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Course syllabus and schedule — updated

See : http://courses.washington.edu/phys536/syllabus.htm | of sound; Harmonic plane waves,

6 19-Jan Thu K.Ch.5,6 H:Ch. 1 intensity, impedance.
UPDATED BELOW HERE:

7 24-Jan Tue K Ch. 5 - ch. 2 Spherical waves; Eikonal equ?hon a.md ray tracing; transmission
and reflection at interfaces;

8 26-0an | Thu K- ch. 7 H: Ch. 7 Absorption losses; Pulsating sphc.eres and simple sourcem
and dipoles

Near field, far field; Radiation impedance; waves in pipes;

9 31-Jan Tue K. Ch. 8-10 H: Chs. 13 o
rectangular cavities; Helmholtz resonators;

Resonant bubbles; Acoustic impedance; physical acoustic filters;

10 2-Feb | Thu K.Ch 12 Decibels and sound level measurements

Environmental acoustics and noise criteria; industrial and
11 7-Feb Tue K.Ch 12 H: Ch. 28 community noise regulations; noise mitigation;
frequency, pitch and musical tones

Interference effects; Musical acoustics;
12 9-Feb Thu H: Chs. 18-19 Musical instruments: strings. REPORT 1 PAPER DUE by 7 PM;
REPORT 2 PROPOSED TOPIC DUE

13 14-Feb Tue K.Ch. 11 H: Ch. 16 Musical instruments: winds; The ear, and human hearing;

Human hearing: the inner ear; pitch perception; acoustics of

14 16-Feb | Thu K.Ch. 11 H: Chs. 21-22
speech

Room acoustics; Transducers for use in air and water:

15 21-Feb | Tue | K.Chs.13-14 H: Ch. 27; Ch. 6 Microphones and loudspeakers; hydrophones and pingers

Underwater acoustics; sound absorption underwater, the sonar
16 23-Feb | Thu K.Ch 15 equation; applications: acoustical positioning, seafloor imaging,
sub-bottom profiling; Doppler effect

Clacs 1¢ over a
OTOROUOU 1TV U VIR

17 28-Feb Tue 1 Course wrapup. Student report 2 presentations

18 2-Mar Thu (U Iy OUT taKS=01e Student report 2 presentations

19 7-Mar | Tue | €Xam. No|in-person final Student report 2 presentations

20 9-Mar | Thu | exam during finals Student report 2 presentations. TAKE-HOME FINAL EXAM ISSUED

—~ | 17-Mar | Fri | week FINAL EXAM ANSWERS DUE by 5 PM




From session 2

Driven damped mechanical oscillator

e Analogy to electrical circuits: mechanical impedance

complex impedance Z, =R +iX =‘Z "

ei@

Re[Zm]=R . Im[Z ]=reactance X =(a)m—s/a))

m m

2|~ R +(om-s/ o)}

Feia)t

/ Z. =ratioof VtolI

force to speed

Displacement : x(#) =

Feia)t
Speed : U(t) =

ia)[Rm+i(a)m—

Z., = ratio of driving

“mechanical ohm” has
units of force/speed

R
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M Specific acoustic impedance

e We found acoustic impedance = driving force/resulting speed

e In terms of acoustical pressure p, we get
Specific acoustical impedance z=p/u

D,

PoC
p,c = Characteristic impedance of medium

For plane waves u, ==+ — z==xp,c (for +x or -x direction)

Remember: lower case p, p, u etc are relative to baseline values P, p, , etc
e Sl units forz: Pa-s/m (1 Pa-s/m =1 rayl, named after Rayleigh)
z is real for plane waves,

but standing waves or Sound | .
diverging waves have Velocity Density Impredance
complex values: Material (in./sec.) (Ibs./In.%) (Ibs./In.? sec.)
_ Steel 206,500 0.283 58,400
zZ=r+1Xx Copper 140,400 0.320 45,000
(r, X = speciﬁc acoustic Cast Iron 148,800 0.260 38,700
resistance, reactance) Lend %A D421 AN
haracteristic of medi Glass 216,000 0.094 20,300
characteristic or medium ¢ rete 198,000 0.072 14,200
for non-planar wave type ;e 56,400 0.036 2,030

considered



Spherical waves

e Common case: small source, large volume for wave expansion
Z

+ — Use spherical coordinates (r, 0. ¢)
P x =rsinfcos¢ r=+/x2+y?2+2z2  acoustic wave equation
y =rsinfsing 0 = arccos(z/r) V2, ié’z_p
\ Zz = rcost ¢ = arctan(y/x) ¢* ot
//_%_-,/’\// y Vv? :i,f;[;i]+ 5 1 A@ ’/sin(?ﬁa )+ 5 _1 5 Fzz
X re or or) r-smé oé\ 60 ) r°sm 6 g

e Simplest case: spherically symmetric
— Intensity = f(r only), not dependent on 6 or ¢

