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Announcements 

•  Schedule of topics has been rearranged – pls check readings 
•  Due this Thursday! 

–  Papers for project 1 
–  Proposals for project 2 presentation 
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Course syllabus and schedule – updated 

Tonight 

See : http://courses.washington.edu/phys536/syllabus.htm 

Class is over 
after you turn 
in your take-
home exam. 
No in-person 
final exam 
during finals 
week. 



Closed-end pipe resonant f’s 

•  Driven closed end pipe: 

 

•  Open end/closed end 
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Zm0

ρ0cS
=
r + ix
ρ0cS

≈
1

i tankL
= −icot(kL)

r ≈ 0   and  x = 0  when  cot(kL) = 0
→  knL = (2n−1) π / 2( ),    n =1, 2,3...  

→  fn =
ckn
2π

=
(2n−1)

4
c
L

At a rigid end cap, ZmL  is very large, so 

Driven closed pipe has a displacement 
node at x=0, and antinode at x=L 
(opposite for p) 

Last time 
(but edited/corrected!) 

Continuity of force, particle speed →
must have impedance match: ZmL = Zwave

f (L, t) = p(L, t)S;   Zwave = f (L, t) / u(L, t)

p(x, t) = Aei[ωt+k (L−x )] +Bei[ωt−k (L−x )]

= p+ + p−

S 

x=0 x=L 

piston ρ0 

x=0 x=L 

Corrected! 



•  In intro physics, we take open 
end of pipe to have ZmL = 0 

•  Actually, open end sees Z of 
room air:  ZmL = Zr   

•  An open pipe with a large flange 
(eg, air duct in wall) is similar to 
piston in a baffle, so  

Driven open-end pipe resonant f’s 
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ZmL

ρ0cS
≈ r + ix = 1

2
(ka)2 + i 8(ka)

3π
   

where typically r << x <<1 
Resonant frequencies occur when 

knL +
8

3π
kna = nπ,   n =1, 2,3...

→ fn =
n
2

c
LEFF

, LEFF = L +
8

3π
a

For an unflanged pipe,  LEFF = L + 0.6( )a

Ideal driven open pipe has a pressure 
nodes at x=0 and x=L  (opposite for u).  

Real pipe needs end correction: 
Effective length > L  

Corrected! 

Last time 
(but edited/corrected 

a = radius of pipe    L= length  



Power radiated from open-ended pipes 

•  For open ended pipes, we had 

 

•  So p- ~ p+ , and at x=L reflected wave is phase-flipped 
•  Particle velocities are in phase à end is antinode of speed 
•  For unflanged pipe, T=(ka)2  à wide flange doubles output 

–  Flare at end instead of flange increases power output (eg, trumpet) 

•  Only small fraction of power is transmitted out of pipe 
–  Characteristic of sources small relative to wavelength 
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p(x, t) = Aei[ωt+k (L−x )] +Bei[ωt−k (L−x )]

= p+ + p+→  
ZmL
ρ0cS

=
A+ B
A− B

→  B
A
=
ZmL / ρ0cS −1
ZmL / ρ0cS +1

B / A=  amplitude reflection coefficient

Power reflection coeff = B / A
2
→T =1− B / A

2

T  = transmission coefficient for power out of pipe
Results: plain open end, T ≈ (ka)2 <<1;  but for flanged open end, T ≈ 2(ka)2   

T <<1→ B / A
2
≈1;   actually,  B / A ≈ −1  (see Kinsler ch. 9)

x=0 x=L 

piston 
flange 

From last time 

doubles output ! 



