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Course syllabus and schedule – updated 

Tonight 

See : http://courses.washington.edu/phys536/syllabus.htm 

Class is over after you 
turn in your take-home 
exam. No in-person final 
exam during finals 
week. 



Reflections at solid(ish) surfaces 

•  For reflection on a (hard) solid surface, with normal incidence: 
–  Ignore transmission: consider only reflected wave 
–  Describe behavior in terms of normal acoustic impedance of solid 

 
–  For a semi-solid surface (eg seabottom), transmitted power might be 

significant, in both transverse and shear waves – sound speed must 
include shear modulus: 
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zn =
p
!u ⋅ n̂

 ,    n̂ =  unit vector normal to surface

For normal-incidence wave,  !u ⋅ n̂ = ux   the particle speed
zn = rn + i xn
 continuity of p and u at x = 0 :  pi + pr = pt,     ui +ur = ut

→ zn =
pi + pr
ui +ur

→ zn = r1
1+ R
1− R

→ R =
rn − r1( )+ i xn
rn + r1( )+ i xn

For  xn = 0,  this is same as for normal incidence 
on a fluid-fluid interface.

c = B / ρ0 → (B+ 4 / 3( )G) / ρ0 ,    G = shear modulus

R for a "slow bottom" 
with c2 / c1 = r2 / r1 = 0.9

From last time 



Absorption losses 

–  Waves in a medium with viscosity lose energy: 
•  Viscosity means time is required to reach equilibrium after δp 

–  Energy of wave motion à thermal energy 

•  Describe behavior in terms of linearized equation of motion 
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ignoring losses, we have  p = ρ0c
2s  : pressure and compression are in phase

modify equation of state  p = ρ0c
2 1+τ ∂

∂t
⎛

⎝
⎜

⎞

⎠
⎟s  where τ  is relaxation time

Assume fluid is at rest until t = 0 when sudden increase of pressure P0  is applied

solution that satisfies this condition is = s =
P0
ρ0c

2
1− exp(−t / τ( ) s, t > 0

∇⋅
!u = 1

ρ0

∂p
∂t
= −

∂s
∂t
,    and  ρ0

∂
!u
∂t

= −∇p→   1+τS
∂
∂t

⎛

⎝
⎜

⎞

⎠
⎟∇2p =

1

c2
∂2p

∂t2
,    (Lossy wave eqn)

τS = 4 / 3( )η +ηB( )ρ0 ∂
!u
∂t
⎛

⎝
⎜

⎞

⎠
⎟,     η and ηB =  coefficients of  shear and bulk viscosity

c2 = ∂P
∂ρ

⎛

⎝
⎜

⎞

⎠
⎟
ADIAB

;  not the phase speed  cP , due to τS  :   P  = hydrostatic pressure



Absorption losses 

–  in terms of linearized equation of motion 
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for monofrequency case,  p ~ exp(iωt), wave eqn →  "Lossy Helmholtz eqn"

  ∇2p+ k2 p = 0,    with k = k − iαS = (ω / c) 1+ iωτS( )1/2

→  αS = (ω / c 2)
1+ ωτS( )2 −1
1+ ωτS( )2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1/2

,    cP = (ω / k) = c 2
1+ ωτS( )2

1+ ωτS( )2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+1/2

!p = P0 exp(i(ωt −
!
kx))→  p = P0 exp(i(ωt − kx))exp(−αx)

 traveling wave has phase speed  cP = (ω / k)   not = c but a f ( freq)

acoustic impedance is !z = ( !p / !u) = ρ0cP
1

1− iα / k( )
 



Lossy propagation 
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For wave in +x direction  
 p+ = P0 exp i(ωt − k x)[ ] = P0 exp(−αSx)exp i(ωt − kx)[ ]
 Wave amplitude decays in x  direction →  αS  = spatial  absorption coefficient.
 The phase speed  cP  is frequency-dependent →  propagation is dispersive.
  Typical values of τ S  ~ 10−10s for gases,  10−12s for liquids, 
 so ωτ S <<1 except at ultrasound frequencies.

