

Session 7

Spherical waves; point sources Rays and waves Plane waves and spherical waves

1/29/2019

Course syllabus and schedule – updated

See : http://courses.washington.edu/phys536/syllabus.htm of sound; Harmonic plane waves,							
6	19-Jan	Thu	K. Ch. 5, 6	H: Ch. 1	intensity, impedance.		
					UPDATED BELOW HERE:		
7	24-Jan	Тир	K Ch 5	H. Ch 2	Spherical waves; Eikonal equation and ray tracing; transmission		
, 	24 Juli	Tue	K. Ch. 5		and reflection at interfaces;		
8	26-Jan	Thu	K: Ch. 7	H: Ch. 7	Absorption losses; Pulsating spheres and simple sources Tonight and dipoles		
9	31-Jan	Tue	K. Ch. 8-10	H: Chs. 13	Near field, far field; Radiation impedance; waves in pipes; rectangular cavities; Helmholtz resonators;		
10	2.5.1				Resonant bubbles; Acoustic impedance; physical acoustic filters;		
10	2-гер	Thu	K. Ch 12		Decibels and sound level measurements		
	7-Feb	Tue	K. Ch 12	H: Ch. 28	Environmental acoustics and noise criteria; industrial and		
11					community noise regulations; noise mitigation;		
					frequency, pitch and musical tones		
	9-Feb	Thu			Interference effects; Musical acoustics;		
12				H: Chs. 18-19	Musical instruments: strings. REPORT 1 PAPER DUE by 7 PM;		
					KEPORT 2 PROPOSED TOPIC DUE		
13	14-Feb	Tue	K. Ch. 11	H: Ch. 16	Musical instruments: winds; The ear, and human hearing;		
14	16-Feb	Thu	K. Ch. 11	H: Chs. 21-22	Human hearing: the inner ear; pitch perception; acoustics of speech		
15	21-Feb	Tue	K. Chs. 13-14	H: Ch. 27; Ch. 6	Room acoustics; Transducers for use in air and water:		
					Microphones and loudspeakers; hydrophones and pingers		
16	22 Eab	Thu	K Ch 15		onderwater acoustics; sound absorption underwater, the sonar		
10	23-ren	mu		0	sub-bottom profiling: Doppler effect		
17	28-Feb	Tue	Class 15 0	ver atter you	Course wrapup. Student report 2 presentations		
18	2-Mar	Thu	turn in yo	ur take-home	Student report 2 presentations		
19	7-Mar	Tue	exam. No	in-person final	Student report 2 presentations		
20	9-Mar	Thu	exam dur	ing finals	Student report 2 presentations. TAKE-HOME FINAL EXAM ISSUED		
_				0			

From session 2 Driven damped mechanical oscillator

• Analogy to electrical circuits: mechanical impedance

complex impedance $Z_m = R_m + iX_m = |Z_m|e^{i\Theta}$ $\operatorname{Re}[Z_m] = R_m; \quad \operatorname{Im}[Z_m] = \operatorname{reactance} X_m = (\omega m - s / \omega)$ $\left|Z_{m}\right| = \sqrt{R_{m}^{2} + \left(\omega m - s / \omega\right)^{2}},$ Z_{e} = ratio of V to I $\Theta = \tan^{-1} \frac{X_m}{Z_m}$ Z_m = ratio of driving force to speed "mechanical ohm" has Displacement: $x(t) = \frac{Fe^{i\omega t}}{i\omega \left[R_m + i\left(\omega m - s / \omega\right)\right]}$ Speed: $u(t) = \frac{Fe^{i\omega t}}{\left[R_m + i\left(\omega m - s / \omega\right)\right]} = \frac{f(t)}{Z_m} \rightarrow Z_m = \frac{f(t)}{u(t)}$ units of force/speed

From last time Specific acoustic impedance

- We found acoustic impedance = driving force/resulting speed
- In terms of acoustical pressure p, we get Specific acoustical impedance z = p/u