Recall: Self-interference à standing waves 

•  If we wiggle a rope at just the right f 
–  Waves reflected from the end interfere constructively with new waves I 

am making  
–  Result: looks as if some points stand still: standing waves 

•  Example of resonance: rope length L = multiple of λ/2 

Point A moves with big amplitude 
Point B has amplitude ~0 

•  Same thing happens in musical instruments 
–  Structure favors waves which have L = multiple of λ/2 

•  Guitar, violin strings: both ends must be nodes 
–  Organ pipes, and other wind instruments with one closed end:  
one end must be node, other antinode 

Anti-node 

Node 

Nodes = stationary points;   anti-nodes=maxima 



Interference à standing waves 

•  Two waves propagating in opposite directions with same λ and 
amplitude superpose to form a standing wave  

y(x, t) = Asin(kx −ωt)+ Asin(kx +ωt) = 2Asin(kx)cos(ωt)
Forward wave  Backward wave  Standing wave  Trig 

identity 

Notice:  
Amplitude vs x is fixed, 
but at each x position, 
y vs t oscillates 
 
Where sin(kx) =0: 
Minima = nodes 
 
Where sin(kx) = 1: 
Maxima = antinodes 



Standing wave ratio SWR 

•  For sound waves in a pipe, wave pressure is 

à  Pressure amplitude at a node = (A+B), at antinode = (A-B) 
•  Define Standing Wave Ratio as  SWR = p(node) / p(antinode) 

 SWR =(A+B)/(A-B)  ßà (B/A)=(SWR-1) / (SWR+1) 
•  Can find SWR by measuring sound intensity in a pipe: 
move microphone from L downward 

SWR = max amplitude/min amplitude 
 find phase shift from location of first node 
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p(x,t) = Aei[ωt+k(L−x)] +Bei[ωt−k(L−x)] = p+ + p−
allowing for a phase difference θ  between p−   and  p+:  A = A, B = Beiθ  

we find  B
A
=
ZmL / ρ0cS −1
ZmL / ρ0cS +1

→
ZmL
ρ0cS

=
1+ (B / A)eiθ

1− (B / A)eiθ

→ p = A+ B( )2 cos2 k(L− x)−θ / 2⎡⎣ ⎤⎦+ A− B( )2 sin2 k(L− x)−θ / 2⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

Nodes have k(L− x)−θ / 2 = n−1/ 2( )π →θ1 = 2k L− x1( )−π



Finding Zm from SWR measurements 

•  Example: For sound waves in a pipe with rigid endcap, 
measurements give SWR = 2, and x1 =(3/8)λ from L 
–  Then  

•  Impedance may depend on frequency – repeat measurements 
–  Old graphical tool for matching impedance at ends = Smith Chart 

•  Study the locus of a component’s R and X versus frequency: see 
https://www.antenna-theory.com/tutorial/smith/chart.php 

•  Can visualize locations of nodes with a Kundt Tube
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θ1 = 2k L − x1( )−π = 2 2π
λ

⎛

⎝
⎜

⎞

⎠
⎟ L −

3λ
8

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟=

π
2

we find  B
A
=

(SWR -1)
(SWR+1)

=
(2 -1)
(2+1)

=
1
3

→
ZmL

ρ0cS
=

1+ (B / A)eiθ

1− (B / A)eiθ
=

1+ eiπ /2 / 3
1− eiπ /2 / 3

= 0.80+ i (0.60)



Smith chart for impedance matching 

•  Circles = lines of constant R 
•  Arcs = lines of constant X 

•  Example: Z = 0.8 + i 0.6 
 
For R= constant, X varies with 
frequency: 
Find Z vs f by tracing circle for 
R=0.8  
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Kundt’s tube 

•  Same idea as Chladni plates, applied to cylindrical tube 
–  August Kundt (1866): measured speed of sound in gases and metals 
–  Set up standing waves in glass cylinder filled with fine powder 

•  Powder accumulates at nodes: node spacing = λ / 2 
–  19th C: set up wave of known λ by stroking metal rod on disk 

•  Clamped at center à node à rod length = λ / 2 for longitudinal 
waves in metal rod 

–   Today: instead of passive end plug and stroked rod, use loudspeaker 
and signal generator
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particle displacement  ξ (t) = 0  at passive end,  ξ = acos(ωt) at speaker

ξ (t) = Asin ω
c
x

⎛

⎝
⎜

⎞

⎠
⎟cos ωt( )  so nodes occur where x = c

2π f
nπ,   n = 0,1, 2...

demo: 



Kundt’s tube puzzle: what causes the striations? 

