

Session 13 Decibels Loudness Sound level measurements Environmental noise 2/\$4/2023

Course syllabus and schedule

See : http://courses.washington.edu/phys536/syllabus.htm

1	Торіс	K=Kinsler, H=Heller	Readings:	Day	date	Session
	Absorption losses; Pulsating spheres and simple sources; pistons and dipoles; Near field, far field; Radiation impedance; Waves in pipes UPDATED BELOW HERE:	H: Ch. 7	K: Ch. 7	Thu	26-Jan	8
	Rectangular cavities; Heimnoitz resonators; Resonant bubbles; Acoustic impedance; physical acoustic filters; Doppler effect; Interference effects	H: Ch. 13	K. Ch. 8-10	Tue	31-Jan	9
	Musical acoustics: pitch, musical tones and frequency; timbre; beats	H: Chs. 23-25	K. Ch 9	Thu	2-Feb	10
	Musical instruments: winds and string instruments	H: Chs. 16, 18		Tue	7-Feb	11
	Musical instruments: piano, human voice REPORT 1 PAPER DUE by 7 PM; REPORT 2 PROPOSED TOPIC DUE	H: Chs. 17, 19		Thu	9-Feb	12
Topicht	Human hearing: the inner ear; pitch perception; acoustics of speech	H: Ch. 21	K. Ch. 11	Tue	14-Feb	13
	Decibels and sound level measurements Environmental acoustics and noise criteria; industrial and community noise regulations; noise mitigation;	H: Chs. 21-22	K. Ch. 12	Thu	16-Feb	14
Class is ove after you turn in your	Room acoustics; Transducers for use in air and water: Microphones and loudspeakers; hydrophones and pingers; Underwater acoustics: sound absorption underwater, the sonar equation	H: Chs. 27-28; Ch. 6	K. Chs. 13-14	Tue	21-Feb	15
take-home exam. No ir	Underwater acoustics applications: acoustical positioning, seafloor imaging, sub-bottom profiling; Course wrap-up: review		K. Ch 15	Thu	23-Feb	16
	Student report 2 presentations			Tue	28-Feb	17
exam durine	Student report 2 presentations			Thu	2-Mar	18
finals week	Student report 2 presentations			Tue	7-Mar	19
	Student report 2 presentations. TAKE-HOME FINAL EXAM ISSUED			Thu	9-Mar	20
-	FINAL EXAM ANSWERS DUE by 5 PM			Fri	17-Mar	

Announcements

- Submission portal on Canvas for Term paper 1 is closed
 - It will take at least a week for us to grade the papers please be patient
- If you have not done so already:
 - term project 2 presentation proposal is overdue
 - -Please email yours to me ASAP
 - Goal is to make sure your topic is appropriate, you have adequate sources, and your scope fits into a 15 min talk

Decibels for ratios over a large range of magnitudes

- Decibels are used to describe any quantity expressed as a ratio when a log scale is needed
 - Originated at Bell Laboratories (bel = unit for base-10 ratios, after Alexander Graham Bell) – bel is "too large" for most applications
 - Commonly used in many engineering and applied science fields
- For intensities (power ratios)

$$\beta[dB]] = 10 \log_{10}\left(\frac{I}{I_0}\right)$$
 I_0 = sound *intensity* reference level

- For acoustics, we use threshold of hearing as the reference level

$$\beta [dB]] = 10 \log_{10} \left(\frac{I}{I_0}\right) \quad I_0 = 10^{-12} \,\mathrm{W/m^2}$$

- So a sound intensity at the threshold of hearing is 0 dB
- Sound at the threshold of pain has

$$\beta[dB]] = 10 \log_{10} \left(\frac{I}{I_0}\right) = 10 \log_{10} \left(10^{13}\right) = 130 \,\mathrm{dB}$$

58

Sound Level meter (www.extech.com)

