiently.  
–  The membrane quickly transfers its vibrational energy into radiated sound 
–  The short duration (typically ~ fraction of a second) means this mode does 

not contribute greatly to the musical tone quality of a drum - a "thump" 
which decays quickly, with no definite pitch. 

•  When struck somewhere between the center and outer edge, the (1,1) 
mode is excited. 
–  This mode takes longer to decay and drum “rings” for a while 
–  Sound has a definite pitch which lingers for a several seconds. This mode is 

what we hear as the “principal tone” of the timpano. only five or six of  

•  Preferred modes that mainly contribute to the sound spectrum and 
give the tympani its pitch are in the lower diametric modes (1,1), (2,1), 
(3,1), (4,1), (5,1). 

preferred modes 1—6 
•  Applet to demonstrate combining modes of circular membrane 

15 
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Chladni plates 

•  Chladni (c. 1790--1800) showed nodal lines by putting sand on 
vibrating membranes and plates 
–  Sand accumulates where uy=0 (nodes) 
(Robert Hooke first did this with flour in 1680) 
–  Napoleon was fascinated – supported his research 
–  Public was fascinated – charlatans sold “vibration science” cures 
–  Application: testing design of guitar backs and violin plates 

    



masked masked 

open 

open 

Chladni plates as sound sources 

•  Speed of vibration in Chladni plate is slower than speed of sound in air 
•  Sound emitted by segment reaches opposite phase segment quickly 

–  Cancellation due to phase difference – sound emitted is diminished  
–  Place a mask over one phase’s segments to baffle sound – overall 

volume is greatly increased  

 
–  Demonstration of Chladni plates excited with violin bow 

brass plates on a wooden platform: circular (8in , 10in D), square (10in), and 
"stadium" (a 8in square with 8in D semicircle at each end); plates are 1/16in 
thick, and bolted through the center to the wooden base by a 10cm brass rod.

17 
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Acoustic wave equation 

•  Acoustic waves propagating in a compressible fluid (air, water) 
•  Need to develop equations of motion in 3D 
•  Many new quantities to define along the way 

–  “Particle” of fluid: dV small enough so acoustic variables are ~ constant but 
large enough to contain billions of molecules àmolecular-scale physics ignored 

–  Waves are pressure disturbances: small enough amplitude so no significant 
change in fluid density or other properties  

–  Equation of state relates forces to deformations, as in solids 

 
–  Typically acoustical disturbances are ~adiabatic processes  

P = ρ rT
P =pressure (Pa),   ρ =  density (kg/m3),    T =  temperature (K)   
 r =  constant depending upon fluid properties 
(eg, for ideal gas: r = R /M ,    R =  universal gas constant, M =molecular weight) 

Adiabatic eqn of state:  P
P0

=
ρ
ρ0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

γ

,   γ =
CP
CV

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ratio of specific heats

Assume  ΔP∝Δρ→ p ≡ P − P0 = B
ρ − ρ0
ρ0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   →  p = Bs,    s = density fluctuation 

B = adiabatic bulk modulus,  p = "acoustic pressure"
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Acoustic wave equation 

•  Continuity equation: fluid can’t just disappear! 
–  Fluid into volume dV (fixed in space) = fluid out 

dmx

dt
= ρux dA,   m =  mass,   ρ =  density,   u =  fluid speed,  dA = dydz 

ρux − ρux +
∂ ρux( )
∂x

dx
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dA = −

∂ ρux( )
∂x

dV,    same for flow in y and z

  so net rate of change of mass inside dV  is  ∂ρ
∂t

= −∇⋅ ρu( )
 (Non-linear!  ρ  and u  are both variables) 
 For acoustic pressure waves, Δρ  is very small, so assume  ρ = ρ0 (1+ s)
∂s
∂t
+∇⋅u = 0   (linearized continuity equation)

Combine equations of state and continuity:   ∂s
∂t
+∇⋅u

⎛

⎝
⎜

⎞

⎠
⎟

t
∫ dt = 0

u = ∂ξ
∂t

, ξ =  fluid particle displacement

∇⋅u
t
∫ dt =∇⋅ u

t
∫ dt =∇⋅ ∂ξ

∂tt
∫ dt =∇⋅ξ→ s = −∇⋅ξ→ p = −B∇⋅ξ
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Acoustic wave equation 

•  Another justifiable simplification: neglect viscosity 
–  Already non-adiabaticity, now assume no viscosity: both reasonable 

assumptions, effects can be added later 
Net force on a ‘particle of fluid’ dV :   

dfx = P − P + ∂P
∂x

dx
⎡

⎣⎢
⎤

⎦⎥
⎧
⎨
⎩

⎫
⎬
⎭
dA = −∂P

∂x
dV    where dV moves with the fluid

same for y and z forces  →   d
!
f = −∇PdV

 Velocity is function of time and position,   !u(x, y, z, t)

acceleration is   a(x, y, z) = ∂
!u
∂t
+ux

∂
!u
∂x

+uy
∂
!u
∂y

+uz
∂
!u
∂z

 =∂
!u
∂t
+
!u ⋅∇( )