•  Everybody uses K’s tube demo but few can answer “what are 
those closely spaced little columns of powder in the standing 
wave peaks?”! 
–  Wrong answer: higher overtones in the tube? (λ would be small – huge n) 

•  Answer: vortex formation due to failure of assumption that flow 
in tube is laminar 

  

•  For full explanation, see Kundt Tube Dust Striations, Carman, 
Robert A.,  American journal of physics, 1955, Vol.23 (8), p.
505-507 

13 



Kundt’s tube puzzle: what causes the striations? 

•  K’s tube demo is performed everywhere, but few can answer “what are 
those closely spaced little columns of powder in the standing wave 
peaks?”! 
–  Wrong answer: higher overtones in the tube (λ too small – need huge n) 

•  Answer: vortex formation due to failure of assumption that flow in tube 
is laminar 
–  For full explanation, see Kundt Tube Dust Striations, Carman, Robert A.,  

American journal of physics, 1955, Vol.23, p.505-507 
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Standing waves in rectangular cavities 

•  Sound boxes for musical instruments and building ducts act as 
cavity resonators for sound 
–  We can apply similar procedure as with pipes, except now in 

Cartesian coordinates and with no openings 
•  Cavity has dimensions Lx , Ly , Lz,  
•  Assume walls are rigid (particle speed u=0 at wall) 
•  Repeat procedure used for 2D case in membranes: 

 

–  Separation of variables: 
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∇2p = 1
c2
∂2p
∂t2  →  ∂p

∂x x=0, Lx

∂p
∂y y=0, Ly

=
∂p
∂z z=0, Lz

= 0  u = 0 at walls( )

p = X(x)Y (y)Z(z) eiωt → d 2

dx2 + kx
2⎛

⎝
⎜

⎞

⎠
⎟X = 0,   same for y,  z

  separate constants must be related:  ω / c = k2 = kx
2 + ky

2 + kz
2

u = 0  at walls → p = Almn cos kxl x( )cos kymy( )cos kznz( )exp iωlmn t( )
 with  kxl = lπ / Lx,  kym =mπ / Ly,  kzn = nπ / Lz,    {l,m,n} = 0,1, 2...

Allowed ωs are quantized: ωlmn = lπ / Lx( )2
+ mπ / Ly( )

2
+ nπ / Lz( )2

Lx 
Ly 

Lz 



V 

S=πa2 
2a 

L 

Helmholtz resonators 

•  Long-λ limit: if λ >> size of object, acoustic variables are ~ 
constant within it:  “lumped acoustic element” 
–  Spatial coordinates can be ignored in equations of motion 
–  Object acts like a 1D harmonic oscillator 

•  Helmholtz resonator = simple lumped element 
–  If λ >> L , then fluid in neck acts like lumped mass 

•  m = ρ0 S LEFF  (LEFF ~ L + 1.5a if no flange) 
–  If λ >>√S  opening radiates like a simple source: resistance 

•   Rr =ρ0 c k2 S2 / (4π)   (see Kinsler for details)  
–  If  λ >> V1/3  then acoustic p inside acts as stiffness element 

•   s = ρ0 c2 S2 / V   (see Kinsler for details) 
–  Then 
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Zm = Rr + i ωm− s /ω( )→ resonant freq  ω0 = c
S

LEFFV

QHELMHOLTZ =
ω0m
Rr

= 2π V LEFF
S

⎛

⎝
⎜

⎞

⎠
⎟

3

Here, we’re using Q=quality 
factor (resonance sharpness) , 
not source strength! 



mass 

spring 

Helmholtz resonator applications 

•  Loudspeaker cabinets 
–  Bass reflex enclosure 

•  Port lets the rear side of the speaker 
cone contribute; higher efficiency at 
low f’s compared to a sealed box 
enclosure 

•  Motorcycle/car mufflers 
–  Reduce noise, or “tune” tone 

•  Musical instruments  
–  Ocarina is basically Helmholtz with 

selectable ports 
•  Aircraft engine noise reduction 

–  Honeycomb liners reduce noise and drag 
•  Compact array of resonators to absorb 

sound 
•  Mechanical bandpass filters 
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Resonant bubbles 

