

Session 7

Spherical waves; point sources Rays and waves Plane waves and spherical waves

1/29/2019

Course syllabus and schedule – updated

Driven damped mechanical oscillator From session 2

• Analogy to electrical circuits: mechanical impedance

3 complex impedance $Z_m = R_m + iX_m = |Z_m|e^{i\Theta}$ $\text{Re}[Z_m] = R_m; \quad \text{Im}[Z_m] = \text{reactance } X_m = (\omega m - s / \omega)$ Z_m = $\sqrt{R_m^2 + (\omega m - s/\omega)^2}$, $\Theta = \tan^{-1} \frac{X_m}{Z}$ *Zm* Displacement : $x(t) =$ *Fei*ω*^t* $i\omega$ $\left[$ R_m + i $\left($ ω *m* − $\left|$ *s* $\right/$ ω $\right)$] Speed : $u(t) =$ *Fei*ω*^t* $\left[R_m + i\left(\omega m - s/\omega\right)\right]$ = *f* (*t*) *Zm* $Z_m =$ *f* (*t*) *u*(*t*) Z_e = ratio of V to I Z_m = ratio of driving force to speed "mechanical ohm" has units of force/speed

Specific acoustic impedance From last time

- We found acoustic impedance $=$ driving force/resulting speed
- In terms of acoustical pressure p, we get Specific acoustical impedance $z = p/u$

For plane waves $u_{\pm} = \pm \frac{p_{\pm}}{p_{\pm}}$ $\rho_0 c$ \rightarrow $z = \pm \rho_0 c$ (for $+x$ or $-x$ direction)

 $\rho_0 c =$ Characteristic impedance of medium

Remember: lower case p, ρ , u etc are *relative to* baseline values P_0 , ρ_0 , etc

• SI units for z : Pa-s/m $(1 \text{ Pa-s/m} = 1 \text{ rayl})$, named after Rayleigh)

z is real for plane waves, but standing waves or diverging waves have complex values:

 $z = r + i x$

 $(r, x = \text{specific acoustic})$ resistance, reactance) characteristic of medium for non-planar wave type considered

• Symmetrical, diverging spherical waves

$$
I \propto p^2
$$
 should drop off as $1/r^2$ (energy conservation)
\n $\rightarrow p$ should drop off as $1/r$
\nso $(r p)$ should be $\sim const$
\n $\frac{\partial^2 f}{\partial r^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}$ (same form as plane wave case)
\nsolution must be of the form $f(r,t) = f_1(ct-r) + f_2(ct+r)$
\n $\rightarrow p = \frac{f}{r} = \frac{1}{r} f_1(ct-r) + \frac{1}{r} f_2(ct+r)$:
\n f_1 is diverging wave, f_2 converging

• Symmetrical, diverging spherical waves Most applications involve only diverging spherical waves: general (complex) form of solution is $p(r,t) = \frac{A}{A}$ *r* $\exp(i\omega t - kr)$

Can use pressure potential $\Phi(r,t)$ to relate p to other acoustic variables:

$$
\Phi_{+}(r,t) = -\frac{\vec{p}}{i\omega\rho_{0}}, \quad \vec{u} = \nabla\Phi = \left(1 - \frac{i}{k|r|}\right)\frac{\vec{p}}{i\omega\rho_{0}}
$$

Observable quantities are real parts:

$$
p(r,t) = \text{Re}\left(\frac{A}{r}\exp(i\omega t - kr)\right), \quad u(r,t) = \text{Re}\left(-\left(1 - \frac{i}{k|r|}\right)\frac{\vec{p}}{i\omega\rho_0}\right)
$$

- http://www.falstad.com/ripple/
- http://www.falstad.com/wavebox/fullscreen.html
- Intensity drops off as $1/r^2$ because wave energy is uniformly distributed over a sphere of radius r, with surface area $\sim r^2$
	- factor of 2 increase in $r \rightarrow$ factor of 4 decrease in I