From http://
dx.doi.org/
10.5772/55935 



Sound sources: pulsating sphere 

•  Sphere pulsating in radial direction 
–  Model for “simple” ~point sources 

•  Assume |δr| << radius  a 
–  Surface speed u= U0 exp(iωt)  
–  Boundary conditions:  

•  No reflection at ∞ à diverging only 
 p(r,t)= (A/r) exp[i (ωt-kr)]  

–  Acoustic impedance seen at r=a: 
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 Recall,   Φ+(r, t) = −
!p

iωρ0

, !u =∇Φ= 1− i
k r

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

!p
iωρ0

 Observable quantities are real parts:  

p(r, t) = Re A
r

exp(iωt − kr)
⎛

⎝
⎜

⎞

⎠
⎟,u(r, t) = Re = 1− i

k r

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

!p
iωρ0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

z = p
u
= ρ0c

kr
1+ (kr)2

exp(iθ ),  where cotθ = kr→ z(a) = ρ0ccosθ exp(iθa )

So u is not in 
phase with p, and 
z is not just ρc 

(Ignore shading…)  



Sound sources: pulsating sphere 

•  Sphere pulsating in radial direction 
–  Pressure at source surface r=a: 
 p(r,t)= (A/r) exp[i (ωt-kr)]  
 p(a,t)= ρ0cU0 cos(θa) exp[i (ωt+θa)] 

So  A=ρ0 c U0 (a/r)cos(θa) ,  and for r>a,  
p(r,t)= ρ0 c U0 (a/r)cos(θa) exp[i (ωt-k(r-a)+θa)] 
–  If a<<λ, so ka<<1   
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z(a) = ρ0ccosθ exp(iθ ),   where cotθ = ka
 z has reactive part dominant (energy stored as fluid layers pulsate)
so  z(a) ≈ ρ0cka(i+ ka)→  for long λs,   pressure at r > a is

 p(r, t) ≈ i ρ0cU0
a
r
⎛

⎝
⎜
⎞

⎠
⎟ka exp[i (wt + kr)]→  nearly π

2
 out of phase with u

 and intensity is  I = 1
2
⎛

⎝
⎜
⎞

⎠
⎟ρ0cU0

2 a
r
⎛

⎝
⎜
⎞

⎠
⎟

2

(ka)2 → I  is proportional to ω 2  and a4  



Source strength 

•  Single-frequency  source might be non-spherical, 
or have varying values of U and its phase, at 
different places on surface 
–  Still assuming |δr| << radius  a 

•  “Simple source” 
–  We want a general way to characterize 

source strength 
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Sphere pulsating 
in (2,2) mode 

  Instantaneous velocity of a given point on the surface is
 !u(r = a; t,ϕ ) =

!
U exp i(ωt −ϕ )[ ]

 Source displaces fluid volume at the rate
  Qexp(iωt +ϕ ) = !u ⋅ n̂

S
∫ dS     complex source strength

(For a uniformly pulsating sphere, Q is real:  Q = 4πa2U0 )



Acoustic reciprocity 

•  Useful analysis tool is acoustic reciprocity theorem: 
–  If medium is not moving in bulk, source and receiver positions can 

be swapped with no change in results 
–  Example: Two sources A, B 
–  Case 1: A=source, B=receiver 
–  Case 2: B=source, A=receiver 
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A 

A 

B 

B 

Case  1 

Case  2 

Solution for p(r=A,t) in case 1 will 
be same as p(r=B,t) in case 2 

Color sch 6  Ex: slow medium, anti-refl, 
 refr, int refr, 
Reduce speed, damping, incr resolution 
Move boxes up 
Ex: reciprocity 
 



Acoustic reciprocity 

•  Acoustic reciprocity theorem in more technical terms: 
–  As before, two transducers: 1 and 2 - one is source, other receiving: 