•  Bubbles in seawater absorb and scatter sound: another example 
of lumped-parameter acoustics 
–  If radius of bubble a << λ ,  sound waves à radial oscillation  

–  Recall: for pulsating sphere in low frequency limit ka <<1,  
radiation impedance is  
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acoustic signal  p = −ρbcb
2ΔV /V    with ρb  , cb = interior gas properties

recall for gas,  ρbcb
2 = γbP0,   with  P0 = exterior pressure, γb =CP /CV

ΔV /V = −4πa2ξ / (4 / 3)πa3,    and compressive force on surface is
f = −p(4πa2 )→ f = −(4πa2 )γbP0[−4πa2ξ / (4 / 3)πa3],    so
f = −12πaγbP0ξ = −sξ→  bubble's stiffness is  s =12πaγbP0

Zr = Rr + iXr = 4πa2ρc(ka)2 + i4πa2ρcka; ka <<1→ Rr <<,Xr

Xr  acts like a mass:  mr = Xr /ω = 3π (4 / 3)a3ρ = 4πa3ρ

 resonance frequency ω0 =
s
mr

=
12πaγbP0

4πa3ρ
=

1
a

3γbP0

ρ0



Resonant bubbles 

•  Heat transfer to water from bubble à non-adiabatic 
–  “It can be shown” this acts like additional mechanical resistance:  
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At the resonant frequency,  Rm
ω0mr

≈1.6x10−4 ω0

total impedance of resonant bubble  Zm = (Rm + Rr )+ i ωm− s /ω( )

QBubble =
X
R
=

ω0m
Rm + Rr

=
1

k0a+1.6x10−4 ω0

,   

Example :  in seawater at 10 m depth,  air bubble a =1 mm,  
P0 = 200kPA,  c =1500 m/s, so

f0 =
ω0

2πa
=

1
2πa

3γbP0

ρ0

=
1

6.3x10−3
3(1.4)2x105

1026
= 4550 Hz,  

k0 =
2π
λ
=

2πc
f0

 = 6.3(1500)
4550

= 2.07,   k0a = 0.002 <<1

Q =
1

k0a+1.6x10−4 ω0

= 34 ; power loss due to bubble (absorption + scattering)

P = 1
2
U 2

0 (Rm + Rr ), U0 =
F
Z
=

(4πa2 ) p
Z

,  with  p = sound wave amplitude

Rr = radiation impedance 
Rm = mechanical impedance 



Acoustic impedance 

•  We’ve already encountered impedance in different contexts: 
1.  Specific acoustic impedance z = p/u 

•  Property of medium -- Useful for describing transmission of waves 
from one medium to another 

2.  Radiation impedance Zr = (force/speed) 
•  Zr = zS  -- Part of the mechanical impedance Zm  of vibrating system 
•  Used for connecting radiation to vibrating source or load 

3.  Acoustic impedance Z=p/U    (U = “volume velocity”)  
•  Z= z/S  -- Used for coupling radiation from vibrating surfaces into 

lumped elements, pipes, or horns 
Lumped acoustic impedance: 
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U =
dξ
dt
S, ξ = displacement, S = surface area

Z = p
U

  units of Z are Pa ⋅s/m3,    ("acoustic ohm")

 can write  Z = R+ i ωM −
1
ωC

⎛

⎝
⎜

⎞

⎠
⎟,  with R = Rr

S2 ,  M= m
S2 ,  C= S

2

s
    

Analogy to RLC circuit  
(L=mass, C=stiffness)  

u(t) M 
p(t) 

Now: 



Physical acoustic filters 

•  Sound energy in a pipe can be diverted into wide parts of the pipe, or 
narrow parts, or an attached Helmholtz resonator : 

 

 

21 

pIN pOUT 

pIN pOUT 

pIN pOUT 

Electrical 
analogues: 