!u

F =ma→ df = adm→−∇PdV =
∂
!u
∂t
+
!u ⋅∇( )

!u
⎛

⎝
⎜

⎞

⎠
⎟ρ dV

→  Euler's equation:  −∇P = ∂
!u
∂t
+
!u ⋅∇( )

!u
⎛

⎝
⎜

⎞

⎠
⎟ρ

for small-amplitude disturbances (s <<1),   !u ⋅∇( )
!u << ∂

!u
∂t

  ρ ≈ ρ0  and ∇P ≈ p

Euler's equation→    −∇p ≈ ρ0
∂
!u
∂t

   "Linear inviscid force eqn"



21 

Acoustic wave equation 

•  We have eqn of state, adiabatic continuity, and inviscid force eqns 
–  Combine to give a linearized 3D wave equation 

–  Since p and s are proportional, s also satisfies the wave equation 

1.   p = Bs,   equation of state:  s = density fluctuation ρ − ρ0

ρ0

⎛

⎝
⎜

⎞

⎠
⎟,  B = bulk modulus

2.  ∂s
∂t
+∇⋅u = 0   linearized continuity equation

where  u = ∂ξ
∂t

, ξ =  fluid particle displacement→ p = −B∇⋅ξ

3.  −∇p ≈ ρ0
∂
!u
∂t

   "Linear inviscid force eqn"

Divergence of (3):  ρ0∇⋅
∂
!u
∂t
⎛

⎝
⎜

⎞

⎠
⎟= −∇⋅∇p = −∇2p

Time derivative of (2):   ∂
2s
∂t2 +∇⋅

∂
!u
∂t
⎛

⎝
⎜

⎞

⎠
⎟= 0    note ∂∇⋅

!u
∂t

=∇⋅
∂
!u
∂t

→∇2p = ρ0
∂2s
∂t2 ;    use (1) to eliminate s = p / B :    ∇2p = 1

c2
∂2p
∂t2

where  c = B / ρ0      →  can rewrite (1) as:    p = ρ0c
2s

div 
!
F =∇•

!
F =

∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

grad f =∇f =
∂fx
∂x
i +
∂f y
∂y
j+
∂f z
∂z
k
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Acoustic wave equation 

•  So far, we have 

•  Adiabatic, inviscid fluid has no rotational flow à no turbulence, shear 
waves, or boundary layers 
–  Real fluids have viscosity, velocity u is not curl-free everywhere, but small 

rotational effects at boundaries do not affect propagation of sound waves 

…so Φ also satisfies the wave eqn 

Force eqn→   ρ0
∂ ∇Φ( )
∂t

+∇p = 0→∇ ρ0
∂Φ
∂t

+ p
⎛

⎝
⎜

⎞

⎠
⎟= 0→ true if   p = −ρ0

∂Φ
∂t

  ∇2p = 1
c2
∂2p
∂t2 ,      ρ0

∂
!u
∂t
⎛

⎝
⎜

⎞

⎠
⎟= −∇p,      and   p = ρ0c

2s 

where  c = B / ρ0 ,    and s = density fluctuation ρ − ρ0

ρ0

⎛

⎝
⎜

⎞

⎠
⎟

recall that  ∇×∇f = 0  for any f   →  ρ0
∂
∂t

∇×
!u( ) = −∇×∇p = 0

 so ∇× !u = 0    (!u  must be irrotational) 
→   !u  can be expressed as gradient of a scalar function Φ
 !u =∇Φ  where  Φ is a scalar velocity potential   

* 

* 
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Speed of sound in more detail 

•  Speed of sound is related to thermodynamic variables: 

•  For ideal gas,  

 
•  See if you can google an actually measured value: I couldn’t!  

–  Everyone just quotes this theoretical value… 
–  I found a student lab report that gave c=326m/s – but they forgot 

to report temperature ! 

Meaning: evaluate 
derivative at equilibrium 
in terms of P and ρ   

p = ρ0c
2s  where s = ρ − ρ0

ρ0

⎛

⎝
⎜

⎞

⎠
⎟→ c2 =

∂P
∂ρ ADIABATIC

P
P0

=
ρ
ρ0

⎛

⎝
⎜

⎞

⎠
⎟

γ

,   γ = CP

CV

⎛

⎝
⎜

⎞

⎠
⎟  ratio of specific heats→ ∂P

∂ρ ADIAB

=  γ P
ρ

→ evaluated at equilibrium pressure and density,  c2 =  γ P0

ρ0

Example: for air at  0oC and P0 =1 atm =1.013x105Pa,  

ρ0 =1.293 kg/m3,  γ  =1.402,  γ
P0

ρ0

= 331.6 m/s



Sound speed measurement @ home 

•  The student report* described using a loudspeaker aimed at two 
microphones with measured separation 