So for large r, pressure field of an irregular simple source is identical to pressure 
field of a pulsating sphere with the same Q 
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Recall -  
!u =∇Φ  where  Φ is a scalar velocity potential  

for spherical waves, Φ∝ p,   and wave eqn →   ∇2Φ= −k2Φ
so for 2 sources (only one active), we can apply Green's Theorem (see Kinsler 8.3-4)

to get  Φ1∇Φ2 −Φ2∇Φ1( ) ⋅ n̂
S
∫ dS = Φ1∇

2Φ2 −Φ2∇
2Φ1( )

V
∫ dV

→ p11
!u2 − p2

!u1( ) ⋅ n̂
S=SOURCE

∫ dS = 0,   where S encloses whichever source is active.

→ p11
!u2( )

S
∫ ⋅ n̂ dS = p2

!u1( )
S
∫ ⋅ n̂ dS  where S is distant and encloses both 1 and 2.

Source  Qeiωt = !u
S
∫ ⋅ n̂ dS,  and p = P(r)eiωt →

Q11
P1(r)

=
Q21
P2(r)

 for "simple sources"

pulsating sphere has  p(r,t) ≈ i ρ0cU0
a
r
⎛

⎝
⎜
⎞

⎠
⎟kaei(ωt−kr) ,  

where  k = 2π / λ,  and  a << λ( )   and  Q = 4πa2U0→
Q
P
=
2λr
ρ0c

Free-field 
reciprocity 
factor 



Application: reciprocity calibration of microphones 

•  Primary standard for calibration of measurement microphones 
–  For scientific/engineering measurements, precise sensitivity must be known 

(in volts per Pa) 
–  Sensitivity varies with f à calibrate at several frequencies 
–  Can use 3 uncalibrated microphones i, j, k (as long as they are reciprocal) 

à sensitivity in V/Pa as a receiver = sensitivity in m³/s/A as transmitter 
–  Set up mic i facing mic j, drive i aind measure signal at j 

•  Find electrical transfer impedance Z i j = V j  / I i   
 I i  = driving current in mic i 
 V j  = output of mic j 

•  Sensitivity of mics is related by Z i j = M i  Z AC M j  
Z AC = acoustical transfer impedance  

•  For free-field / far field coupling 

–  Repeat with mics j à k, and k à i 
–  Solve 3 eqns for 3 unknown M’s: 
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Transfer function 

V1  V2  
I1  I2  



Application: reciprocity for noise abatement analysis 

•  For auto/truck tire noise: 
–  Place omni transducer inside car and use as source at various f’s 
–  Use reciprocal mic to measure sound field at points on tire and acoustic baffling in 

car body 
à Identify locations that contribute most, or are blocked, to improve blocking 

•  For auto/truck engine noise: 
–  Same procedure, now measure sound field at various points on engine surface and 

acoustic baffling in car body 
à Identify locations that contribute most, or are blocked, to improve blocking 

•  For railway wheel noise: 
–  To evaluate and improve design of trackside baffling walls, need to model wheels 

and railbed as acoustic sources and include diffraction behavior of the barrier.  
•  Building a model is difficult: complex geometry of undercarriage; scattering and 

absorption properties of the ballast and sleepers as well as barrier. 
–  Place omni transducer at railside receiver positions and use as source  
–  Use reciprocal mic to measure sound field at various points on wheels and 

undercarriage  
–  Find barrier insertion loss via transfer functions measured reciprocally in the 

presence and absence of the barrier 
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Application: reciprocity for noise abatement analysis 
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From:  Some Applications of the Reciprocity Principle in Experimental Vibroacoustics, F. J. Fahy, 
Institute of Sound and Vibration Research, U. of Southampton Acoustical Physics, Vol. 49, 2003, p. 217. 