For plane waves $u_{\pm} = \pm \frac{p_{\pm}}{\rho_0 c} \rightarrow z = \pm \rho_0 c$ (for $\pm x$ or $\pm x$ direction)

 $\rho_0 c$ = Characteristic impedance of medium

Remember: lower case p, ρ , u etc are *relative to* baseline values P₀, ρ_0 , etc

• SI units for z : Pa-s/m (1 Pa-s/m = 1 *rayl*, named after Rayleigh)

z is real for plane waves, but standing waves or diverging waves have complex values:

z = r + i x

(r, x = specific acoustic resistance, reactance) characteristic of medium for non-planar wave type considered

	Sound		Acoustical		
	Velocity	Density	Impredance		
Material	(in./sec.)	(lbs./In.³)	(lbs./ln. ² sec.)		
Steel	206,500	0.283	58,400		
Copper	140,400	0.320	45,000		
Cast Iron	148,800	0.260	38,700		
Lead	49,800	0.411	20,400		
Glass	216,000	0.094	20,300		
Concrete	198,000	0.072	14,200		
Water	56,400	0.036	2,030		

• Symmetrical, diverging spherical waves

$$I \propto p^{2} \text{ should drop off as } 1/r^{2} \text{ (energy conservation)}$$

$$\rightarrow p \text{ should drop off as } 1/r \text{ sound}$$
so (rp) should be $\sim const$

$$\rightarrow use f = (rp) \text{ as wave eqn variable:}$$

$$\frac{\partial^{2} f}{\partial r^{2}} = \frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}} \text{ (same form as plane wave case)}$$
solution must be of the form $f(r,t) = f_{1}(ct-r) + f_{2}(ct+r)$

$$\rightarrow p = \frac{f}{r} = \frac{1}{r} f_{1}(ct-r) + \frac{1}{r} f_{2}(ct+r) \text{ :}$$
 $f_{1} \text{ is diverging wave, } f_{2} \text{ converging}$

• Symmetrical, diverging spherical waves Most applications involve only diverging spherical waves: general (complex) form of solution is $p(r,t) = \frac{A}{r} \exp(i\omega t - kr)$

Can use pressure potential $\Phi(r,t)$ to relate p to other acoustic variables:

$$\Phi_{+}(r,t) = -\frac{\vec{p}}{i\omega\rho_{0}}, \quad \vec{u} = \nabla\Phi = \left(1 - \frac{i}{k|r|}\right)\frac{\vec{p}}{i\omega\rho_{0}}$$

Observable quantities are real parts:

$$p(r,t) = \operatorname{Re}\left(\frac{A}{r}\exp(i\omega t - kr)\right), \quad u(r,t) = \operatorname{Re}\left(=\left(1 - \frac{i}{k|r|}\right)\frac{\vec{p}}{i\omega\rho_0}\right)$$

- <u>http://www.falstad.com/ripple/</u>
- <u>http://www.falstad.com/wavebox/fullscreen.html</u>
- Intensity drops off as 1/r² because wave energy is uniformly distributed over a sphere of radius r, with surface area ~ r²
 - factor of 2 increase in r \rightarrow factor of 4 decrease in I

- Point source = emitter << wavelength of sound radiated lacksquare
 - Human hearing range: λ =20m ~ 2cm in air, 75m ~7.5 cm in water
 - Symmetrical, diverging spherical waves from a monopole source emitting a single frequency

Solution $p(\vec{r},t) = \frac{A}{r} \exp(i\omega t - kr)$ satisfies the wave eqn with point source at $\vec{r} = 0$: $\nabla^2 p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = -4\pi A \delta(\vec{r}) \exp(i\omega t), \quad \left(c = \sqrt{B/\rho_0}\right)$ recall: $\int 4\pi A \delta(\vec{r}) dV = 4\pi A$ if V includes $\vec{r} = 0$, or 0 if not Acoustic Monopole