- Point source $=$ emitter $<<$ wavelength of sound radiated
	- $-$ Human hearing range: $\lambda = 20$ m ~ 2cm in air, 75m ~7.5 cm in water
	- Symmetrical, diverging spherical waves from a monopole source emitting a single frequency

 \overline{r} ,*t*) = $\frac{A}{A}$ $\frac{1}{12}$ Solution *p*(exp(*i*ω*t* − *kr*) satisfies the wave eqn with point source at $\vec{r} = 0$: *r* $\partial^2 p$ $\nabla^2 p - \frac{1}{2}$ $\frac{1}{16}$ $\frac{P}{2}$ = $-4\pi A\delta$ (\vec{r})exp(*iωt*), $\left(c = \sqrt{B/\rho_0}\right)$ *c* 2 ∂*t* $\left(\text{recall:} \int 4 \pi A \delta(\vec{r}) dV = 4 \pi A \text{ if } V \text{ includes } \vec{r} = 0, \text{ or } 0 \text{ if not} \right)$ $\int 4\pi A \delta(\vec{r}) dV = 4\pi A$ if *V* includes $\vec{r} = 0$, or 0 if not $\frac{1}{12}$ recall: 4π*A*δ(*r*) $\Big\}$ ⎝ ⎠ Acoustic Monopole *V* $\vec{r} = \vec{r}_0$ instead of 0, For a point source at

 Red dots $=$

particle motion

the wave equation becomes

$$
\nabla^2 p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = -4\pi A \delta(\vec{r} - \vec{r}_0) \exp(i\omega t)
$$

and its solution is

$$
p(r,t) = \frac{A}{|\vec{r} - \vec{r}_0|} \exp(i\omega t - k|\vec{r} - \vec{r}_0|)
$$

Point source loudspeakers for large halls

For comparison: line sources

 $+150$

Loudspeakers arrayed in a line:

• Angular distribution at various f's:

 $+60^\circ$

Rays vs waves: handy fiction

• We know sound travels in the form of waves, but

From 1st session

- We can picture sound "rays" as lines from source outward
- We define rays as lines perpendicular to the wavefronts
- "Ray tracing" is useful for following paths of sound waves

- Use simple geometric rules of ray tracing to analyze sound arriving at any point from a given point source
	- Refraction where sound speed changes
		- Localized angle change at interfaces between media
		- Continuous angle change in media with varying c
	- Reflection off hard surfaces:
		- Specular reflection from smooth surfaces
		- Diffuse reflection from textured surfaces
	- Transmission vs absorption for all media and interfaces

Arrival time depends on path length of ray

Geometrical (Ray) "optics" for acoustics

- Valid when system dimensions \gg wavelength λ
	- Neglect wave nature of sound
	- Analyze systems by ray tracing
	- Rays = Lines normal to wavefronts
- Basic Laws:
- Reflection: $\theta_r = \theta_i$
	- \underline{z} = normal to surface
- Refraction: $n_1 \sin\theta_1 = n_2 \sin\theta_2$ Snell's (or Descartes') Law $n=index$ of refraction = c/v c= reference value of sound speed
	- v=speed of sound at given location
	- Can be derived several ways:
	- Wavelets (Huygens)
	- Variational principle (Fermat)
		- Ray follows fastest path from A to B
		- \rightarrow reversibility of ray paths ("time-symmetry invariance")

Ray reflection (Deep Thought)

- One important idea you learned in school: "angle of reflection equals angle of incidence"
	- Reflected ray makes same angle with reflector as incoming ray Reflection law is also consistent with the "principle of least time"
		- In going from point A to point B, reflecting off a mirror, the ray path actually traveled is also the *fastest* (shortest) route
		- Nature automatically finds the most *economical* path !