Then V’p reduces to r terms only, gé;vuvr;? o
2
V2p — 8_12? + % a_p
or- r or
2 2
: 2 10
wave eqn 1s a—p+—a = P.

o’ ror ot
since [ = P* [ (2p,c) = p’ | const
conservation of energy — [ should drop off as 1/r°
(~ area of spherical surface of radius r)



Spherical waves

e Symmetrical, diverging spherical waves

I = p* should drop off as 1/7> (energy conservation)
— p should drop off as 1/r Sound

Power

so (rp) should be ~ const P
— use f =(r p) as wave eqn variable:
3f 19f
or’ - ¢’ ot
solution must be of the form f(r,t)= f,(ct—r)+ f,(ct+1)

%p=i=lf1(ct—r)+lf2(ct+r) :
r r

Sound
Intensity

-
P

|=—2
4mr

(same form as plane wave case)

r

f, 1s diverging wave, f, converging




Spherical waves

e Symmetrical, diverging spherical waves
Most applications involve only diverging|spherical waves:

general (complex) form of solution is p(r,t) = éexp(ia)t—kr)
r

—

Can use pressure potential ®(r,¢) to relate p to other acoustic variables:
P -
O (rt)=———, u=Vo-=

i | P
| =
iwp, k‘r‘) WP,
Observable quantities are real parts:

p(r,t)= Re(é exp(iwt - kr)), u(r,t)=Re

1- PP
k‘r‘ iwp,
Sound

Power Intensity
-
P

|=—2
4nr




Visualizing spherical waves

hittp://www.falstad.com/ripple
hittp://www.falstad.com/wavebox/fullscreen.hitml

Intensity drops off as 1/r? because wave energy is uniformly distributed

over a sphere of radius r, with surface area ~ r?
— factor of 2 increase in r & factor of 4 decrease in I

sphere area

intensity at
4mr

surface of sphere

source strength

The energy twice as far from the 21‘
source is spread over four times
the area, hence one-fourth the intensity. 3r



Point sources

e Point source = emitter << wavelength of sound radiated
— Human hearing range: A=20m ~ 2cm in air, 75m ~7.5 cm in water

Symmetrical, diverging spherical waves from a monopole source
emitting a single frequency

: _ A . e : : _
Solution p(7,t) = —exp(iwt — kr) satisfies the wave eqn with point source at r = 0:
r

V2p— iz‘z_l’ — 47 AS(F)exp(iot), (c - /B/p, )

recall: f AxAO(r)dV =4 A if V includes 7 =0, or O if not
%

Acoustic Monopole

For a point source at 7 =7, instead of 0,
the wave equation becomes

2
Vzp — ia_p = -4 AS(F - T,)exp(iwr) Red _dots =
c® ot particle motion '

and 1ts solution is

p(r,t) = ——exp(iwt —k|F -T,|)
7 -7

Bvr



Point source loudspeakers for large halls

Loudspeaker designed to act as a point source  «

120° 60°
e Angular distribution at various f’s:
150° 30°
—1kHz
-180° 00 == 16kHz
= 4kHz
/] /AN
[l 1 Sound propagation -150° -30°
: 120° -60°
~» -90°

Each receiver has a single direct path:
one path length, no interference effects

N\, Listener 1 S Listener2

Stage \
| From kv2audio.com
| distance E— |

10




For comparison: line sources

Loudspeakers arrayed in a line:

e Angular distribution at various f’s:

Line array sound system 180°
(I oW

. Equidistant radius from the listener 2

-150°

_ Equidistant radius from the lis!