Red dots =

For a point source at $\vec{r} = \vec{r}_0$ instead of 0, the wave equation becomes

$$\nabla^2 p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = -4\pi A \delta(\vec{r} - \vec{r}_0) \exp(i\omega t)$$

and its solution is

$$p(r,t) = \frac{A}{\left|\vec{r} - \vec{r}_0\right|} \exp(i\omega t - k\left|\vec{r} - \vec{r}_0\right|)$$

particle motion

Point source loudspeakers for large halls

For comparison: line sources

Loudspeakers arrayed in a line:

• Angular distribution at various f's:

80° -150° -150° -120° -120° -10

> Each receiver has multiple path lengths to loudspeakers: interference causes spikes in angular distribution of sound – dead spots

> > From kv2audio.com

Rays vs waves: handy fiction

• We know sound travels in the form of waves, but

From 1st session

- We can picture sound "rays" as lines from source outward
- We define rays as lines perpendicular to the wavefronts
- "Ray tracing" is useful for following paths of sound waves

- Use simple geometric rules of ray tracing to analyze sound arriving at any point from a given point source
 - Refraction where sound speed changes
 - Localized angle change at interfaces between media
 - Continuous angle change in media with varying c
 - Reflection off hard surfaces:
 - Specular reflection from smooth surfaces
 - Diffuse reflection from textured surfaces
 - Transmission vs absorption for all media and interfaces

Arrival time depends on path length of ray

Geometrical (Ray) "optics" for acoustics

- Valid when system dimensions >> wavelength λ
 - Neglect wave nature of sound
 - Analyze systems by ray tracing
 - Rays = Lines normal to wavefronts
- Basic Laws:
- **Reflection:** $\theta_r = \theta_i$
 - \underline{z} = normal to surface
- Refraction: n₁ sinθ₁ = n₂ sinθ₂ Snell's (or Descartes') Law n=index of refraction = c/v c= reference value of sound speed v=speed of sound at given location Can be derived several ways:
 - Wavelets (Huygens)
 - Variational principle (Fermat)
 - Ray follows fastest path from A to B
 - \rightarrow reversibility of ray paths ("time-symmetry invariance")

Ray reflection (Deep Thought)

 One important idea you learned in school: "angle of reflection equals angle of incidence"

Reflected ray makes same angle with reflector as incoming ray
 Reflection law is also consistent with the "principle of least time"

- In going from point A to point B, reflecting off a mirror, the ray path actually traveled is also the *fastest* (shortest) route
- Nature automatically finds the most *economical* path !

Refraction at a flat interface

• Sound rays *bend* at interfaces between media Same idea for acoustics as for refraction of light rays:

- Universal constant $c = 3x10^8$ m/s = speed of light *in vacuum*

- But speed of light in any *material medium* is slower: c' < c
- In typical glass, c' = (2/3)c, pure water = (3/4)c, air =0.9997c
- Rays bend more the larger the *difference* in speed between media
- Object at B *appears* to be at location B⁺ (= our brains' expectation)

Parade analogy to understand refraction

- Imagine soldiers lined up in ranks, marching at constant speed
- Sgt. Bilko orders them to *slow down* to 2/3 normal speed when they cross a line marked on the parade ground

 \mathbf{V}

(2/3)v

- But they are not allowed to break ranks!

Ranks of soldiers (Wavefronts)

Slowdown line

Parade analogy

• Here is a picture after a few soldiers have passed the line

- Notice:
 - if parade had approached at a right angle (v perpendicular to the line), there would be no change of direction, ranks would just get closer
 - This analogy works whether you believe in waves (ranks as a unit) or particles (individual soldiers)
 - Isaac Newton and Thomas Young would agree on this

Eikonal equation

- There is no "universal constant" sound speed!
- Must use an arbitrary reference speed c_0
- The index of refraction is a variable: $n(x,y,z) = c_0 / c(x,y,z)$