•  They used Audacity freeware (see Heller book’s website for link); has 2 
inputs with 20 microsec resolution, so they used these to measure Δt 

24 

* www.physlab.org/wp-content/
uploads/2016/04/Speed_sound.pdf 
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Harmonic plane waves 

•  Harmonic plane waves = sin/cos waves in 1 direction: 
 p(x,y,z,t)=p(x,t)   à  y-z planes have constant p value 

1D wave equation ∂
2p(x, t)
∂x2 =

1
c2

∂2p
∂t2

⎛

⎝
⎜

⎞

⎠
⎟   with  c2 = B / ρ0,  B=bulk modulus of fluid

 p = Bs = ρ0c
2s,    s = density fluctuation relative to ρ0

wave equation has complex solution  p = p+ + p−
with wave in +x direction   p+ = Ae

i(ωt−kx ),   and wave in -x direction   p− = Be
i(ωt+kx )

particle speeds are   u+ = +
p+
ρ0c

,    u− = −
p−
ρ0c

density fluctuation relative to ρ0  are   s± = ±
p+
ρ0c

2

 plane wave in arbitrary direction   !p =
!
Aei(ωt−kxx−kyy−kzz)

3D wave equation ∇2p = 1
c2
∂2p
∂t2     is satisfied if   kx

2 + ky
2 + kz

2  =ω /c
!
k = kx x̂ + ky ŷ+ kzẑ    propagation vector and !r = x x̂ + y ŷ+ z ẑ    position vector
 →  !p =

!
Aei(ωt−

!
k ⋅!r )   plane wave, and surfaces of constant phase have 

!
k ⋅ !r =  constant

!
k =∇(

!
k ⋅ !r ) points in the direction of propagation:  k̂ =

!
k /
!
k  is the ray direction

adiabatic B of air = 1.42×105 Pa 
  à c =  331 m/s, same as before 
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Energy transported by plane waves 

•  Energy carried by small parcel V0 that moves with fluid: 

(These simple results only valid for plane waves) 

KE and PE:    EK =
1
2
ρ0V0u

2,    and  EP = − pdV
V0

V

∫    (compression from V0  to V )

 must have  ρ0V0 = ρV→ dV = −
V0

ρ0

dρ

p = ρ0c
2s   and  s = ( ρ − ρ0  )/ρ0 → dρ = dp / ρ0c

2 → dV = −
V0

ρ0c
2 dp

EP = − p −V0

ρ0c
2 dp

0

p

∫ =
p2V0

2ρ0c
2 → total acoustic energy in V0  = ETOT =

1
2
ρ0V0 u2 +

p2

ρ0
2c2

⎛

⎝
⎜

⎞

⎠
⎟

 instantaneous energy density  Εi = ETOT /V0 =
1
2
ρ0 u2 +

p2

ρ0
2c2

⎛

⎝
⎜

⎞

⎠
⎟    J/m3

 time average gives energy density  Ε= Εi T
=

1
T

Εi dt
T
∫  ,   T = period of wave

 so for plane harmonic wave in the +x direction    p = ρ0cu→Εi = ρ0u
2 = pu / c

 for p = Pei(ωt−kx )   and  u =Uei(ωt−kx ),    Ε= Εi T
=

1
2
PU / c = 1

2
P2

ρ0c
=

1
2
ρ0U

2
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Intensity of acoustic waves 

•  Intensity of acoustic wave = time rate of energy flow (power) 
through a unit area normal to propagation direction 

Εi = pu / c→ I = pu
T
=

1
T

pudt
T
∫

for plane wave in +x direction,  I = 1
2
P+U+ =

1
2
P+

2

ρ0c

for plane wave in -x direction,  I = − 1
2
P−U− = −

1
2
P−

2

ρ0c

RMS values 1
T

f 2 dt
T
∫   

are useful time averages 
providing effective intensities:

P± RMS = P± / 2 → I± RMS =
P+U+

2
=

P+
2

2ρ0c

Amplitude = max Δp in wave 
Intensity = power/area ~Δp2  
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Specific acoustic impedance 

•  We found acoustic impedance = driving force/resulting speed 
•  In terms of acoustical pressure p, we get 

Remember: lower case p, ρ, u etc are relative to baseline values P0, ρ0 , etc 

•  SI units for z : Pa-s/m    (1 Pa-s/m =1 rayl, named after Rayleigh) 

 
 

 Specific acoustical impedance   z = p / u

 For plane waves  u± = ±
p+
ρ0c

→    z = ±ρ0c  (for + x  or - x  direction)

ρ0c =  Characteristic impedance of medium

z is real for plane waves, 
but standing waves or 
diverging waves have 
complex values:  
  z = r + i x    
(r, x = specific acoustic 
resistance, reactance) 
characteristic of medium 
for non-planar wave type 
considered 
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