120° “60°

Sound propagatic ,, ]

' \ Each receiver has multiple
path lengths to loudspeakers:
o] AN e SN interference causes spikes in
_____ angular distribution of sound

o Listener 1 .. Listener2

Stage

From kv2audio.com

Distance ——»

11



From 15t session

Rays vs waves: handy fiction

e \We know sound travels in the form of waves, but
— We can picture sound “rays” as lines from source outward
— We define rays as lines perpendicular to the wavefronts
— “Ray tracing” is useful for following paths of sound waves

] wavetronts

12



Ray optics

e Use simple geometric rules of ray tracing to analyze sound
arriving at any point from a given point source

— Refraction where sound speed changes
e Localized angle change at interfaces between media
e Continuous angle change in media with varying c
— Reflection off hard surfaces:
e Specular reflection from smooth surfaces
e Diffuse reflection from textured surfaces
— Transmission vs absorption for all media and interfaces

Drffiazer

d ~ right side wall \

v 4 . disperses rear !
T — 8 <

— . wit ]l rellecdioa™

Arrival time S U "'-«-7_-._":" S —— f

—

>
4
4

depends on path Dt >
length of ray @

Abzoctent rancees left

s1de wall reflectcn

/

13



Geometrical (Ray) “optics” for acoustics

Valid when system dimensions >> wavelength A
— Neglect wave nature of sound
— Analyze systems by ray tracing
— Rays = Lines normal to wavefronts
Basic Laws:
Reflection: 6, = 6,
Z = normal to surface

Refraction: n, sin6; = n, sino,
Snell’ s (or Descartes’ ) Law
n=index of refraction = c/v
c= reference value of sound speed 0,
v=speed of sound at given location

IN

Can be derived several ways:

— Wavelets (Huygens)

— Variational principle (Fermat)
e Ray follows fastest path from A to B
- reversibility of ray paths (“time-symmetry invariance”)

U U —_— e — ==

14




Ray reflection (Deep Thought)

e One important idea you learned in school: “angle of reflection equals
angle of incidence”

— Reflected ray makes same angle with reflector as incoming ray
Reflection law is also consistent with the “principle of least time”

e In going from point A to point B, reflecting off a mirror, the ray path
actually traveled is also the fastest (shortest) route

e Nature automatically finds the most economical path !

A
Longer paths — B | Actual path =
take longer time fastest path:
equal angles

Reflecting surface

15



Refraction at a flat interface

e Sound rays bend at interfaces between media
Same idea for acoustics as for refraction of light rays:
— Universal constant ¢ = 3x108 m/s = speed of light in vacuum
e But speed of light in any material medium is slower: ¢’ < ¢
e In typical glass, ¢’ = (2/3)c, pure water = (3/4)c, air =0.9997c¢
— Rays bend more the larger the difference in speed between media
— Object at B appears to be at location B“ (= our brains’ expectation)
Another “least time” rule:

Get from A to B faster if you spend /ess
time in the material with slower ¢’

(n = ¢/ ¢’ = refractive index)

Air: n;=1.0
Water: n, = 1.5 |
(soc’=2/3 ¢) § \\\
i N o
Snell’s Law (optics): \\\
Actual path

16



Parade analogy to understand refraction

e Imagine soldiers lined up in ranks, marching at constant speed

e Sqgt. Bilko orders them to slow down to 2/3 normal speed when
they cross a line marked on the parade ground

— But they are not allowed to break ranks!

_ Ranks of soldiers
- //\ y (Wavefronts)

Slowdown line

17



Parade analogy

e Here is a picture after a few soldiers have passed the line

_“_ Ranks of soldiers
(Wavefronts)

Slowdown line

— Notice:

e if parade had approached at a right angle (v perpendicular to
the line), there would be no change of direction, ranks would
just get closer

e This analogy works whether you believe in waves (ranks as a
unit) or particles (individual soldiers)

— Isaac Newton and Thomas Young would agree on this
18



Eikonal equation /ﬁ

, - , - g S(?,w) Reference point
e There is no “universal constant” sound speed! g
e Must use an arbitrary reference speed ¢,

e The index of refraction is a variable: n(x,y,z) = ¢,/ c(x,y,z)
i(wt—k7)

—

For a plane wave p = Ae , k-r = constant defines
surfaces of constant phase. Rewrite this as

D= A(x,y,z)exp(ia)[t -T(x,v,2)/ c, ]) (T has units of length)

So places where I'(x,y,z) = constant are surfaces of constant phase.

Ask =V(k7) points in the direction of propagation (ray direction),
so does VI(x,y,z2)

2
40,

) 2
Put this in wave eqn V’p = 19p_, (ﬂ) - VI-VI'=0

¢’ ot Co Co
if amplitude A and VI vary slowly enough (requires A and ¢ ~ const
over distances on the order of A =c/ f)— VI'- VI'= const

let VI-VI'=n" (Eikonal equation - encountered also in QM)
where n(x,y,z)=c,/c(x,y,z)

19



Eikonal equation and ray tracing

e Eikonal equation helps us do ray tracing: VI is the direction of ray
e Example: ray of sound moving in x-y plane

VI'=ncos¢x+nsingy but ¢ will vary
with ¢ as the ray propagates.