For a plane wave $\vec{p} = \vec{A}e^{i(\omega t - \vec{k} \cdot \vec{r})}$, $\vec{k} \cdot \vec{r} = \text{constant defines}$ surfaces of constant phase. Rewrite this as $\vec{p} = A(x, y, z) \exp(i\omega[t - \Gamma(x, y, z)/c_0])$ (Γ has units of length) So places where $\Gamma(x, y, z) = \text{constant are surfaces of constant phase.}$ As $\vec{k} = \nabla(\vec{k} \cdot \vec{r})$ points in the direction of propagation (ray direction), so does $\nabla\Gamma(x, y, z)$

Put this in wave eqn
$$\nabla^2 p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} \rightarrow \left(\frac{\omega}{c_0}\right)^2 - \left(\frac{\omega}{c_0}\right)^2 \nabla \Gamma \cdot \nabla \Gamma = 0$$

if amplitude *A* and $\nabla\Gamma$ vary slowly enough (requires *A* and *c* ~ const over distances on the order of $\lambda \approx c/f$) $\rightarrow \nabla\Gamma \cdot \nabla\Gamma = const$ let $\nabla\Gamma \cdot \nabla\Gamma = n^2$ (*Eikonal equation* - encountered also in QM) where $n(x, y, z) = c_0 / c(x, y, z)$

Eikonal equation and ray tracing

- Eikonal equation helps us do ray tracing: $\nabla\Gamma$ is the direction of ray
- Example: ray of sound moving in x-y plane

 $\nabla \Gamma = n \cos \phi \hat{x} + n \sin \phi \hat{y}$ but ϕ will vary Surface of constant phase with t as the ray propagates. Small patch on surface of constant phase moves along ray path. Useful to consider variation of $\nabla \Gamma$ with s = distance along ray path: $\nabla \Gamma = n(x, y, z)\hat{s}$ (\hat{s} = unit vector in direction of s at {x, y, z}) (see Kinsler for details - works for 3 dimensions also) direction cosines of $\hat{s} = \{\alpha, \beta, \gamma\}$: $\hat{s} = \alpha \hat{x} + \beta \hat{y} + \gamma \hat{z}$, and $\alpha^2 + \beta^2 + \gamma^2 = 1$ rate of change in \hat{s} direction is $\frac{d}{ds} = \alpha \frac{\partial}{\partial x} + \beta \frac{\partial}{\partial y} + \gamma \frac{\partial}{\partial z}$ Then $\frac{d(n\alpha)}{ds} = \frac{\partial n}{\partial x}$, $\frac{d(n\beta)}{ds} = \frac{\partial n}{\partial y}$, $\frac{d(n\gamma)}{ds} = \frac{\partial n}{\partial z}$ 20

Ray tracing

 Sound ray moving in a plane – so c=c(z only) – is a common case: Then $\frac{d(n\alpha)}{ds} = 0$, $\frac{d(n\beta)}{ds} = 0$, $\frac{d(n\gamma)}{ds} = \frac{\partial n}{\partial z}$ • c(x,y,z) = c(x)Then $n = n(x) = c_0 / c(x)$ If ray starts in the x-z plane z 🛦 with an angle θ with the x axis, then $\alpha = \cos\theta$, $\gamma = \sin\theta$, $\beta = 0$, Ray path $d\theta$ and $\frac{d(n\beta)}{ds} = 0 \rightarrow \beta = 0$ always; $R = |\sigma|$ so $\frac{d(n\cos\theta)}{ds} = 0 \rightarrow n\cos\theta = const$, dz and $\frac{d(n\sin\theta)}{ds} = \frac{\partial n}{\partial z}$ θ_0 = angle of ray with the x axis at location where $c = c_0$ Then $n(x, y, z)\cos\theta = const = c_0 \cos\theta / c(x, y, z)$ $\Rightarrow \frac{\cos\theta}{c(x, y, z)} = \frac{\cos\theta_0}{c_0} \quad \text{(Snell's Law)}$

