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Course syllabus and schedule – updated 

Tonight 

See : http://courses.washington.edu/phys536/syllabus.htm 

Class is over after you 
turn in your take-home 
exam. No in-person final 
exam during finals 
week. 



Driven damped mechanical oscillator 
•  Analogy to electrical circuits: mechanical impedance 
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 complex impedance Zm = Rm + iXm  = Zm e
iΘ

Re Zm⎡⎣ ⎤⎦= Rm;       Im Zm⎡⎣ ⎤⎦= reactance  Xm = ωm− s /ω( )
Zm = Rm

2 + ωm− s /ω( )2 ,     

Θ = tan−1 Xm
Zm

 Displacement :   x(t) = Feiωt

iω Rm + i ωm− s /ω( )⎡
⎣

⎤
⎦

 Speed :   u(t) = Feiωt

Rm + i ωm− s /ω( )⎡
⎣

⎤
⎦
=
f (t)
Zm

  → Zm =
f (t)
u(t)

Ze = ratio of V to I 
Zm = ratio of driving 
force to speed  
“mechanical ohm” has 
units of force/speed 

From session 2 
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Specific acoustic impedance 

•  We found acoustic impedance = driving force/resulting speed 
•  In terms of acoustical pressure p, we get 

Remember: lower case p, ρ, u etc are relative to baseline values P0, ρ0 , etc 

•  SI units for z : Pa-s/m    (1 Pa-s/m =1 rayl, named after Rayleigh) 

 
 

z is real for plane waves, 
but standing waves or 
diverging waves have 
complex values:  
  z = r + i x    
(r, x = specific acoustic 
resistance, reactance) 
characteristic of medium 
for non-planar wave type 
considered 

From last time 

 Specific acoustical impedance   z = p / u

 For plane waves  u± = ±
p+
ρ0c

→    z = ±ρ0c  (for + x  or - x  direction)

ρ0c =  Characteristic impedance of medium
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Spherical waves 

•  Common case: small source, large volume for wave expansion 
–  Use spherical coordinates (r, θ, φ)

•  Simplest case: spherically symmetric 
–  Intensity = f(r only), not dependent on θ or φ   

 Then   ∇2p  reduces to r terms only, 

   ∇2p = ∂
2p
∂r2 +

2
r
∂p
∂r

wave eqn is   ∂
2p
∂r2 +

2
r
∂p
∂r

=
1
c2
∂2p
∂t2 ;    

since I = P2 / (2ρ0c) = p2 / const
conservation of energy →   I  should drop off as 1 / r2  
(~ area of spherical surface of radius r) 

acoustic wave equation

   ∇2p = 1

c2
∂2p

∂t2
     



6 

Spherical waves 

•  Symmetrical, diverging spherical waves 

   I ∝ p2  should drop off as 1 / r2   (energy conservation) 
  → p  should drop off as 1 / r
so   (r p)  should be ~ const   
→    use f = (r p) as wave eqn variable:
∂2 f
∂r2 =

1
c2
∂2 f
∂t2    (same form as plane wave case) 

solution must be of the form  f (r, t) = f1(ct − r)+ f2 (ct + r) 

→ p = f
r
=

1
r
f1(ct − r)+

1
r
f2 (ct + r) : 

 f1  is diverging wave,  f2  converging
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Spherical waves 

•  Symmetrical, diverging spherical waves 
 Most applications involve only diverging spherical waves:

 general (complex) form of solution is  p(r,t) = A
r
exp(iωt − kr)

Can use pressure potential Φ(r,t) to relate p to other acoustic variables:

Φ+(r,t) = −
!p

iωρ0
,
!u =∇Φ= 1− i

k r

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

!p
iωρ0

 Observable quantities are real parts:  

p(r,t) = Re A
r
exp(iωt − kr)

⎛

⎝
⎜

⎞

⎠
⎟,   u(r,t) = Re = 1−

i
k r

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

!p
iωρ0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟



Visualizing spherical waves 

•  Intensity drops off as 1/r2 because wave energy is uniformly distributed 
over a sphere of radius r, with surface area ~ r2  
–  factor of 2 increase in r à factor of 4 decrease in I 
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Point sources 