Small patch on surface of constant
phase moves along ray path.

Useful to consider variation

of VI'with s = distance along ray path:

VI'=n(x,y,z)s (5= unit vector in direction of s at k\/, 13)
(see Kinsler for details - works for 3 dimensions also)

direction cosines of §={a,B,y}: S=aX+py+yz, and o’ +p +y” =1
rate of change in § direction is 4 = ai + 3 9 + yi

ds ox dy 0z
d(na)  on d(np) _dn d(ny) on

ds 0x ds dy ds 0z

Then

20



Ray tracing

e Sound ray moving In a plane — so c=c(z only) — IS a common case:
Then d(na) -0, d(np) -0, d(ny) _ on e c(xy,z)=c(x)
ds ds ds 0z Then n = n(x) = ¢,/ c(x)
If ray starts in the x-z plane ‘4
with an angle 6 with the x axis,
then aa=cosf, y=sinf, (=0,
d(np)

ds

SO d(ncos0) =0 — ncosf = const,

ds
d(nsin@) dn

ds 0z -
0, = angle of ray with the x axis at location where ¢ =¢, |

Then n(x,y,z)cosf =const =c,cosO/c(x,y,z)

cosf _ cosé, (Snell's Law)
c(x, Y 2) Co

Ray path

and =0 — f =0 always;

and

—>

21




Snell’s law

e When sound speed c(z) decreases with z, 6 increases
e Rays always bend toward a region of lower c:

C, _1 . [dc . (dn

n= —c(z)=c,n — sign| — [= —sign| —
c(z) dz dz
% = g, gradient of sound speed
z

dz=sinfds and ds=Rd6, where |R|= radius of curvature of ray
R=—1_%

g cosb),

: . : : d’0 C o p
R 1s positive if dO increases with s (F > O), negative if it decreases
S

22



Ray refraction with varying c

Classic case: sound rays in water- oversimplified: linear c(z) = a-b z
Sound speed c(z) decreases with depth z, 6 (angle wrt x) increases
Rays always bend downward, toward a region of lower c

it il s &
P e A i T I I

yadag

: 4

Range

More on this in a few weeks...
fas.org

23



Ray refraction with varying c

e Another classic case: sound rays in air, passing over cool water

e Air near water is cooler, sound speed c(z) decreases with
temperature

e Rays always bend downward, toward a region of lower c

Refraction of Sound Wam Warmer air,

faster sound

speed

Cool air,
slower sound
Source o I Listener

e More on this in a few weeks... Jas.org

24



Hazards of ray refraction

Ultrasound rays in human
body, with varying sound
speeds

Demonstration using Zerdine -
= substance used in

“phantoms”

(Phantom = object used in
medical imaging calibration and
experiments, simulating tissue
properties)
Error in position of target could
have serious consequences!

Radiation Oncology 10(1):119

anterior

mfenor%} superior

posterior

Water at 0°C,
(ol | ,402 m/s

Zerdine,
cp=1,540 m/s

direction - Ay =
of refracted '\/B\
sound wave\ 107.5 mm

true position
of spheroid

apparent position
of spheroid

25



Ray tracing with image-source method

Simple geometric ray tracing tool, from optics of mirrors:

® S'cl

Sa
.L

semanticscholar.org

S'cZ-\\.

e Find reflected rays via “virtual image
source” behind reflector

— On line normal to surface from source,
same distance behind

e Draw rays from image source to real
source and receiver

— If ray from image source to receiver
does not intersect same wall,
receiver cannot “see” it (dashed line)
SO ignore

e Secondary images for multi-surface

reflection ray paths
26



Reflection and transmission at interfaces

2
7
(ry=picy) (ry=pacy)
e Reflections are characterized by reflectance r P 7 .
(assume plane waves for now) —> ’
— Reflected intensity I,=rl, /§
r=R? where A
R=pressure (amplitude) reflectance factor: py = Rp, =Vr p)) x=0

— Similar coefficients for transmission (T) and absorption (A): T=p; / p
(Coefficients must be real humbers)