Snell's law

- When sound speed c(z) decreases with z, θ increases
- Rays always bend toward a region of lower c:

$$n = \frac{c_0}{c(z)} \rightarrow c(z) = c_0 n^{-1} \rightarrow \operatorname{sign}\left(\frac{dc}{dz}\right) = -\operatorname{sign}\left(\frac{dn}{dz}\right)$$
$$\frac{dc}{dz} = g, \quad \text{gradient of sound speed}$$
$$dz = \sin\theta ds \quad \text{and} \quad ds = Rd\theta, \quad \text{where } |R| = \operatorname{radius of curvature of ray}$$
$$R = -\frac{1}{g} \frac{c_0}{\cos\theta_0}$$

R is positive if $d\theta$ increases with $s \left(\frac{d^2\theta}{ds^2} > 0\right)$, negative if it decreases

Ray refraction with varying c

- Classic case: sound rays in water- oversimplified: linear c(z) = a b z
- Sound speed c(z) decreases with depth z, θ (angle wrt x) increases
- Rays always bend downward, *toward* a region of lower c

• More on this in a few weeks...

fas.org

Ray refraction with varying c

- Another classic case: sound rays in air, passing over cool water
- Air near water is cooler, sound speed c(z) decreases with temperature
- Rays always bend downward, *toward* a region of lower c

• More on this in a few weeks...

fas.org

Hazards of ray refraction

Radiation Oncology 10(1):119

- Ultrasound rays in human body, with varying sound speeds
- Demonstration using Zerdine -= substance used in "phantoms"

(Phantom = object used in medical imaging calibration and experiments, simulating tissue properties)

• Error in position of target could have serious consequences!

Ray tracing with image-source method

Simple geometric ray tracing tool, from optics of mirrors:

semanticscholar.org

• Find reflected rays via "virtual image source" behind reflector

S'c2-w

- On line normal to surface from source, same distance behind
- Draw rays from image source to real source and receiver
 - If ray from image source to receiver does not intersect same wall, receiver cannot "see" it (dashed line) so ignore
- Secondary images for multi-surface reflection ray paths

Reflection and transmission at interfaces

- Reflections are characterized by reflectance r (assume plane waves for now)
 - Reflected intensity $I_R = rI_0$
 - $r=R^2$ where

R=pressure (amplitude) reflectance factor: $p_R = Rp_i = \sqrt{r} p_i$)

- Similar coefficients for transmission (T) and absorption (A): $T=p_T / p_i$ (Coefficients must be real numbers)
- Pressure reflection coefficients are related to acoustic impedance Specific impedance z = p/u; for plane waves $u = \frac{p}{\rho_0 c} \rightarrow z = \rho_0 c$

 $\rho_0 c = \text{Characteristic impedance of medium} \quad \text{So } z = \rho \text{ c} = r + i \text{ x} \rightarrow \text{Re}(z) = r_i = \rho_i \text{ c}_i$ Intensity of plane wave is $I = \frac{1}{2} \frac{p^2}{\rho c} = \frac{1}{2} \frac{p^2}{r}, \quad so \quad R_I = \frac{I_{refl}}{I_{imp}} = \left(\frac{p_r}{p_i}\right)^2 = |R|^2$

- Assume for intensity coeffs, T+R+A=1: all energy accounted for
 - If A is small, can assume T+R ~ 1