Refraction at a flat interface

- Sound rays *bend* at interfaces between media Same idea for acoustics as for refraction of light rays:
	- Universal constant $c = 3x10^8$ m/s = speed of light *in vacuum*
		- But speed of light in any *material medium* is slower: $c' < c$
		- In typical glass, $c' = (2/3)c$, pure water = $(3/4)c$, air =0.9997c
	- Rays bend more the larger the *difference* in speed between media
	- Object at B *appears* to be at location B⁴ (= our brains' expectation)

Parade analogy to understand refraction

- Imagine soldiers lined up in ranks, marching at constant speed
- Sgt. Bilko orders them to slow down to 2/3 normal speed when they cross a line marked on the parade ground

v

 $(2/3)_V$

– But they are not allowed to break ranks!

Ranks of soldiers (Wavefronts)

Slowdown line

Parade analogy

• Here is a picture after a few soldiers have passed the line

- Notice:
	- if parade had approached at a right angle (**v** perpendicular to the line), there would be no change of direction, ranks would just get closer
	- This analogy works whether you believe in waves (ranks as a unit) or particles (individual soldiers)
		- Isaac Newton and Thomas Young would agree on this

Eikonal equation

- There is no "universal constant" sound speed!
- Must use an arbitrary reference speed c_0
- The index of refraction is a variable: $n(x,y,z) = c_0 / c(x,y,z)$

For a plane wave $\vec{p} = \vec{A}e^{i(\omega t - \vec{b})}$ \overline{a} *k*⋅ ! *r*) \vec{k} \cdot \Rightarrow \vec{r} = constant defines surfaces of constant phase. Rewrite this as $\vec{p} = A(x, y, z) \exp(i\omega \left[t - \Gamma(x, y, z) / c_0 \right]$ (Γ has units of length) So places where $\Gamma(x, y, z)$ = constant are surfaces of constant phase. As —
—
1 $k = \nabla$ (\rightarrow $k \cdot$ \Rightarrow *r*) points in the direction of propagation (ray direction), so does $\nabla \Gamma(x, y, z)$

Put this in wave eqn
$$
\nabla^2 p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} \rightarrow \left(\frac{\omega}{c_0}\right)^2 - \left(\frac{\omega}{c_0}\right)^2 \nabla \Gamma \cdot \nabla \Gamma = 0
$$

if amplitude *A* and ∇Γ vary slowly enough (requires *A* and *c* ~ const over distances on the order of $\lambda \approx c/f$) $\rightarrow \nabla \Gamma \cdot \nabla \Gamma = const$ let ∇Γ⋅∇Γ= *n* ² (*Eikonal equation* - encountered also in QM) where $n(x, y, z) = c_0 / c(x, y, z)$

Eikonal equation and ray tracing

- Eikonal equation helps us do ray tracing: $\nabla \Gamma$ is the direction of ray
- Example: ray of sound moving in x-y plane

 $\nabla \Gamma = n \cos \phi \hat{x} + n \sin \phi \hat{y}$ but ϕ will vary Sultable of Contract of with *t* as the ray propagates. Small patch on surface of constant phase moves along ray path. Useful to consider variation of $\nabla \Gamma$ with $s =$ distance along ray path: $\nabla \Gamma = n(x, y, z) \hat{s}$ (\hat{s} = unit vector in direction of *s* at $\{x, y, z\}$) (see Kinsler for details - works for 3 dimensions also) direction cosines of $\hat{s} = {\alpha, \beta, \gamma}$: $\hat{s} = \alpha \hat{x} + \beta \hat{y} + \gamma \hat{z}$, and $\alpha^2 + \beta^2 + \gamma^2 = 1$ *d* ∂ $+\beta\frac{\partial}{\partial x}$ ∂ rate of change in \hat{s} direction is $=\alpha$ $+ \gamma$ *ds* ∂*x* ∂*y* ∂*z d*(*n*α) ∂*n d*(*n*β) ∂*n d*(*n*^γ) ∂*n* Then , , = = = *ds* ∂*x ds* ∂*y ds* ∂*z* 20