Physical acoustic filters 

•  Acoustic low-pass filter: insert an expansion 
chamber in the duct 
–  simple model of a muffler 
–  in architectural acoustics, plenum 

chamber in HVAC system 

•  Acoustic high-pass filter: insert a "T" junction, 
or a short side branch  
–  Both the radius and the length of the side 

branch should be smaller than wavelength 
  

•  Acoustic band-pass filter: cavity attached to 
the side branch à Helmholtz resonator 
–  Energy absorbed by resonator during 

one part of the acoustic cycle is later in the 
cycle. 
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Sound frequency; pitch and musical tones 
•  Frequency  ranges 

–  Audible – nominally 20 Hz to 20 kHz  (actual range is closer to 50Hz-15kHz) 
–  Infrasonic  -  below audible (below about  0.1 Hz we call it “vibration” !) 
–  Ultrasonic   -  Above 20 kHz 

•  Speed of sound does not vary much with f   
–  If v depended on f, sound signals would change significantly depending upon 

how far away you are 
•  This is called “dispersion” 

–  Small f dependence  can be observed, for example in undersea sound 
transmission 

•  A pulse with many frequencies in it will spread out in time as it travels  
•  Pitch will vary – pulse becomes a “chirp” 

•  Perception of sound 
–  Pitch = perceived frequency of sound 
–  Associated with musical tones by our brain 
–  JND = “just noticeable difference” in frequency ~0.4 Hz 
–  Harmonic scales: eg in western music, “A above middle C” = 440 Hz, next A 

(one octave higher pitch) = 880 Hz  -  octave  = doubling of base frequency) 
–  “Equal temperament” scale:  12  tones per octave, each is 1.06 f of previous 

(factor = 12th root of 2) 
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Again: Interference = defining property of waves       

•  If you see interference effects, you are looking at waves !  
Case study: Isaac Newton thought light was a stream of particles 

 Newton’s “Opticks” (1687) explained all observations at the time 
Thomas Young (120 years later) observed interference effects with light 
Only waves could do that…  

 Wave theory of light replaced Newton’s particle theory 

•  Interference depends on phase relationship of overlapping waves 
•  Phase relationship depends on distance from source 

Recall: Phase at distance D from source = 2π (D/λ)  
 but sin/cos repeat every cycle, so all that matters is where we are relative 

to start of latest cycle:  fraction of a cycle 
  Phase at distance D from source = 2π [ fractional part of (D/λ) ] 
Example: fractional part of D/λ = 5.678 à 0.678   = mod(D/λ, 1) 

  



Examples 
•  R and L channel loudspeakers, spaced 3m apart, are in phase: both 

speaker cones move forward or backward in sync together 
Observer 4m away, parallel to L speaker hears constructive  interference. 
What f sound is being played? 
 
 
 
 
 
 
Any integer multiple of this f will also produce constructive interference at 

the observer’s location 

3m 

4m 
5m 

( ) ( )

Hz
m
smcf

mDDnfor
nDD

mmmDmD

343
1
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1,1

5434

12

12
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Musical acoustics 

•  Musical terminology and scales 
–  In addition to loudness, human perception of sound (other than simple 

monofrequency tones) is complex 
–  Musical acoustics includes special terminology for factors such as 

•  Pitch: perceived tone (not just frequency) 
•  Timbre – tone quality 
•  Temperament: definition of musical scales, relation to frequencies 

–  Physics of human ears affects perception (more later) 
–  Brain software creates “aural illusions” (more later) 

•  Analogy to optical illusions caused by brain interpreting vision 
–  Ohm’s law of acoustics (1843): as interpreted by Helmholtz 

•  All musical tones are periodic functions, but only sinusoidal 
vibrations are perceived as pure tones; other qualities are due to 
mixing (Fourier sum) of different sinusoids 

•  Misleading: brain is not simply a Fourier analyzer 
à Musicians’ distrust of physicists’ analyses of music 

Georg Ohm 



Pitch: not just frequency 

•  Pitch = characteristic of sound that determines position on scale 
–  A. Seebeck’s siren experiments (c. 1840) 

•  Hole spacing + rotation speed à perceived pitch 
–  Siren (b) sounds 1 octave higher than (a), but… 
–  Siren (c) sounds ~ the same as (a) 

“Moaning Minnie”   
(London, 1940) 