Decibels for ratios of amplitude and power

- Note: dB are used for ratios of two kinds of physical quantities
 - Power-like quantities (intensity of sound, power in E-M waves)
 - Amplitude-like quantities (sound pressure levels, electric field amplitude in E-M waves)
- For such quantities, power ~ amplitude²
- Usually, we can measure power, but not amplitude
 → dB definition = 10 log(X/X₀) assumes power or intensity ratio
- So, to use dB for an amplitude-like quantity, we must insert a factor of 2 in the log10 (=squaring the ratio); factor is 20 instead of 10

$$\beta \left[dB \right] = 10 \log_{10} \left(\frac{I}{I_0} \right) \approx 10 \log_{10} \left(\frac{p^2}{p_0^2} \right) = 2 \left[10 \log_{10} \left(\frac{p}{p_0} \right) \right]$$

$$\Rightarrow \alpha \left[dB \right] = 20 \log_{10} \left(p / p_0 \right) \quad p_0 = \text{ sound pressure reference level}$$

$$I_0 = 10^{-12} W / m^2 \Rightarrow \text{ corresponding } p_0^2 = 2\rho_0 c I_0 \Rightarrow \left| p_0 \right| = 2.9 \times 10^{-5} Pa \quad (amplitude \text{ of } p_0)$$

$$p_0 \Big|_{RMS} = \left| p_0 \right| / \sqrt{2} = 20.4 \mu Pa \Rightarrow \text{ standard } p_0 = 2.0 \times 10^{-5} Pa$$

This gives amplitude ratios the same dB relationships as their corresponding intensity/power ratios -

Sound intensity vs distance

• Intensity = energy per unit time per unit area = power/unit area

So
$$I = \frac{E[J]}{A[m^2]t[s]} = \frac{P[W]}{A[m^2]} = [W/m^2] \quad []$$

- For a point source, sound power *P* is spread over an expanding sphere
 - So intensity drops off as 1/R²
 - proportional to surface area of sphere of radius R : $A=4\pi R^2$
 - For a given sound source (amount of power P emitted),

$$I_{R1} = \frac{P}{4\pi R_1^2}$$
 $I_{R2} = \frac{P}{4\pi R_2^2} \implies \frac{I_{R2}}{I_{R1}} = \frac{R_1^2}{R_2^2}$

- Threshold of hearing (avg person can just hear) $I_0 = 10^{-12} \text{ W/m}^2 = 10^{-16} \text{ W/cm}^2$
- Threshold of pain (avg person can't stand it!) $I_{P} = 10^{13} I_{0}$
- Our ears handle 13 orders of magnitude!

Note: I_0 and p_0 values are for sound in air – different reference values for water

Thresholds

- Threshold of hearing = quietest sound a young human with undamaged hearing can detect at 1 kHz
 - Varies with frequency \rightarrow
- Threshold of pain: how to define?

WW-II researchers told subjects "You will hear a tone which will get louder and louder. Tell me when you reach the point where you feel a sharp pain deep in the ear. Be alert only for the pain sensation. When the pain point is reached, say 'pain' and I will shut off the tone. Are you ready?"

→ Result: about 138 dB for "normal hearing", but 135 for "Hard-of-hearing" !

"hard-of-hearing have difficulty detecting softer sounds, but louder sounds are still perceived as being loud."

Decibel levels for sound intensity and sound pressure

Sound Sources Examples with distance	Sound Pressure Level $L_{ m p}$ dBSPL	Sound Pressure <i>p</i> N/m ² = Pa	Sound Intensity <i>I</i> W/m ²	
Jet aircraft, 50 m away	140	200	100	
Threshold of pain	130	63.2	10	
Threshold of discomfort	120	20 🔥	1	
Chainsaw, 1 m distance	110	6.3 20 dB	0.1 🔺 10 dB	
Disco, 1 m from speaker	100	2 🔻	0.01 🕊	
Diesel truck, 10 m away	90	0.63	0.001	
Kerbside of busy road, 5 m	80	0.2	0.0001	
Vacuum cleaner, distance 1 m	70	0.063	0.00001	
Conversational speech, 1 m	60	0.02	0.000001	
Average home	50	0.0063	0.0000001	
Quiet library	40	0.002	0.0000001	
Quiet bedroom at night	30	0.00063	0.00000001	
Background in TV studio	20	0.0002	0.000000001	
Rustling leaves in the distance	10	0.000063	0.0000000001	
Threshold of hearing	0	0.00002	0.00000000001	

http://www.sengpielaudio.com/TableOfSoundPressureLevels.htm

Factor of 10 increase in intensity = addition of 10 to dB level Factor of 10 increase in pressure = addition of 20 to dB level ⁸