Ray tracing

• Sound ray moving in a plane – so c=c(z only) – is a common case:
\nThen
$$
\frac{d(n\alpha)}{ds} = 0
$$
, $\frac{d(n\beta)}{ds} = 0$, $\frac{d(n\gamma)}{ds} = \frac{\partial n}{\partial z}$ • $c(x,y,z)=c(x)$
\nIf ray starts in the x-z plane
\nwith an angle θ with the x axis,
\nthen $\alpha = \cos \theta$, $\gamma = \sin \theta$, $\beta = 0$,
\nand $\frac{d(n\beta)}{ds} = 0 \rightarrow \beta = 0$ always;
\nso $\frac{d(n\cos\theta)}{ds} = 0 \rightarrow n\cos\theta = \text{const}$,
\nand $\frac{d(n\sin\theta)}{ds} = \frac{\partial n}{\partial z}$
\n $\theta_0 = \text{angle of ray with the x axis at location where } c = c_0$
\nThen $n(x, y, z) \cos \theta = \text{const} = c_0 \cos \theta / c(x, y, z)$
\n $\Rightarrow \frac{\cos \theta}{c(x, y, z)} = \frac{\cos \theta_0}{c_0}$ (Snell's Law) (Snell's Law)

Snell's law

- When sound speed $c(z)$ decreases with z, θ increases
- Rays always bend toward a region of lower c:

$$
n = \frac{c_0}{c(z)} \rightarrow c(z) = c_0 n^{-1} \rightarrow \text{sign}\left(\frac{dc}{dz}\right) = -\text{sign}\left(\frac{dn}{dz}\right)
$$

\n
$$
\frac{dc}{dz} = g, \text{ gradient of sound speed}
$$

\n
$$
dz = \sin \theta ds \text{ and } ds = R d\theta, \text{ where } |R| = \text{ radius of curvature of ray}
$$

\n
$$
R = -\frac{1}{g} \frac{c_0}{\cos \theta_0}
$$

R is positive if *d*^θ increases with *s* $d^2\theta$ *ds* $\left(\frac{d^2\theta}{da^2}\right) > 0$ ⎝ $\left(\frac{d^2\theta}{d^2}\right) > 0$ \int ⎟, negative if it decreases

Ray refraction with varying c

- Classic case: sound rays in water- oversimplified: linear $c(z) = a b z$
- Sound speed $c(z)$ decreases with depth z, θ (angle wrt x) increases
- Rays always bend downward, toward a region of lower c

More on this in a few weeks...

fas.org

Ray refraction with varying c

- Another classic case: sound rays in air, passing over cool water
- Air near water is cooler, sound speed $c(z)$ decreases with temperature
- Rays always bend downward, toward a region of lower c

More on this in a few weeks...

fas.org

Hazards of ray refraction

Radiation Oncology 10(1):119

- Ultrasound rays in human body, with varying sound speeds
- Demonstration using Zerdine = substance used in "phantoms"

(Phantom = object used in medical imaging calibration and experiments, simulating tissue properties)

• Error in position of target could have serious consequences!

Ray tracing with image-source method

Simple geometric ray tracing tool, from optics of mirrors:

semanticscholar.org

• Find reflected rays via "virtual image source" behind reflector

 S'_{c2-w}

- On line normal to surface from source, same distance behind
- Draw rays from image source to real source and receiver
	- If ray from image source to receiver does not intersect same wall, receiver cannot "see" it (dashed line) so ignore
- Secondary images for multi-surface reflection ray paths

Reflection and transmission at interfaces

- Reflections are characterized by reflectance r (assume plane waves for now)
	- Reflected intensity $I_R = rI_0$
		- $r=R^2$ where

 $R = pressure$ (amplitude) reflectance factor: $p_R = Rp_i = v'r p_i$)

- Similar coefficients for transmission (T) and absorption (A): $T=p_T / p_i$ (Coefficients must be real numbers)
- Pressure reflection coefficients are related to acoustic impedance Specific impedance $z = p/u$; for plane waves $u = \frac{p}{\sqrt{p}} \rightarrow z = \rho_0 c$ $\rho_{0}c$