Brain “fills in” 
missing lower tones 
because their effect on 
Fourier spectrum is not 
critical 



Similarity of waveforms with low f’s missing 

Fundamental missing   Full spectrum 

Signal + FT of a square pulse train, similar to Seebeck’s siren 

Another example: small loudspeaker in phone has poor response to actual 100 Hz 
pure tone (sinusoid) but creates perceived 100 Hz sound within complex signal 



More on perceived pitch 

•  Interference à perceived tone 
–  White noise reflected from wall 
–  Perceived tone has f=1/T=c/L  

L 

Basset and Eastman, JASA 36:912, 1964 

Delay 1 ms 
2 ms 

4 ms 
8 ms 

W
hi

te
 n

oi
se

 

Notice peaks at 1KHz, 
500Hz, 250Hz, 125Hz 
intervals   



More on perceived pitch 

•  Perceived pitch also depends on sound pressure level (SPL) 
–  cent = logarithmic unit for musical intervals 
100 cents = 1 semitone (adjacent piano keys), 1200 cents = octave 

For most people 3000 Hz will sound louder than 20 Hz sound with exactly 
the same amplitude.  
Hearing is optimized for sounds in the 2000--4000 Hz range. Frequencies in 
this range seem louder than other sounds with equal amplitude. 



Shepard tone illusion 

•  Shepard tones are heard as pitch rising continually 
–  After 12 semitones=1 octave, perceived pitch returns to beginning 

•  Normal scale (“equal-tempered”, more later) rises by factor 21/12 for 
each semitone, each note with full set of partials at fn = n f1  

•  Shepard includes only those that are powers of 2 times f1 ,  
fn = 2n f1 , n = 0,1,2,...  
So frequencies in 1st run up the scale are  
fm,n = 2m/12 2n f0 ; m =0,1,...11 (note in sequence);  
n = 0,1,2,.... (repetition of sequence = octave) 

–  Modulating the amplitudes of successive octaves à repeated perceived 
pitches: for m=0: f0, 2f0, 4f0, 8f0,…, when m=12, repeat the same set! 

Another way to display 
weights: Each set of squares 
in a vertical line composes 
one Shepard tone. Color 
indicates increasing loudness 
of the note, purple to green. 

Shepard tone 
amplitudes, 
Heller, ch. 23 



Shepard illusion. 

•  Called “The Sonic Barber Pole” for the visual version 
of a seemingly constantly rising illusion. 

•  Works both ways: also falling Shepard tone 

 



Shepard tone illusion diagram 

•  Each clockwise step is a 
semitone higher in pitch, 
shifts the autocorrelation 
peaks left, with small 
changes in their shape.  

•  They appear earlier in time 
and correspond to higher 
pitch.  

•  When the first two tall 
peaks are about equal in 
height, they are an octave 
apart, but the peak closer 
to t = 0 starts to diminish 
in height, gradually making 
the lower pitch more 
dominant.  

•  New peaks arrive after 12 
steps, to exactly 
reproduce the first 
autocorrelation function.  



Pitch standards for music 

•  Today:  A440 or A4 (A above middle C ), with f = 440 Hz is the general 
tuning standard for musical pitch 

•  Not so until 20th century! Pitch standard was subject of bitter fights… 
–  Handel’s tuning fork was 422.5 Hz 
–  1859 French government commission (Berlioz, Rossini et al) chose 435 Hz 
–  Verdi wanted to stop “creeping pitch” rise, suggested 432 Hz, based on…  
–  “Scientific pitch” definition had all C’s powers of 2 (128 Hz, 256, 512, etc) 

•  So A4 ~ 431 Hz  Note  f, (Hz) 
C0 16 
C1 32 
C2 64 
C3 128 
C4 256 
C5 512 
C6 1024 
C7 2048 
C8 4096 
C9 8192 

Lyndon LaRouche, leader of “socialist 
worker party” cult (died last week), had 
his followers lobby for “Verdi tuning” and 
proposed a law in Italy “to impose 
scientific notation on state-sponsored 
musicians that included provisions for 
fines and confiscation of all other tuning 
forks.” (Wikipedia, Scientific pitch) 