Simple source with hard baffle behind it 

•  Common case: simple-source transducer mounted on a wall 
–  Simple-source = single-f source with closed surface, with arbitrary 

vibration pattern, but all dimensions << λ    
–  Hard baffle means no penetration behind source, power radiated 

backward is reflected  
 à 2X pressure and 4X intensity in forward hemisphere 
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so  p(r, t) = 2 i ρ0cU0
Qk
4πr
⎛

⎝
⎜

⎞

⎠
⎟kaexp[i(wt − kr)]

⎛

⎝
⎜

⎞

⎠
⎟= i ρ0cU0

Qk
2πr
⎛

⎝
⎜

⎞

⎠
⎟kaexp[i(wt − kr)] 

and I(r) = 4 1
8

 ρ0c
Q
λr
⎛

⎝
⎜

⎞

⎠
⎟

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

1
2

 ρ0c
Q
λr
⎛

⎝
⎜

⎞

⎠
⎟

2

Power radiated = I(r)dV
FWD  HEMISPHERE

∫ = ρ0c
Q
λ

⎛

⎝
⎜

⎞

⎠
⎟

2

twice the power compared to isolated simple source 
(radiating into both hemispheres)



Dipole sources 

•  Can use multiple simple sources to model more complicated 
sources:  p(r,t) = p1(r,t) +  p2(r,t) + … 

•  Common example: dipole source (acoustic doublet) 
–  Two simple sources of same f and equal Q separated by distance d,  

but 180 deg out of phase; then 
 p1(r, θ, t) = [A/(r1+Δr1)] exp[i (ωt-kr1 + kΔr1)]   where Δr1 = path difference 
from observation point r to source 1, relative to midpoint distance r, and 
p2(r, θ, t) = [A/(r2+Δr2)] exp[i (ωt-kr2 – kΔr2)],  so (including 180o phase diff) 
 
 

–  Usually interested in r >>d: far-field 
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d 

Δr1 

r2 
r1 

θ 
Δr
2 

r 

p(r, t) = A
r

⎛

⎝
⎜

⎞

⎠
⎟
exp(−ikΔr1)
1+ (Δr1 / r)

−
exp(+ikΔr2 )
1− (Δr2 / r)

⎛

⎝
⎜

⎞

⎠
⎟exp[iω t − kr)]

r >> d→Δr1 ≈ Δr2 =
d
2

sinθ,  and   Δri / r <<1

so  p(r, t) ≈ −i 2A
r

⎛

⎝
⎜

⎞

⎠
⎟sin k d

2
sinθ

⎛

⎝
⎜

⎞

⎠
⎟exp[iω t − kr)]

for    d << λ→ kd <<1,   sin(kdθ ) ≈ kdθ

p(r, t) ≈ −i Akd
r

⎛

⎝
⎜

⎞

⎠
⎟sinθ exp[iω t − kr)] Dipole radiation viewed from the far field 



compression 

rarefaction 

Dipole sources 

•  Dipoles are commonplace 
–  Vibrating tine of a music box 
–  Vibrating string or bar 
–  Half of a tuning fork  
(full tuning fork = quadrupole source!) 
In each, one side compresses while the other rarefies 
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Dipole source radiation patterns 

Dipole sources cancel each other 
in the near field – faint sound.  
Sounding boards or resonators are 
needed to hear them. quadrupole  



Plane circular piston source 

•  Piston is a common model for sources 
–  Treat piston as array of baffled simple sources 

Start with p on the acoustic symmetry axis (z axis) 
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p(r,θ, t) = i ρ0c
U0

λ
exp(iωt) 1

r '
ei(ωt−kr ')

S
∫ dS

p(r,θ = 0, t) = i ρ0c
U0

λ
exp(iωt)

exp −ik r2 +σ 2( )
r2 +σ 2

2πσ dσ
σ=0

a

∫  

σ
exp −ik r2 +σ 2( )

r2 +σ 2
= −

d
dσ

exp −ik r2 +σ 2( )
ik

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
         where  k = 2π

λ

so  p(r,θ = 0, t) = i ρ0cU0
2π
λ

exp(iωt) d
exp −ik r2 +σ 2( )

ik

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟σ=0

a

∫

= ρ0cU0 1− exp −ik r2 + a2 − r( )⎡
⎣⎢

⎤
⎦⎥{ }exp[i(ωt − kr ') 