2

x = 0

 $(r_2 = \rho_2 c_2)$

 $(r_1 = \rho_1 c_1)$

Reflection and transmission at interfaces

Reflection and transmission at interfaces

2 For rays arriving at an angle θ_i to interface: (r_1) (r_{2}) Plane wave incident with propagation vector k_1 in the x-y plane: $p_i = Ae^{i(\omega t - k \cdot \vec{r})}$ θ_r $\rightarrow p_i = P_i \exp[i(\omega t - k_1 x \cos \theta_i - k_1 y \sin \theta_i)]$ $\boldsymbol{\theta}_i$ reflected wave is $p_r = P_r \exp[i(\omega t + k_1 x \cos \theta_r - k_1 y \sin \theta_r)]$ transmitted wave is $p_t = P_t \exp[i(\omega t - k_2 x \cos \theta_t - k_2 y \sin \theta_t)]$ x = 0Continuity of pressure at interface x = 0: $P_{v(1)} = P_{v(2)}$ $P_i \exp(-ik_1 y \sin \theta_i) + P_r \exp(-ik_1 y \sin \theta_r) = P_t \exp(-ik_2 y \sin \theta_r)$ must be true for any y, so must have $k_1 \sin \theta_i = k_1 \sin \theta_r = k_2 \sin \theta_r$ so $\sin \theta_i = \sin \theta_r$ (reflection law) and $\frac{\sin \theta_i}{\sin \theta_i} = \frac{\sin \theta_i}{\sin \theta_i}$ (Snell's law) With all exponents equal, $P_i + P_r = P_t \rightarrow 1 + R = T$

- We get sines instead of cosines here due to convention of taking angle relative to normal (from optics)
 - Underwater acoustics uses convention of measuring θs from interface surface direction, so they use cosines

Reflections at surfaces

• "It can be shown" (see Kinsler) (r_1) (r_{2}) For reflection at an interface $R = \frac{\left(r_2 / \cos\theta_t - r_1 / \cos\theta_i\right)}{\left(r_2 / \cos\theta_t + r_1 / \cos\theta_i\right)} \text{ for plane wave,}$ θ_r θ r = p / u = z (Rayleigh reflection coefficient) For $c_1 > c_2$, $\theta_t < \theta_i$ and is a real number. x = 0For $c_2 > c_1$ and $\theta_i < \theta_{crit}$, $\theta_t > \theta_i$ and is a real number. if $\theta_i > \theta_{crit}$, $\sin \theta_t > 1$, so $\cos \theta_t$ is imaginary. The transmitted pressure is $p_t = P_t \exp(-\gamma x) \exp[i(\omega t - k_1 y \sin \theta_t)], \quad \gamma = k_2 \sqrt{(c_2 / c_1)^2 \sin^2 \theta_i - 1}$

At critical angle, amplitude *decays* in *x* direction but wave *propagates* in the *y* direction (parallel to interface)

At critical angle, refracted ray lies in plane of interface:

2

1

Reflections at solid(ish) surfaces

- For reflection on a (hard) solid surface, with normal incidence:
 - Ignore transmission: consider only reflected wave
 - Describe behavior in terms of *normal acoustic impedance* of solid
 - $z_{n} = \frac{p}{\vec{u} \cdot \hat{n}}, \quad \hat{n} = \text{ unit vector normal to surface}$ For normal-incidence wave, $\vec{u} \cdot \hat{n} = u_{x}$ the particle speed $z_{n} = r_{n} + i x_{n}$ continuity of p and u at x = 0 : $p_{i} + p_{r} = p_{t}, \quad u_{i} + u_{r} = u_{t}$ $\Rightarrow z_{n} = \frac{p_{i} + p_{r}}{u_{i} + u_{r}} \Rightarrow z_{n} = r_{1} \frac{1 + R}{1 - R} \Rightarrow R = \frac{(r_{n} - r_{1}) + i x_{n}}{(r_{n} + r_{1}) + i x_{n}}$
 - For $x_n = 0$, this is same as for normal incidence on a fluid-fluid interface.
 - For a semi-solid surface (eg seabottom), transmitted power might be significant, in both transverse and shear waves – sound speed must include shear modulus:

$$c = \sqrt{B / \rho_0} \rightarrow \sqrt{(B + (4/3)G) / \rho_0}, \quad G = \text{shear modulus}$$

 \xrightarrow{x}

fluid (bottom) C_2, ρ_2

fluid (water)

C₁, ρ₁

Z_s

R for a "slow bottom" with $c_2 / c_1 = r_2 / r_1 = 0.9$