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Course syllabus and schedule – updated 

Tonight 

See : http://courses.washington.edu/phys536/syllabus.htm 

Class is over 
after you 
turn in your 
take-home 
exam. No in-
person final 
exam during 
finals week. 



Announcements 

•  Schedule of topics has been rearranged – pls check readings 
•  Due Thursday next week! 

–  Papers for project 1 
–  Proposals for project 2 presentation 
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Pitch standards for music 

•  Today:  A440 or A4 (A above middle C ), with f = 440 Hz is the general 
tuning standard for musical pitch 

•  Not so until 20th century! Pitch standard was subject of bitter fights… 
–  Handel’s tuning fork was 422.5 Hz 
–  1859 French government commission (Berlioz, Rossini et al) chose 435 Hz 
–  Verdi wanted to stop “creeping pitch” rise, suggested 432 Hz, based on…  
–  “Scientific pitch” definition had all C’s powers of 2 (128 Hz, 256, 512, etc) 

•  So A4 ~ 431 Hz  Note  f, (Hz) 
C0 16 
C1 32 
C2 64 
C3 128 
C4 256 
C5 512 
C6 1024 
C7 2048 
C8 4096 
C9 8192 

Lyndon LaRouche, leader of “socialist 
worker party” cult (died last week), had 
his followers lobby for “Verdi tuning” and 
proposed a law in Italy “to impose 
scientific notation on state-sponsored 
musicians that included provisions for 
fines and confiscation of all other tuning 
forks.” (Wikipedia, Scientific pitch) 

From last time 



Pitch and autocorrelation 

•  Seebeck’s sirens show perceived pitch may be frequency of missing 
fundamental component 
–  “Missing fundamental” 

effect – Heller calls it 
“residue pitch” 

•  Signal with period T has 
autocorrelation peaks at 
t=nT, n=0, 1, 2,…  
–  Same true for (signal)2   

A.  Power spectrum of sound with 
f1 =100 Hz and several partials 

B.  Fundamental removed à 
same autocorrelation peaks 

C.  Increase power in f2 =100 Hz 
à autocorrelation peaks 
appear at half-intervals à 
perceived as sound with 200 
Hz fundamental 



Pitch and autocorrelation 

•  Example in Heller 
textbook (p. 448) 

•  Initial signal has 3 
partials*, 200/400/600 
Hz 
–  Perceived as 200 Hz 

sound 

•  Second signal has 
additional partials at 50 
Hz intervals 
–  Perceived as 50 Hz tone 

•  Partials = overtones 
Not necessarily harmonics! 
Recall: driven oscillator settles down to 
driver f, but oscillator mechanics affect 
overtone frequencies – “color” 



“Pitch” of subsonics  

•  From Heller book: 
Extend the definition of pitch into the "counting" realm below 20 Hz: 
1.  Short pulses at 0.1 sec intervals – sharp clicks have broad spectrum 
2.  Same sound, but add phase shift of one component (200 Hz) 
3.  Same, but now add random phase shifts to many components 
All three sound files have the same autocorrelation function, looking much 
like the first sound trace, starting at a peak of one of the pulses.  

7 

1 2 3 



Timbre – tone quality 

•  Timbre – tone quality or “color” 
–  Criterion: “attribute that allows listener to judge two sounds dissimilar by 

criteria other than pitch, loudness and duration” 
–  Depends primarily on spectrum but also on waveform, SPL, frequency 

range, and envelope shape 
•  Descriptor scales used for timbre : 

Dull ßà Brilliant 
Cold ßà Warm 
Pure ßà Rich 

–  Attack = onset of the sound (eg, bow on string) 
•  If attack is deleted leaving only the sustained tone, it is difficult to 

identify the instrument 
•  Attack-decay envelope = shape of amplitude envelope of sound 

–  Beating: modulations of amplitude due to summation of partials with 
similar f’s 



Timbre 

From Heller book 
•  Timber is unlike pitch or loudness in that there is no one-dimensional scale 

(like frequency for example) that it can be mapped onto.  
•  It has been conjectured that timbre is 37 dimensional (color perception is 

three dimensional: the amount of red, blue, an green). 37 is the number of 
independent critical bandwidths on the basilar membrane.  
–  There are excitations of 37 separate regions on the basilar membrane [we will 

discuss the ear’s structure later], and timbre would be determined by this pattern 
of loudness in these 37 regions. In fact only perhaps the lowest 15 or 20 regions 
play a large role in pitch; extremely high frequencies are less important. 