S = surface enclosing piston  
For r on the z-axis (θ=0) 



Plane circular piston source 

•  The pressure amplitude P is the magnitude of p : 
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P(r, 0) = 2ρ0cU0 sin (1 / 2)kr 1+ (a / r)2 −1( )⎡
⎣⎢

⎤
⎦⎥{ }exp[i(ωt − kr ')

If    r
a
⎛

⎝
⎜
⎞

⎠
⎟>>1 ,   1+ (a / r)2 →1+ 1

2
(a / r)2  

and also r
a
⎛

⎝
⎜
⎞

⎠
⎟>>

ka
2
→ r >> πa

2

λ
,      

P(r, 0) = 1
2
ρ0cU0

a
r
⎛

⎝
⎜
⎞

⎠
⎟ka

P(r, 0)∝ sin (1 / 2)kr 1+ (a / r)2 −1( )⎡
⎣⎢

⎤
⎦⎥
→   has maxima and minima

when   (1 / 2)kr 1+ (a / r)2 −1( ) =mπ / 2,   m = 0,1, 2…

so extrema occur for rm / a = a /mλ( )− mλ / 4a( )  
r1 / a = a / λ( )− λ / 4a( ),   r2 / a = a / 2λ( )− 2λ / 4a( ),   etc
until face of piston is reached

 (piston area)/λ is called the “Rayleigh length”  



Far-field approximation 
(accurate for r/a >8) 

r1 

r2 

r3 

r4 

Example: on-axis P for circular piston 

•  Coming in from the far field, successive max/mins appear: 
–  Pressure amplitude on the z axis for ka=8π à a=4λ
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 rm / a = a /mλ( )− mλ / 4a( ),   m =1, 2…
 first (max) is r1 / a( ) = 4− 1/16( ),  next (minimum) at  r2 / a = 2( )− 1/ 8( ),  
 max at  r3 / a = 4 / 3( )− 3 /16( ),  min at r4 / a = 1( )− 1/ 4( ),
until face of piston is reached (here, at m = 8)
r1  ~ beginning of the near field;  if a < λ / 2,  r1 = 0→  piston is ~ simple source. 



•  Another case where we can integrate p is 
for large r (far field) -- for a point (r,θ) in 
the x-z plane, we can use strips dx: 
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Far field off-axis for plane circular piston source 

p(r,θ, t) = i ρ0c
U0

λ
exp(iωt) 1

r '
ei(ωt−kr ')

S
∫ dS

dp = i ρ0c
U0

πr '
kasinφei(ωt−kr ')dx     for  r >> a,

r ' ≈ r +Δr = r − asinθ cosφ

p(r,θ, t) = i ρ0c
U0

πr
kaexp[i(ωt − kr ')] exp(ikasinθ cosφ)sinφ dx

−a

+a

∫ ;

x = acosφ→ dx = asinφdφ

→ p(r,θ, t) = i ρ0c
U0

π
a
r
⎛

⎝
⎜
⎞

⎠
⎟kaei(ωt−kr ) exp(ikasinθ cosφ)sin2φ dφ

0

π

∫

Re exp(ikasinθ cosφ)sin2φ dφ
0

π

∫
⎡

⎣
⎢

⎤

⎦
⎥= cos (kasinθ )cosφ[ ]sin2φ dφ

0

π

∫

(1/r’ ~ 1/r, but must keep Δr in the phase factor)



•  All the angular dependence is in the square brackets  
[  ] à1 as θ à0, so we can factorize:
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Far field for plane circular piston source 

p(r,θ ) = PAXIAL (r)H (θ ),    where H (θ ) = 2J1(v)
v

,   with v = kasinθ

PAXIAL (r) = i
2

 ρ0cU0
a
r
⎛

⎝
⎜
⎞

⎠
⎟ka

There is a maximum at θ = 0,  
and pressure nodes at angles where J1(v) = 0 :
vm = kasinθm, m =1, 2,3…