Examples and applications

• One person talking to another produces, at 1m distance, $I_1 = 10^{-6} W / m^2$ How far away can you be and still (just barely) hear her words? To hear and understand, assume sound intensity must be : $I_X = 10^{-10} W / m^2$ 20 dB

$$\frac{I_X}{I_1} = \frac{(1m)^2}{x^2} \implies x = 1m\sqrt{\frac{I_1}{I_X}} = 1m\sqrt{\frac{10^{-6}W/m^2}{10^{-10}W/m^2}} = 100m$$

Seems like too long a distance! What's wrong?

This assumes there is no background noise to cover the whispery sound level at 100 m - i.e., you must be in a soundproof, totally silent room! (in practical terms: total silence = background noise must be below the threshold of hearing) $I_1 = 10^{-12} W / m^2$, Exercise for you: suppose background noise intensity is $I_{BG} = 10^{-8} W / m^2$ So we would need voice intensity to be larger, say: $I_X = 10^{-7} W / m^2$ Now how close would you have to be?

Sound *perception*

- Loudness = perceived intensity \rightarrow "logarithmic" human perception
 - If we think one sound is twice as loud as another, it probably has 10X higher intensity
 - Similar logarithmic-scale perception for light intensities, and similar frequency-dependent sensitivity spectrum for eyes
 - Define unit of loudness:
 phon:

Measure dB vs frequency for perceived loudness levels for average person (surveys with many subjects)

International standard (ISO226) is subject to occasional updates - last revision was 2003, but "reviewed and confirmed" in 2014

Lines show dB levels corresponding to perceived equal loudness vs frequency. 0 phon = 0 dB at 1000 Hz

Loudness and the cochlea

- Assumption: perceived loudness doubles for every 10 phon increase in sound loudness level = X10 increase in intensity
 - Only applies when adding loudness for same-f sounds
 - "same f" = within critical bandwidth (last time)
 - Two sounds with equal intensity but far apart in f may just double perceived loudness: intensity X2 but loudness X2 also
 - Do not use the same nerve endings on the basilar membrane of the inner ear pulse rates from nerves do not reach max rate and saturate

Recall place theory of hearing: position along cochlea \sim corresponds to f \rightarrow log loudness perception when nerves reach max firing rate Hz rate and response weakens If sounds A, B,C, D are adjusted to have identical loudnesses when sounded alone, then the combination C+D would be expected to sound louder than A+B because C and D are not competing for the same nerve endings in the inner ear.

http://hyperphysics.phy-astr.gsu.edu

Critical bandwidth and the cochlea

- Critical band = ∆f within which a second tone interferes with perception of the first tone
- One way of observing:

Last time

- Increase bandwidth of a *noise* signal while decreasing amplitude to keep power constant.
- When ∆f is greater than CB, subjective stimulus covers >1 auditory CB

 \rightarrow perceived loudness increases

Standard audiometric critical bands

CB rate	Center frequency		CB bandwidth
Bark	Hz	Hz	Hz
0	50	20	80
1	150	100	100
2	250	200	100
3	350	300	100
4	450	400	110
5	570	510	120
6	700	630	140
7	840	770	150
8	1000	920	160
9	1170	1080	190
10	1370	1270	210
11	1600	1480	240
12	1850	1720	280
13	2150	2000	320
14	2500	2320	380

Critical bands have $\Delta f \sim \text{constant below 500 Hz}$: Compare to Békésy map of cochlea location vs frequency

Loudness in sones

- Alternate loudness unit: **sone** additive scale
 - Human subjects judge what sounds twice as loud as a sample tone → define scale representing subjective loudness doubling
 - Sone scale is "linear", not log: 2X loudness \rightarrow 2X sone level
 - Perceived doubling of loudness ~ 10 dB increase in sound level
 - Apply same factor to phon scale: 10 phon increase \rightarrow 2X sones

Set 1 sone = 40 phons \rightarrow 0.5 sone = 30 phon; 2 sones = 50 phon, 4 sones = 60 phon, etc.