•  Other things that matter:  
–  Is the sound periodic?  
–  Does the envelope of the sound fluctuate, or is it constant?  
–  What the preceding sounds are like? * 
–  Is the sound ramping up or down in loudness (another envelope issue)?** 

* Segment of sound of bell        **Rhapsody in Blue opening played forward, then backward 



•  Interference pattern like this shows 
locations of nodes and antinodes in space.  

•  We can also create a moving interference 
pattern, so a stationary observer hears 
cyclic intensity changes as maxima pass: 
 This is called beating, or a beat frequency 

y1 t( ) = Acos 2π f1t( ), y2 t( ) = Acos 2π f2t( )
y1 + y2 = Acos 2π f1t( ) + Acos 2π f2t( )

Trig fact:        cos(a) + cos(b) = 2 cos a − b
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Beats  
Anti-node 

Node 

•  Beats are heard if waves with similar frequencies overlap at the observer’s 
location, x: then at that spot, amplitude vs time is 

The sum has a base frequency fOSC , 
modulated by an envelope of 
frequency fBEAT   

fOSC 

fBEAT 

Notice: fBEAT is twice the f in the cosine 
function: Envelope goes from max to min 
in ½ cycle, so frequency of pulsation is  2

f1 − f2
2
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= f1 − f2
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fBEAT = f1 − f2   

fOSC =
f1 + f2

2

Beats  
•  Below: 2 waves with slightly different f’s are travelling to the right. 
•  The waves are in the same medium, so have the same speed.  
•  Superposition sum wave has the same direction and speed as the 

two component waves, but its local amplitude depends on their 
relative phase.  
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Beat wave oscillates 
with the average 
frequency, and its 
amplitude envelope 
varies with the 
difference frequency. 
The dots show how y 
vs t varies at two 
fixed x positions 



fBEAT = f1 − f2  = 392 Hz − 261 Hz( )  = 131 Hz 

fOSC =
f1 + f2

2
= 326.5 Hz

Beats  
•  Example: pluck 2 notes on a guitar: middle C (261 Hz) and G (392 Hz) 
 

base frequency modulated by an envelope: 

fOSC=327Hz 

fBEAT=131 Hz 

fOSC=327Hz = ~  E in next octave 

fBEAT=131 Hz = C an octave below middle C 
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Musical scales and temperament 

•  “Just* intonation”: tuning system that involves intervals limited to 
integer ratios of fundamental f   –  examples: 
–   “5-limit tuning”: notes multiply f1 (the base note) by products 

of integer powers of 2, 3, or 5 
•  Powers of 2 = octaves (f ratio 2:1), powers of 3 = intervals 

of perfect fifths (3:2), powers of 5 = intervals of major 
thirds (5:4) 

–  Pythagorean scale: only pure octaves and perfect fifths allowed 

•  If only integer ratios are used, chords sound in tune only if based 
on the same fundamental frequency 
–  changing musical keys is not possible.  

major third 

* As in “justice”” 



Frequencies vs temperament 

•  Temperaments allow fixed-pitch instruments (eg, piano, harpsichord) to 
be played in different musical keys without dissonance 
–  “Well-tempered” (eg Bach) = some keys are more in tune than others, but 

all can be used 
–  Equal-tempered (modern standard) = every pair of adjacent notes has the 

same ratio of f’s:  21/12  à pitch is perceived as ~ log(f) 



Wind instruments: waves in pipes 

•  Waves in pipes are important for musical instruments, 
ventilation ducts, and other applications 
–  In a rigid-walled pipe with R << λ , sound propagates as plane 

waves, similar to longitudinal waves in solid bars 
–  For rigid-walled volumes with R > λ , standing waves can appear: 

resonances 

•  In musical instruments, resonant behavior is affected by  
–  Shape of cavity (straight organ pipe, flared brass horn) 
–  Material of instrument (rigid brass, or wood) 
–  Nature of driver (lips, reed) 
–  Perturbations due to ports or vents (finger holes, valves)  
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Pressure and displacement 
are out of phase:  
highest p à no motion 



Wind instruments = Driven tubes 

•  Driver = mouthpiece + embouchure 

16 

Proceedings of ACOUSTICS 2016, Brisbane, 
Australia, Some secrets of good musicians: 
physics controlling articulation and timbre in 
reed instruments, Weicong Li, et al, U. 
Sydney 

 clarinet mouthpiece and embouchure 

Results of simple model of the flow U 
past the reed produced by blowing 
pressure P at different values of the 
force F applied by the lip 