Intensity of plane wave is $I=\frac{1}{2}$ 2 p^2 ^ρ*c* $=\frac{1}{2}$ 2 p^2 *r* $, \quad so \quad R_I = \frac{I_{refl}}{I}$ *Iinc* $=\left(\frac{p_r}{p_r}\right)$ *pi* $\sqrt{2}$ ⎝ $\left(\frac{p_r}{p}\right)$ ⎠ \vert 2 $= |R|^{2}$ $\rho_0 c$ = Characteristic impedance of medium So z = ρ c = r+i x \rightarrow Re(z) = r_i= ρ_i c_i

- Assume for intensity coeffs, T+R+A=1: all energy accounted for
	- If A is small, can assume $T+R \sim 1$

2

 $x=0$

 $(r_2 = \rho_2 c_2)$

 $(r_1 = \rho_1 c_1)$

Reflection and transmission at interfaces

Reflection and transmission at interfaces

2 • For rays arriving at an angle θ_i to interface: (r_1) $(r₂)$ Plane wave incident with propagation vector k_1 $\overline{1}$ $\vec{k}\cdot\vec{r}$) in the x-y plane: $p_i = Ae^{i(\omega t - \omega t)}$ θ, $\rightarrow p_i = P_i \exp[i(\omega t - k_1 x \cos \theta_i - k_1 y \sin \theta_i)]$ θ_i reflected wave is $p_r = P_r \exp[i(\omega t + k_1 x \cos \theta_r - k_1 y \sin \theta_r)]$ transmitted wave is $p_t = P_t \exp[i(\omega t - k_2 x \cos \theta_t - k_2 y \sin \theta_t)]$ $x=0$ Continuity of pressure at interface $x = 0$: $P_{v(1)} = P_{v(2)}$ P_i exp(−*ik*₁*y*sin θ_i) + P_r exp(−*ik*₁*y*sin θ_r) = P_t exp(−*ik*₂*y*sin θ_t) must be true for any y, so must have $k_1 \sin \theta_i = k_1 \sin \theta_r = k_2 \sin \theta_t$ so $\sin \theta_i = \sin \theta_r$ (reflection law) and $\frac{\sin \theta_i}{\cos \theta_i}$ $=\frac{\sin\theta_t}{\sin\theta_t}$ (Snell's law) $c₁$ $c₂$ With all exponents equal, $P_i + P_r = P_t \rightarrow 1 + R = T$

- We get sines instead of cosines here due to convention of taking angle relative to normal (from optics)
	- Underwater acoustics uses convention of measuring θs from interface surface direction, so they use cosines

Reflections at surfaces

At critical angle, refracted ray lies in plane of interface:

 $n₁$

Water

Reflections at solid(ish) surfaces

- For reflection on a (hard) solid surface, with normal incidence:
	- Ignore transmission: consider only reflected wave
	- Describe behavior in terms of *normal acoustic impedance* of solid
	- $z_n = \frac{p}{\pm}$ $\frac{P}{\vec{u} \cdot \hat{n}}$, \hat{n} = unit vector normal to surface

For normal-incidence wave, $\vec{u} \cdot \hat{n} = u_x$ the particle speed $z_n = r_n + i x_n$

continuity of *p* and *u* at $x = 0$: $p_i + p_r = p_t$, $u_i + u_r = u_t$

$$
\Rightarrow z_n = \frac{p_i + p_r}{u_i + u_r} \Rightarrow z_n = r_1 \frac{1 + R}{1 - R} \Rightarrow R = \frac{(r_n - r_1) + i x_n}{(r_n + r_1) + i x_n}
$$

For $x_n = 0$, this is same as for normal incidence on a fluid-fluid interface.

– For a semi-solid surface (eg seabottom), transmitted power might be significant, in both transverse and shear waves – sound speed must include shear modulus:

$$
c = \sqrt{B/\rho_0} \to \sqrt{(B + (4/3)G)/\rho_0}, \quad G = \text{shear modulus}
$$

 \boldsymbol{x}

fluid (bottom) C_2 , ρ_2

fluid (water) C_1, p_1

 $Z_{\rm s}$