Far-field beam pattern 
for piston with ka=10 

For ka >>1 (λ < a), many narrow lobes; 
For ka ~ 1, one broad lobe 
For ka << 1 (long λ)  à pattern of simple source 
with strength Q=πa2U0  

Integral→Bessel function: cos zcosφ[ ]sin2φ dφ
0

π

∫ = π J1(z) / z

so   p(r,θ, t) = i
2

 ρ0cU0
a
r
⎛

⎝
⎜
⎞

⎠
⎟ka

2J1(kasinθ )
kasinθ

⎡

⎣⎢
⎤

⎦⎥
ei(ωt−kr )



Defining source characteristics 

•  How to specify the properties of an acoustical source? 
–  In many cases there are no agreed standard values – must read carefully! 

•  Beam width: +Δθ, Δφ from axis where intensity drops by x 
–  Factors of I(θ, φ) / IAXIS=0.25  (6 dB down), 0.5  (3 dB), 10 (10 dB) 
–  Example: for piston with ka=8π  à λ =a/4, 

•  3 dB down = 7.4o , 6 dB down = 10o , 10 dB down = 13o , and the first 
zero is at 17o  

•  Source level SL: 
<P>=Prms = Paxial/√2 ; SL=20 log(Prms/Pref) 
Where (usually) Pref = 1µPa  
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Defining source characteristics 

•  Directivity D : how concentrated is a source’s angular 
distribution, relative to simple isotropic source? 

–  Directivity index:  DI = 10 log D    
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Angular variation of  P(θ,φ) = H (θ ) = 2J1(v)
v

,   with v = kasinθ

 Intensity ≈ H 2 →Directivity D =
IAXIAL (r)
ISIMPLE (r)

:  

intensity of given source / that of simple (spherical pattern) source

 IAXIAL (r)
ISIMPLE (r)

=
P2
AXIAL (r)

P2
SIMPLE (r)

→D =
4π

H 2 (θ )
Ω

 , 

where  H 2 (θ )
Ω
=  average over solid angle Ω 



Far field 

•  Where is it safe to use far-field approximation? 
–  A source is directive if kL >>1 à λ << 2πL,  L= size of source  
–  One definition of where FF begins is: for a point on axis, 
rMAX = distance to edge of source,  
rMIN = distance to center of source 
FF begins where (rMAX - rMIN ) ~  λ /2 

•  Estimating major lobe width 
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Lsinθ1 ≈ λ→ sin−1θ1 ≈
λ
L

Diagram shows case where source is 
rectangular, L1  x L2

(rMIN  for FF  is determined by the 
larger of L1and L2 )

–  First minimum (defining the “major 
lobe”) is where lower half of piston is 
out of phase with upper half 



Radiation impedance 

•  We defined input mechanical impedance for a driven string:   
Zm=fDRIVER / u(x=0,t)     ( fDRIVER  = force at driven end ) 
–  For sources, we can similarly define radiation impedance as 
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Zr =
df
uAREA

∫ ,   (integral is over active face area, df  may vary)

Zr = Rr + iXr radiation resistance and reactance*
If source face is rigid, has mass m, stiffness ("spring constant") s,
with driving force f (t) = F exp(iωt) producing face speed u0 =U0 exp(iωt),  

then Newton→ Fnet =ma→ F − Rm
dx
dt
− sx =m d 2x

dt2

→ f − fs( )− Rm
dξ0

dt
− sξ0 =m

d 2ξ0

dt2 ,

where fluid's reaction force on face is  fs = Zru0

and  ξ0 =  particle displacement at face of source.
Recall (Kinsler Ch. 1)  Zm = Rm + iXm,

Xm =ωm− s /ω→U0 =
F

Zm + Zr
Source sees ZEFF = 
 its own Zm + fluid’s 
radiation  impedance 

*Total power radiated is 
 
 
Find R from power dissipated: 
 
 
Reactance does not dissipate P, 
acts like extra mass load:  
 
   
 