Dynamic Level	Decibels at C ₆ (1024 Hz)	Multiple of Threshold	Phons	Sones
Threshold of pain	120	10 ¹²	120	256
fff	100	1010	100	64
f(orte)	80	10 ⁸	80	16
p(iano)	60	106	60	4
ррр	40	104	40	1
Threshold of hearing	0	1	0	

Spectrum levels

- To describe sound spectrum of a source, we need to specify intensity at each frequency
 - What does that mean? Intensity level in a slice Δf at f:
 - Spectral density distribution
 - Another example of a probability density distribution Recall:
 - Sample of data can be displayed as a histogram Bar graph showing how often measured x falls in range $x_k \le x < x_{k+1}$
 - Sample PDF = f(x) = what we estimate from the data histogram
 - Sample PDF value at center of each bin ~ histogram bin contents/N_{TOTAL}
 - May differ from underlying PDF due to *limited statistics* (finite N_{TOTAL})

Density distributions

Frequency dependent Intensity Spectrum Level

- If ISL is not constant over bandwidth of interest, typically we can use standard band/bandwidth definitions: "Preferred proportional bands"
- Octave bands are used for slowly varying spectra; 1/3-octave bands or 1/10-octave, if needed
- Instruments used to measure band spectra may be "constant BW" or "proportional BW"
 - Constant BW: narrow-band filters, with center frequencies defined as geometric means of limits: $f_c = \sqrt{f_1 f_2}$

	Octave band		1/3 octave band			
Lower	Center	Upper	Lower	Center	Upper	
Frequency	Frequency	Frequency	Frequency	Frequency	Frequency	
$f_1(\text{Hz})$	$f_0(\mathrm{Hz})$	$f_2(\text{Hz})$	f ₁ (Hz)	$f_0(\mathrm{Hz})$	<i>f</i> ₂ (Hz)	
22	31.5	44	22.4 28.2	25 31.5	28.2 35.5	
			35.5	40 50	44.7	
44	4 63 8	88	56.2	63 80	70.8	
			89.1	100	112	
88	125	177	112	125	141	
			141	160	178	
177	250	355	178	200	224	
			224 282	250 315	282 355	
255	500	710	355	400	447	
333	500	/10	447	500	562	
			562	630	708	
710	1000	1420	708	800	891	
/10	1000	1420	891	1000	1122	
			1122	1250	1413	

Proportional bands

• Instruments to measure sound levels using proportional bandwidths have upper and lower half-power (3 dB) f's so that

$$f_2 / f_1 = constant$$
:
 $f_2 / f_1 = 2$: octave band,
 $f_2 / f_1 = 2^{1/3} = 1.26$: 1/3 octave
 $f_2 / f_1 = 2^{1/10} = 1.07$: 1/10 octave

For sound levels in air, with intensity and pressure levels compatible, the pressure spectrum level **PSL** is defined as power per hertz of a sound Connection to SPL: $SPL = PSL + 10\log w$, w = bandwidth, Hz

- Typically, get PSL from SPL measured using filter of bandwidth w (not necessarily any preferred band definition): $PSL = SPL 10 \log w$
 - "smoothed" level estimate

Digital instruments typically provide both dB meter and spectrum analyzer functions

> www.nti-audio.com/en/ products/sound-level-meters

Filters for sound level measurements

- For noise measurements, standard filters are applied to shape the sensitivity spectrum of the dB meter
- Most commonly-used standard profiles are
 - "A" scale sensitivity follows inverse of the 40 db @ 1 kHz loudness curve = human hearing at moderate levels → dBA
 - "C" scale flat sensitivity over ~100 Hz, used for objective dB (not loudness) measurements at high sound levels (eg aircraft noise) → dBC