•  Point source = emitter << wavelength of sound radiated 
–  Human hearing range: λ=20m ~ 2cm in air, 75m ~7.5 cm in water 
–  Symmetrical, diverging spherical waves from a monopole source 

emitting a single frequency 
 

 Solution p(!r, t) = A
r

exp(iωt − kr) satisfies the wave eqn with point source at !r = 0:

  ∇2p− 1
c2
∂2p
∂t2 = −4πAδ(!r )exp(iωt),    c = B / ρ0( )  

 recall: 4πAδ(!r )
V
∫ dV = 4πA  if V  includes !r = 0,  or 0 if not

⎛

⎝
⎜

⎞

⎠
⎟

For a point source at !r = !r0  instead of 0,  
the wave equation becomes 

∇2p− 1
c2
∂2p
∂t2 = −4πAδ(!r − !r0 )exp(iωt)

and its solution is

p(r, t) = A
!r − !r0

exp(iωt − k !r − !r0 )

Red dots = 
particle motion 



Point source loudspeakers for large halls 
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Loudspeaker designed to act as a point source 

•  Angular distribution at various f’s: 
 

From kv2audio.com 

Each receiver has a single direct path: 
one path length, no interference effects 



For comparison: line sources 
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Loudspeakers arrayed in a line: 

•  Angular distribution at various f’s: 
 

From kv2audio.com 

Each receiver has multiple 
path lengths to loudspeakers: 
interference causes spikes in 
angular distribution of sound 
– dead spots 
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Rays vs waves: handy fiction 

•  We know sound travels in the form of waves, but 
–  We can picture sound “rays” as lines from source outward 
–  We define rays as lines perpendicular to the wavefronts 
–  “Ray tracing” is useful for following paths of sound waves 

wavefronts 

rays 

From 1st session 



Ray optics 

•  Use simple geometric rules of ray tracing to analyze sound 
arriving at any point from a given point source 
–  Refraction where sound speed changes 

•  Localized angle change at interfaces between media 
•  Continuous angle change in media with varying c 

–  Reflection off hard surfaces: 
•  Specular reflection from smooth surfaces 
•  Diffuse reflection from textured surfaces 

–  Transmission vs absorption for all media and interfaces 
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Arrival time 
depends on path 
length of ray 



Geometrical (Ray) “optics” for acoustics 

•  Valid when system dimensions >> wavelength λ 
–  Neglect wave nature of sound 
–  Analyze systems by ray tracing 
–  Rays = Lines normal to wavefronts 

•  Basic Laws: 
•  Reflection: θr = θi  

z = normal to surface 
 

•  Refraction: n1 sinθ1 = n2 sinθ2 
Snell’s (or Descartes’) Law 
n=index of refraction = c/v   

  c= reference value of sound speed 
  v=speed of sound at given location 

Can be derived several ways: 
–  Wavelets (Huygens)  
–  Variational principle (Fermat)  

•  Ray follows fastest path from A to B 
  à reversibility of ray paths (“time-symmetry invariance”) 

θi  θr  

z 

θ1  

θ2  

z 

n1 

n2 

14 
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Ray reflection (Deep Thought) 
•  One important idea you learned in school: “angle of reflection equals 

angle of incidence” 
–  Reflected ray makes same angle with reflector as incoming ray 
Reflection law is also consistent with the “principle of least time” 

•  In going from point A to point B, reflecting off a mirror, the ray path 
actually traveled is also the fastest (shortest) route 

•  Nature automatically finds the most economical path ! 