Musical instruments: organ pipes and horns 

•  Organ pipes often have one closed and one open end 

•  Open end must be a pressure node (Po=atm à p=0), closed end must 
be anti-node (displacement=0 ) 

•  Opposite for displacement of particles: open end = antinode (ξ = max) 
–  So L must be multiple of half of λ/2: L=N(λ/4)  

•  But if N=even number, we’d get two nodes: so N = odd # only 

•  So resonant harmonics are L=λ/4, 3λ/4, 5λ/4 … (1st, 3rd, 5th…) 
•  Resonant frequencies f = c / λ à fn = n c / 4L, n=1,3,5… 
For air, c=343 m/s à fn = 86 (n / L),  n=1,2,3… 

Example: B♭trumpet has L=1.4mà fn = 61, 85, 306 Hz 
–  We can imitate organ-pipes by blowing across end of a bottle 

•  Add water in bottle to change fundamental frequency 

Closed Open 
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Open ended pipes 

•  Some instruments have both ends open: folk flutes (panpipes, 
Asian flutes), didgeridoo, etc  

•  Now both ends must be pressure nodes (displacement anti-nodes) 
–   L should be integer multiple of λ/2: L=n (λ/2)  

•  But now n=even number works also  
–  So frequencies are same as for guitar strings 

•  Resonant harmonics are L=λ/2, 2λ/2, 3λ/2 … (1st, 2nd, 3rd…)  
•  Resonant frequencies f = c / λ à fn = n c / 2L, n=1,2,3… 
For air, c=343 m/s à fn = 172 (n / L),  n=1,2,3… 

Example: Didgeridoo with L=1.4m à fn = 122, 244, 366… Hz 

Open Open 



Open-closed and open-open tubes 
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•  Brass and woodwind instruments work like organ pipes 
–  Use valves to change effective length (brass), or impose an antinode 

somewhere inside (woodwinds) 
–  Your ear canal is an example of a closed-end pipe 

Example 
•  If the first harmonic of the human ear canal is at f=3500 Hz, and we 

model the ear canal as a simple organ pipe, how long must it be? 
 
 
 L1 =

λ1

4
, f1 = 3500Hz = c

λ 1
=

c
4L1

→ L1 =
c

4 f1
=

343m / s( )
4 3500Hz( )

= 0.025m  (1 inch)

f=3500 Hz 
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Brass instruments 

•  Trumpets 
–  B♭trumpet is most common (L=1.4m), C trumpet (L=1.3) used for 

orchestral music 
•  Problem: cylindrical tube’s resonances are too far apart to cover the scale 

–  Valves increase L when pressed, lowering the pitch.  
•  1st valve lowers the pitch by 2 semitones  
•  2nd valve by 1 semitone 
•  3rd valve by 3 semitones 
 
 
 
 
Valves make the trumpet “fully chromatic” = able to play all twelve 
tones of the scale 

–  Problem: sound output of from unflanged tube is not very loud 
•  Add a bell = conical flange on end of tube 
 

Path lengths: 



Trumpet = Pipe + cone 

•  Bell on a trumpet or saxophone changes 
acoustics 
–  Cylinder à plane waves,  
–  Cone à spherical waves 

•  Bell = frustrum (truncated cone) 
attached to cylinder 

–  Standing wave pattern is changed 
•  Effect depends on B=ratio of min/max 

radii of frustrum 
•  First 4 SW patterns for B=1, 0.25: 

Ayers, et al, Am.J.Phys. 53:528 (1985) 



Trumpet: bell, mutes, embouchure 

•  Bell shifts resonant f’s up 
–   Radiates high f’s well 
–   “Brassy” sound 
–   Increases efficiency of sound  

propagation at open end 
•  Mute reduces high f’s 

•  Affects timbre as well as loudness 
–   Less effect on 1—3 kHz 

•  Corresponds to voice 
•  Muted horn sounds “human” 

–  Straight mute = highpass 
–  Cup mute = bandpass 

Player + trumpet =two resonators in series  
–  Upstream is vocal tract + lips, downstream is instrument bore 

•  Bore resonances are higher Q and dominate 
–  Tongue placement and changes in mouth configuration affect intonation 
“details of how this works are subtle and not yet understood”  

–  J. Wolfe, U. NSW, Australia 



grc.com/acoustics/an-introduction-to-horn-theory.pdf 

Exponential horn 
Falconer’s horn 

foghorn 

•  Simple conical bell shape is rarely seen 
•  Abrupt change in Z at each end of cone causes reflections 