   

 = lowered resonant frequency 

PTOT =
1
T

Re fs ⋅u0[ ]dt
0

T

∫

PTOT =
1
2
U 2
0Rr

m→m+mr   where mr = Xr /ω
so  ω0 = s /m→ s / (m+mr )



Waves in pipes 

•  Waves in pipes are important for musical instruments (we will 
get to them later), ventilation ducts, and other applications 
–  In a rigid-walled pipe with R << λ , sound propagates as plane 

waves, similar to longitudinal waves in solid bars 
–  For rigid-walled volumes with R > λ , standing waves can appear: 

resonances 

•  Example: pipe has cross-sectional area S, length L, filled by fluid  
with density ρ0 , and driven by a piston at x=0 ; end at x=L is 
closed by a plug with mechanical impedance ZmL    
–  As usual we get  
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S 

x=0 x=L 

piston 

ρ0 

Continuity of force, particle speed →
must have impedance match: ZmL = Zwave

f (L, t) = p(L, t)S;   Zwave = f (L, t) / u(L, t)

p(x, t) = Aei[ωt+k (L−x )] +Bei[ωt−k (L−x )]

= p+ + p−



Driven closed-end pipe resonant f’s 
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→  ZmL = ρ0c( )S A+B
A−B

;    

Zm0 = ρ0c( )S Ae
ikL +Be−ikL

AeikL −Be−ikL
solve to eliminate A, B:  

Zm0

ρ0cS
=

ZmL

ρ0cS
+ i tankL

1+ ZmL

ρ0cS
i tankL

Zm0

ρ0cS
=
r + ix
ρ0cS

≈
1

i tankL
= −icot(kL)

r ≈ 0   and  x = 0  when  cot(kL) = 0
→  knL = (2n−1) π / 2( ),    n =1, 2,3...  

→  fn =
ckn
2π

=
(2n−1)

4
c
L

For a rigid end cap, ZmL  is very large, so 

Driven closed pipe has a pressure 
node at x=0, and antinode at x=L 
(opposite for u) 



•  In intro physics, we take open 
end of pipe to have ZmL = 0 

•  Actually, open end sees Z of 
room air:  ZmL = Zr   

•  An open pipe with a large 
flange (eg, air duct in wall) is 
similar to piston in a baffle, so  

Driven open-end pipe resonant f’s 
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ZmL

ρ0cS
≈ r + ix = 1

2
(ka)2 + i 8(ka)

3π
   

where typically r << x <<1 
Resonant frequencies occur when 

knL +
8

3π
kna = nπ,   n =1, 2,3...

→ fn =
n
2

c
LEFF

, LEFF = L +
8

3π
a

For an unflanged pipe,  LEFF = L + 0.6( )a

Ideal driven open pipe has a pressure 
node at x=0, and antinode at x=L  
(opposite for u).  
Real pipe needs end correction: 
Effective length > L  



Power radiated from open-ended pipes 

•  For open ended pipes, we had 

•  So p- ~ p+ , and at x=L reflected wave is phase-flipped 
•  Particle velocities are in phase à end is antinode of speed 
•  For unflanged pipe, T=(ka)2  à wide flange doubles output 

–  Flare at end instead of flange increases power output (eg, trumpet) 

•  Only small fraction of power is transmitted out of pipe 
–  Characteristic of sources small relative to wavelength 
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p(x, t) = Aei[ωt+k (L−x )] +Bei[ωt−k (L−x )]

= p+ + p+
→  ZmL

ρ0cS
=
A+B
A−B

→  B
A
=
ZmL / ρ0cS −1
ZmL / ρ0cS +1

B / A =  amplitude reflection coefficient
Power  reflection coeff = B / A 2

→T =1− B / A 2

T  = transmission coefficient for power out of pipe
Results: for flanged open end, T ≈ 2(ka)2 <<1
T <<1→ B / A 2