Some material from engineering.iastate.edu/~leeuwen/CE524/, J (Hans) van Leeuwen

Sound measurements: dB meters

In addition to spectrum filters A and C, standard dB meters have response speed options:

> Fast = integrates over 125 ms (for rapidly varying sound) Slow = time constant 1 sec (smooths over fluctuations)

B&J 732A Sound Level meter

Typically used sound level statistics

- Equivalent sound level L_{eq} = constant L that provides same total acoustical energy as a time-varying sound level integrated over a given time period.
- Percentile sound level L_x = SPL exceeded by x percent of samples during the observation time interval

eg, L_{50} = median SPL observed

- **Day-night average** sound level $L_{DN} = L_{eq}$ calculated over a 24-h period, with penalty decibels added during night hours (10 pm 7 am), to overweight impact of nighttime noise
- **Sound Exposure** Level SEL = constant SPL acting for 1 s that delivers the same amount of acoustic energy as the actual sound.
 - SEL typically used for the noise energy of a single event, eg, aircraft flying over. As
 - All SEL measurements are based on 1 s interval → energy content of different types of events can be compared

Another statistic: CNEL vs L_{DN}

- Variant on day-night: CNEL (Community Noise Equivalent Level)
 - − Includes "evening" (7 pm − 10 pm) period where noise events are weighted by a factor of three \rightarrow +4.77 dB penalty.

L_x noise statistics

• Reporting various L_x statistics:

 $L_{90} = SPL$ exceeded 90% of the time during sample

L $_{10}$ = SPL exceeded 10% of the time

(So L $_{10}$ = median)

 sound meter provides handy integral distribution

SEL vs L_{EQ}

- L_{EQ} gives an idea of the "average" SPL, calculated in a physically meaningful way (energy delivered)
- SEL gives a single statistic that can be compared between different situations, regardless of time span or fluctuations
- SEL can be related to L_{EQ} : $L_{EQ}(T) = SEL - 10 \log \left[\frac{T}{1s} \right]$ To find combined SEL for multiple events: $L_{EQ}(T) = 10 \log \sum_{i=1}^{N} 10^{SEL/10} - 10 \log \left[\frac{T}{1s} \right]$

Bruel & Kjaer, Measuring Sound

Example: combining events with SEL \rightarrow L_{EO}

- Repeating noise (eg, machine that turns on and off) appears 400 times in 8 hr; each episode has SEL=105 dBA
- Find L_{EQ} for this period

$$L_{EQ}(T) = 10 \log \sum_{i=1}^{N} 10^{SEL/10} - 10 \log \left[\frac{T}{1s} \right]$$

= 10 log $\left[400 \cdot 10^{105/10} \right] - 10 \log \left[\frac{8 \cdot 3600s}{1s} \right]$
= 10 $\left[\log 400 + 105 / 10 \right] - 10 \log \left[28800 \right]$
= 26 + 105 - 44.6
= 86.4 dBA

Aircraft Noise

- Airports are a major community noise impact
 - Aircraft are loud, highpitched
 - Heavy ground traffic nearby

Map shows noise contours around an airport calculated by model software tuned with actual noise measurements 55 - 60 dB = Light blue60 - 70 dB = Dark blue70 - 75 dB = Red75 - 80 dB = Green80 - 85 dB = Yellow> 85 dB = Pink

From *Environmental Noise*, Brüel & Kjær Sound & Vibration Measurement A/S, 2001

Highway traffic noise

Noise sources

Highway traffic = "line source" of noise (compared to "point sources" like a machines)

- Noise level depends on traffic volume, vehicle type, and speed
- Regulations limit the amount of noise from some vehicle types (trucks, cars, motorcycles) can produce -- but
 - → Noise levels typically reduced only 5 to 10 dBA since regulations were imposed

Noise barriers

Reduce community noise by surrounding highway with:

- Buffer zones
- Earth berms/wooden fences/concrete walls
- Dense vegetation (trees are ineffective too sparse)
- Sound-absorbing pavement (asphalt vs concrete)

Concrete noise wall www.fhwa.dot.gov

Vehicle type \rightarrow height and slope of SPL vs speed

S. Grubesa and M. Suhanek, Noise and Environment, 2020, DOI: 10.5772/intechopen.92892

Highway noise criteria

• Noise abatement criteria from Federal Highway Administration (FHWA): allowed levels of Leq depend on land use:

Table 1. FHWA Noise Abatement Criteria in dBA (hourly A-weighted sound level).

Activity Category	NAC, L _{eq} (h)	Description of Activity Category
А	57 (Exterior)	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.
в	67 (Exterior)	Picnic areas, recreation areas, playgrounds, active sports areas, parks, residences, motels, hotels, schools, churches, libraries, and hospitals.
с	72 (Exterior)	Developed lands, properties, or activities not included in Categories A or B above.
D		Undeveloped lands.
E	52 (Interior)	Residences, motels, hotels, public meeting rooms, schools, churches libraries, hospitals, and auditoriums.

NOTE: These sound levels are only to be used to determine impact. These are the absolute levels where abatement must be considered. Noise abatement should be designed to achieve a substantial noise reduction - not the noise abatement criteria.

www.fhwa.dot.gov

Source factors affecting received noise

How Speed Affects Traffic Noise

http://www.nonoise.org/library/highway/traffic/traffic.htm 30

Source factors affecting received noise

A sounds as loud as B.

http://www.nonoise.org/library/highway/traffic/traffic.htm 31

Source factors affecting received noise

How Traffic Volume Affects Noise

A sounds twice as loud as B.

- Walls are commonly used to abate highway noise
- Sound is absorbed by the wall
 - but also reflected and diffracted over the top of the wall!
- Height required to get really significant abatement may be considered "too big" by residents, or "too expensive" by local authorities

Source:http://www.urbislighting.com/uap1.html

Table 6 Approximate reduction of outside noise provided by typical exterior wall

^{construction}Mitigation: Building walls as absorbers

Octave Band	Α	В	С	D	E	F	G	Н
Center								
Frequency (Hz)								
63	0	9	13	19	14	24	32	21
125	0	10	14	20	20	25	34	25
250	0	11	15	22	26	27	36	30
500	0	12	16	24	28	30	38	37
1,000	0	13	17	26	29	33	42	42
2,000	0	14	18	28	30	38	48	44
4,000	0	15	19	30	31	43	53	45
8,000	0	16	20	30	33	48	58	46
approx. dB(A)	0	12	16	24	27	30	38	33

A: No wall; outside conditions.

B: Any typical wall construction, with open windows covering about 5% of exterior wall area.

C: Any typical wall construction, with small open air vents of about 1% of exterior wall area, all windows closed.

- D: Any typical wall construction, with closed but operable windows covering about 10-20% of exterior wall area.
- E: Sealed glass wall construction, 1/4-in glass thickness over approximately 50% of exterior wall area.
- F: Approximately 20 lb./ft² solid wall construction with no windows and no cracks or openings.
- G: Approximately 50 lb/ft² solid wall construction with no windows and no cracks or openings.

H: Any typical wall construction, with closed double windows (panes at least 3/32" thick, air space at least 4 in.) and solid-core gasketed exterior doors. Table 7: Building Not

Table 7: Building Noise Reduction Factors

<u>Building Type</u>	Window Condition	
A11	Open	10 dB
Light Frame	Ordinary Sash (closed)	20 dB
	Storm Windows	25 dB
Masonry	Single Glazed	25 dB
Masonry	Double Glazed	35 dB

Green noise Barriers

Vegetation can abate highway noise, but: Sound is significantly absorbed only by a thick zone of dense vegetation (eg, shrubs, not tall trees)

Vegetation and Noise Reduction

http://www.nonoise.org/library/highway/traffic/traffic.htm