–  To eliminate, need λ > 2r, would require r~2m around 100 Hz 

•  Gradual impedance change à series of increasing-slope 
segments 
–  Ztube ~ 1/area ~ 1/r2 à let Zk ~ √(Zk-1 Zk+1)  = geometric mean Z  

•  Minimum total Z (sum of segments) à S(x)=S0exp[(x-L0)/ L0] 
S0 = mouth area, L0 =length of horn, x = distance from throat 

 



Acoustic impedance with/without bell 

•  Impedance of tube with and without exponential horn 
–  Shifts resonant frequencies, and lowers Q for higher harmonics 

•  single/double reed 
instruments resonate 
at Z maxima 

•  Air reeds like flutes 
resonate at Z minima 
(open mouth hole) 



Woodwind instruments 

•  Woodwinds have several types of driver 
–  Clarinet, saxophone (single reed),  
–  oboe, bassoon (double reed),  
–  flutes (“air reed”) 

•  Resonances in tube are governed by opening/closing 
tone holes 
–  Sound radiates from open tone holes as well as bell 

•  Pipe-reed system 
–  Reed opens àpuff of air, wave reflects off open 

end (inverted)  [a,b,c in figure à] 
–  Reed closes when negative p pulse arrives: re-

reflects (inverted)  [d, e] 
–  Second reflection from bell end (positive p) opens 

reed  [f, g, h]  
•  start again with next air puff 

–  Alternative: with high embouchure pressure, reed 
closes/opens/closes in 1 round-trip of wave: f à 3f 



Woodwinds  

•  Resonant mode frequencies: pulse makes round trip each half-cycle 
of reed vibration : 

•  Tone holes change effective L of tube 
–  Array of open holes = tone hole lattics à resonant structure 
–  Lattice create cutoff f à harmonics above this are suppressed 
–  Cutoff f  is (from Benade*) 
(clarinet has L~0.6m) 

T1 =
4L
c

, f1 =
1
T1

=
c

4L
, L =  effective length of tube

f1 = 3 f1    higher modes are   fn = nf1   n = odd integers

fc = 0.11b
a

c
d(t +1.5b)

 

t = A-a 
c = sound speed 

* A. Benade, Fundamentals of musical acoustics, 1976  



Woodwinds 

•  Register holes = openings to kill fundamental and shift range up 
–  Put the opening to Patm at a node of the higher harmonic – little effect on 

it, disrupts fundamental 
•  Must use compromise location to cover each register’s range efficiently 

–  Clarinet has 1 register (or “speaker”) hole, saxophone has 2, oboe 3 



•  Famous use of 
mouth and tone 
holes with clarinet: 
Gershwin’s 
Rhapsody opening 

Pitch bending and glissandi on the clarinet, J. Chen et al, JASA 126:1511 (2009) 

See 0:00, 1:45, 2:40, 4:35 in 
https://www.youtube.com/
watch?v=45XeZOfuc9c 



Clarinets vs flutes 

Sound power spectra for D5 played on a flute (upper) 
and a clarinet (lower) 

Clarinet acoustics, Dickens et al, Acoustics Australia, 35:17 (2009) 

flute  

clarinet 



•  Flute = open-open tube with excitation by air blown over 
embouchure hole, which has sharp edge opposite lip plate 

Flutes 

Fundamental 



Flutes  

•  Flute requires more complex embouchure work by player 
–  Air jet (20 to 60 m/s) from lips strikes the sharp edge of the hole 
–  Perturbation of jet à flows into or out of the embouchure hole 
–  Resonant waves in the tube make air flow into and out of the 

embouchure hole 
–  Player matches f of the note desired, so jet flows in and out of the hole 

in phase with tube wave à sustained note.  
–  For high notes, player increases pressure (increases the jet speed) and 

moves the lips forward to shorten the distance to the edge of the 
embouchure hole. 

Tone holes make 
Leff shorter 

Register holes kill 
odd harmonics so 
pitch jumps 

C4àC5 



Saxophones 

•  Brass “woodwind”, patented in 1846 by Adolphe Sax 
–  Single reed of the clarinet + 
–  Conical bore and fingering patterns of the oboe 

à completely new tonal qualities. 

•  Pressure changes timbre 
–  Moderate à sine wave, “pure” 
–  Higher à non-sinusoidale à many higher harmonics 
–  Highest à clipping à brighter timbre 



Saxophone spectra 

•  Conical-bore instruments like sax have weaker first partial than 
cylindrical  

•  Saxophone’s bell has little effect except for higher harmonics 

A♭ 

D♭ 