Pressure reflection coefficients are related to acoustic impedance

Specific impedance z= p/u; for plane waves u = P 2= P,C

PoC
p,¢ = Characteristic impedance of medium So z =p ¢ = r+i x 2 Re(z)= r=p; ¢

Intensity of plane wave is ) / >
[=lp_=lp_ SO RI= reﬂ=(pr) =|R|2
Pi

— Assume for intensity coeffs, T+R+A=1: all energy accounted for
o If Alis small, can assume T+R ~ 1

27



Reflection and transmission at interfaces

1N 2
e For a (massless) interface between 2 fluids o) N e
— Must have no net pressure difference at boundary: p,=p, P, 2
<€ P,
(continuity of pressure across boundary) — —>
— Must have no relative motion at boundary: u,=u, | AN
(continuity of normal velocity across boundary) f\
So at interface, p+p =p andu +u =u, xQ
Pirp, _ P ;  specific impedance z = P_ 0,C
for T U +u U u
10T TAYS — 7, =7z, continuity of specific impedance in normal direction
arriving normal b
to interface for plane waves — ==r (depending on direction of propagation)
u
%&=r2, &=+r1, and &=—r1
U, U, u,
SO pi+pr=pt% pi+p’” =ru=rz

1
u+u, U piln=p.Ir pPi— D,

n(p+p)=n(p-p)—=(n+n)p =(rn-n)p,
(n-r) _(1-rn/n)
— / .=R= =
PP (r2+r1) (1+r1/r2)

28



Reflection and transmission at interfaces

1 2
e For rays arriving at an angle 6, to interface:

Plane wave incident with propagation vector k,
i(wt—k7)

(1) (r5)

in the x-y plane: p, = Ae
—p =P exp[i(a)t —k,xcosf, -k ysin Hi)]

reflected wave is p. =P, exp[i(a)t +k,xcos6 —k ysin Hr)]

transmitted wave is p, = P,exp|i(wt — k,xcos6, - k,ysin6,)] x=0
Continuity of pressure at interface x =0: P, ,, =P, ,,

P exp(-ik,ysin6,) + P.exp(—ik,ysin0 )= P exp(-ik,ysin0,)
must be true for any y, so must have k, sinf, =k, sin6, =k, sin0,

sing, _ sinb, (Snell's law)

so sinf, =sin6, (retlection law) and
c c
1 2

With all exponents equal, P +P =P —=1+R=T
— We get sines instead of cosines here due to convention of taking
angle relative to normal (from optics)
e Underwater acoustics uses convention of measuring 6s from
interface surface direction, so they use cosines

29



Reflections at surfaces

e "It can be shown” (see Kinsler)
— For reflection at an interface m

(r5)

_(r/c0s6, =1/ cosb,)
(r,/cos6, +r, /cost,)
r=plu=z (Rayleigh reflection coefficient)

Forc,>c, , 6, <0, and 1s a real number.
Forc,>c, and 6. <0 . , 6 >0. and 1s a real number.
it 6,>60_. ,sinf, >1, so cosO, 1s imaginary.

The transmitted pressure is

for plane wave,

p, = Pexp(-yx)exp[i(wt -k ysinb,)], y=k, \/(02 /¢) sin®6, -1
At critical angle, amplitude decays in x direction but alr
wave propagates in the y direction (parallel to interface)

n2

At critical angle, refracted ray n,
lies in plane of interface:

Critical angle

Y

30



zs fluid (water)

Reflections at solid(ish) surfaces

fluid (bottom)

o For reflection on a (hard) solid surface, with normal incidence: C21 2
— Ignore transmission: consider only reflected wave
— Describe behavior in terms of normal acoustic impedance of solid

Z, = qp — , 7= unit vector normal to surface
Uu-n
D . — A . 1 I 1 I ]
For normal-incidence wave, u-n=u_ the particle speed R for a "slow bottom"
z, =F +ix ‘withc, /¢, =r,/1r,=09]]
continuity of pandu atx=0: p,+p =p,, u +u =u, 3;0 - .
4+ 1+R ro—r)+ix g | -
%Zn=pl p”egﬂ:;fi—eR=(” 1) ."
U +u, 1-R (rn+r1)+zxn i l
For x, =0, thisis same as for normal incidence ol o
. . . 0° 90°
on a fluid-fluid interface. Angle of incidence

— For a semi-solid surface (eg seabottom), transmitted power might be
significant, in both transverse and shear waves — sound speed must

include shear modulus:
c=B/p, = \/(B+(4/3)G)/po, G = shear modulus

31
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