A 

B Longer paths – 
take longer time 

Actual path = 
fastest path: 
equal angles 

Reflecting surface 
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Refraction at a flat interface 

•  Sound rays bend at interfaces between media 
Same idea for acoustics as for refraction of light rays: 
–  Universal constant c = 3x108 m/s = speed of light in vacuum 

•  But speed of light in any material medium is slower: c’ < c 
•  In typical glass, c’ = (2/3)c, pure water = (3/4)c,  air =0.9997c 

–  Rays bend more the larger the difference in speed between media 
–  Object at B appears to be at location B‘  (= our brains’ expectation) 

Water: n2 = 1.5 
(so c’ = 2/3 c) 

Air: n1 = 1.0 

A 

B 

θ1 

θ2 Snell’s Law (optics): 
n1sinθ1 = n2sinθ2 B’ 

•  Another “least time” rule: 
•  Get from A to B faster if you spend less 

time in the material with slower c’ 

Actual path 

(n = c / c’ = refractive index) 
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Parade analogy to understand refraction 

•  Imagine soldiers lined up in ranks, marching at constant speed 
•  Sgt. Bilko orders them to slow down to 2/3 normal speed when 

they cross a line marked on the parade ground 
–  But they are not allowed to break ranks! 

Ranks of soldiers 
(Wavefronts) 

Slowdown line 

v 

(2/3)v 
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Parade analogy 

•  Here is a picture after a few soldiers have passed the line 

–  Notice:  
•  if parade had approached at a right angle (v  perpendicular to 

the line), there would be no change of direction, ranks would 
just get closer 

•  This analogy works whether you believe in waves (ranks as a 
unit) or particles (individual soldiers) 

–  Isaac Newton and Thomas Young would agree on this 

Ranks of soldiers 
(Wavefronts) 

Slowdown line 

v 

(2/3)v 



Eikonal equation 

•  There is no “universal constant” sound speed! 
•  Must use an arbitrary reference speed c0    
•  The index of refraction is a variable: n(x,y,z) = c0 / c(x,y,z) 
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For a plane wave !p =
!
Aei(ωt−

!
k ⋅!r )  ,    

!
k ⋅ !r =  constant defines

surfaces of constant phase.     Rewrite this as 
 !p = A(x, y, z)exp iω t − Γ(x, y, z) / c0[ ]( )       (Γ has units of length)
So places where Γ(x, y, z) = constant are surfaces of constant phase. 
 As 
!
k =∇(

!
k ⋅ !r ) points in the direction of propagation (ray direction), 

   so does ∇Γ(x, y, z) 

Put this in wave eqn ∇2p = 1
c2
∂2p
∂t2 →

ω
c0

⎛

⎝
⎜

⎞

⎠
⎟

2

−
ω
c0

⎛

⎝
⎜

⎞

⎠
⎟

2

∇Γ⋅∇Γ= 0

 if amplitude  A and ∇Γ vary slowly enough (requires  A and c ~ const 
over distances on the order of λ ≈ c / f )→∇Γ⋅∇Γ= const
 let ∇Γ⋅∇Γ= n2     (Eikonal  equation - encountered also in QM) 
where   n(x, y, z) = c0 / c(x, y, z)



Eikonal equation and ray tracing 

•  Eikonal equation helps us do ray tracing:   Γ is the direction of ray 
•  Example: ray of sound moving in x-y plane 
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∇Γ= ncosφ x̂ + nsinφ ŷ    but φ  will vary 
with t  as the ray propagates.
Small patch on surface of constant 
phase moves along ray path.
Useful to consider variation 
of  ∇Γ with s =  distance along ray path: 
∇Γ= n(x, y, z) ŝ      ( ŝ =  unit vector in direction of s at {x, y, z})
(see Kinsler for details - works for 3 dimensions also)
direction cosines of  ŝ = α,β,γ{ } : ŝ =α x̂ +β ŷ+γ ẑ,    and α 2 +β 2 +γ 2 =1

 rate of change in ŝ  direction is  d
ds
=α

∂
∂x
+β

∂
∂y
+γ

∂
∂z

 Then  d(nα)
ds

=
∂n
∂x

,     d(nβ)
ds

=
∂n
∂y

,     d(nγ )
ds

=
∂n
∂z

Δ 



Ray tracing 

•  Sound ray moving in a plane – so c=c(z only) – is a common case: 
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Then  d(nα)
ds