≈1;   actually,  B / A ≈ −1  (see Kinsler ch. 9)

x=0 x=L 

piston 
flange 



Standing waves in pipes 

•  For sound waves in a pipe, wave pressure is 

à  Pressure amplitude at a node = (A+B), at antinode = (A-B) 
•  Define Standing Wave Ratio as  SWR = p(node) / p(antinode) 

 SWR =(A+B)/(A-B)  à (B/A)=(SWR-1) / (SWR+1) 
•  Can find SWR by measuring sound intensity in a pipe: 
move microphone from L downward 

SWR = max amplitude/min amplitude 
 find phase angle from location of first node 
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p(x, t) =Aei[ωt+k (L−x )] +Bei[ωt−k (L−x )] = p+ + p−
allowing for a phase difference between p−   and  p+:  A = A, B = Beiθ  

we find  B
A
=
ZmL / ρ0cS −1
ZmL / ρ0cS +1

→
ZmL

ρ0cS
=

1+ (B / A)eiθ

1− (B / A)eiθ

→ p = A+B( )2 cos2 k(L − x)−θ / 2[ ]+ A−B( )2 sin2 k(L − x)−θ / 2[ ]{ }

Nodes have k(L − x)−θ / 2 = n−1/ 2( )π →θ1 = 2K L − x1( )−π



Finding Zm from SWR measurements 

•  Example: For sound waves in a pipe with rigid endcap, 
measurements give SWR = 2, and x1 =(3/8)λ from L 
–  Then  

•  Impedance may depend on frequency – repeat measurements 
•  Tool for matching impedance = Smith Chart 

–  Study the locus of a component’s R and X versus frequency: see 

•  Can visualize locations of nodes with a Kundt Tube
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θ1 = 2k L − x1( )−π = 2 2π
λ

⎛

⎝
⎜

⎞

⎠
⎟ L −

3λ
8

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟=

π
2

we find  B
A
=

(SWR -1)
(SWR+1)

=
(2 -1)
(2+1)

=
1
3

→
ZmL

ρ0cS
=

1+ (B / A)eiθ

1− (B / A)eiθ
=

1+ eiπ /2 / 3
1− eiπ /2 / 3

= 0.80+ i (0.60)



Kundt’s tube 

•  Same idea as Chladni plates, applied to cylindrical tube 
–  August Kundt (1866): measured speed of sound in gases and metals 
–  Set up standing waves in glass cylinder filled with fine powder 

•  Powder accumulates at nodes: node spacing = λ / 2 
–  19th C: set up wave of known λ by stroking metal rod on disk 

•  Clamped at center à node à rod length = λ / 2 for longitudinal 
waves in metal rod 

–   Today: instead of passive end plug and stroked rod, use loudspeaker 
and signal generator
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particle displacement  ξ (t) = 0  at passive end,  ξ = acos(ωt) at speaker

ξ (t) = Asin ω
c
x

⎛

⎝
⎜

⎞

⎠
⎟cos ωt( )  so nodes occur where x = c

2π f
nπ,   n = 0,1, 2...

demo: 



Kundt’s tube puzzle: what causes the striations? 

•  Everybody uses K’s tube demo but few can answer “what are 
those closely spaced little columns of powder in the standing 
wave peaks?”! 
–  Wrong answer: higher overtones in the tube? (λ would be small – huge n) 

•  Answer: vortex formation due to failure of assumption that flow 
in tube is laminar 

  

•  For full explanation, see Kundt Tube Dust Striations, Carman, 
Robert A.,  American journal of physics, 1955, Vol.23 (8), p.
505-507 
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Kundt’s tube puzzle: what causes the striations? 

•  K’s tube demo is performed everywhere, but few can answer “what are 
those closely spaced little columns of powder in the standing wave 
peaks?”! 
–  Wrong answer: higher overtones in the tube (λ too small – need huge n) 

•  Answer: vortex formation due to failure of assumption that flow in tube 
is laminar 
–  For full explanation, see Kundt Tube Dust Striations, Carman, Robert A.,  

American journal of physics, 1955, Vol.23, p.505-507 
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