= 0,   d(nβ)
ds

= 0,   d(nγ )
ds

=
∂n
∂z

If ray starts in the x-z plane 
with an angle θ  with the x axis, 
 then  α = cosθ,    γ = sinθ,    β = 0,  

and d(nβ)
ds

= 0→ β = 0 always; 

 so   d(ncosθ )
ds

= 0→ ncosθ = const,

   and d(nsinθ )
ds

=
∂n
∂z

θ0 = angle of ray with the x axis at location where c = c0

 Then   n(x, y, z)cosθ = const = c0 cosθ / c(x, y, z)

→
cosθ

c(x, y, z)
=

cosθ0

c0

   (Snell's Law)

•  c(x,y,z)=c(x)   
Then n = n(x) = c0 / c(x)   



Snell’s law 

•  When sound speed c(z) decreases with z, θ increases  
•  Rays always bend toward a region of lower c: 
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 n = c0

c(z)
→ c(z) = c0n

−1 →  sign dc
dz
⎛

⎝
⎜

⎞

⎠
⎟=  − sign dn

dz
⎛

⎝
⎜

⎞

⎠
⎟

dc
dz

= g,    gradient of sound speed

dz = sinθds   and   ds = Rdθ,    where R =  radius of curvature of ray

R = − 1
g

c0

cosθ0

   

R is positive if dθ  increases with s  d 2θ
ds2 > 0
⎛

⎝
⎜

⎞

⎠
⎟,  negative if it decreases



Ray refraction with varying c 

•  Classic case: sound rays in water- oversimplified: linear c(z) = a - b z 
•  Sound speed c(z) decreases with depth z,  θ (angle wrt x) increases  
•  Rays always bend downward, toward a region of lower c 

•  More on this in a few weeks… 
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fas.org 



Ray refraction with varying c 

•  Another classic case: sound rays in air, passing over cool water 
•  Air near water is cooler, sound speed c(z) decreases with 

temperature 
•  Rays always bend downward, toward a region of lower c 

•  More on this in a few weeks… 
24 

fas.org 



Hazards of ray refraction 

•  Ultrasound rays in human 
body, with varying sound 
speeds 

•  Demonstration using Zerdine -
= substance used in 
“phantoms”  
(Phantom = object used in 
medical imaging calibration and 
experiments, simulating tissue 
properties) 

•  Error in position of target could 
have serious consequences! 
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Radiation Oncology 10(1):119 



Ray tracing with image-source method 
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semanticscholar.org 

• Find reflected rays via “virtual image 
source” behind reflector 
–  On line normal to surface from source, 

same distance behind 
• Draw rays from image source to real 

source and receiver 
– If ray from image source to receiver 

does not intersect same wall, 
receiver cannot “see” it (dashed line) 
so ignore 

• Secondary images for multi-surface 
reflection ray paths 

Simple geometric ray tracing tool, from optics of mirrors:  



Reflection and transmission at interfaces 

•  Reflections are characterized by reflectance r 
(assume plane waves for now) 
–  Reflected intensity IR=rI0        

 r=R2  where  
R=pressure (amplitude) reflectance factor:  pR = Rpi =√r pi) 
–  Similar coefficients for transmission (T) and absorption (A): T=pT  / pi  
(Coefficients must be real numbers) 

•  Pressure reflection coefficients are related to acoustic impedance 
 

   

Intensity of plane wave is  

–  Assume for intensity coeffs, T+R+A=1: all energy accounted for 
•  If A is small, can assume T+R ~ 1 
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I = 1
2
p2

ρc
=
1
2
p2

r
, so RI =

Irefl
Iinc

=
pr
pi

⎛

⎝
⎜

⎞

⎠
⎟

2

= R 2

Specific impedance  z = p / u ;  for plane waves  u = p
ρ0c

→    z = ρ0c  

ρ0c =  Characteristic impedance of medium So z =ρ c = r+i x à Re(z)= ri=ρi ci 



Reflection and transmission at interfaces 

•  For a (massless) interface between 2 fluids 
–  Must have no net pressure difference at boundary: p2=p1  
(continuity of pressure across boundary) 
–  Must have no relative motion at boundary: u2=u1  
(continuity of normal velocity across boundary) 
So at interface,  
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pi + pr = pt   and ui +ur = ut   
pi + pr
ui +ur

=
pt
uit

;     specific impedance  z = p
u
= ρ0c   

 → z2 = z1    continuity of specific impedance in normal direction

for plane waves   p
u
= ±r  (depending on direction of propagation)

→
pt
uit
= r2,  pi

uii
= +r1,   and pr

uir
= −r1

 So  pi + pr
ui +ur

=
pt
uit
→

pi + pr
pi / r1 − pr / r1

= r1
pi + pr
pi − pr

= r2

r1 pi + pr( ) = r2 pi − pr( )→ r1 + r2( ) pr = r2 − r1( ) pi

→ pr / pi = R =
r2 − r1( )
r2 + r1( )

=
1− r1 / r2( )
1+ r1 / r2( )

…for rays 
arriving normal 
to interface 



Reflection and transmission at interfaces 

•  For rays arriving at an angle θi to interface: 

–  We get sines instead of cosines here due to convention of taking 
angle relative to normal (from optics) 

•  Underwater acoustics uses convention of measuring θs from 
interface surface direction, so they use cosines 
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Plane wave incident with propagation vector 
!
k1

 in the x-y plane:   pi = Ae
i(ωt−

!
k ⋅!r )

 → pi = Pi exp i(ωt − k1xcosθi − k1ysinθi )[ ]  
 reflected wave is  pr = Pr exp i(ωt + k1xcosθr − k1ysinθr )[ ]  
 transmitted wave is  pt = Pt exp i(ωt − k2xcosθt − k2ysinθt )[ ]  
 Continuity of pressure at interface x = 0:  Py(1) = Py(2)

Pi exp(−ik1ysinθi ) + Pr exp(−ik1ysinθr ) = Pt exp(−ik2ysinθt ) 
 must be true for any y, so must have  k1 sinθi = k1 sinθr = k2 sinθt  

 so  sinθi = sinθr    (reflection law) and  sinθi
c1

=
sinθt
c2

   (Snell's law)

With all exponents equal,   Pi  + Pr = Pt →1+ R = T



Reflections at surfaces 

•  “It can be shown” (see Kinsler) 
–  For reflection at an interface 
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R =
r2 / cosθt − r1 / cosθi( )
r2 / cosθt + r1 / cosθi( )

  for plane wave, 

   r = p / u = z       (Rayleigh reflection coefficient) 
 For c1 > c2  ,  θt <θi  and is a real number. 
 For c2 > c1  and  θi <θcrit  , θt >θi  and is a real number.
                   if  θi >θcrit  , sinθt >1,  so cosθt  is imaginary.
       The transmitted  pressure is  

pt = Pt exp(−γ x)exp i(ωt − k1ysinθt )[ ],    γ = k2 c2 / c1( )2 sin2θi −1 
 At critical angle, amplitude decays in x  direction but  
wave propagates in the y direction  (parallel to interface)  

At critical angle, refracted ray 
lies in plane of interface: 



Reflections at solid(ish) surfaces 

•  For reflection on a (hard) solid surface, with normal incidence: 
–  Ignore transmission: consider only reflected wave 
–  Describe behavior in terms of normal acoustic impedance of solid 

 
–  For a semi-solid surface (eg seabottom), transmitted power might be 

significant, in both transverse and shear waves – sound speed must 
include shear modulus: 
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zn =
p
!u ⋅ n̂

 ,    n̂ =  unit vector normal to surface

For normal-incidence wave,  !u ⋅ n̂ = ux   the particle speed
zn = rn + i xn
 continuity of p and u at x = 0 :  pi + pr = pt,     ui +ur = ut

→ zn =
pi + pr
ui +ur

→ zn = r1
1+ R
1− R

→ R =
rn − r1( )+ i xn
rn + r1( )+ i xn

For  xn = 0,  this is same as for normal incidence 
on a fluid-fluid interface.

c = B / ρ0 → (B+ 4 / 3( )G) / ρ0 ,    G = shear modulus

R for a "slow bottom" 
with c2 / c1 = r2 / r1 = 0.9
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