DNN Pruning for Acoustic Scene Classification

Tianyi Chen tianyic@uw.edu

Deep Neural Network in Audio Field.

- DNN has achieved tremendous success in various fields.
- Deeper and heavier DNNs typically deliver better performance.
- However, for many audio processing tasks, opposite happened.
- Therefore, people typically use shallow DNN in many audio system.

Acoustic Scene Classification

Related Work

- In order to leverage deep and heavier model into acoustic tasks, there are some efforts.
- Some works study how restrict the receptive fields of Deep Neural Network.
- Lower receptive field indicates DNN with lower learning capacity.

[1] The receptive field as a regularizer in deep convolutional neural net-works for acoustic scene classification.

DNN Pruning

- Pruning projects elements onto DNN's variables onto zeros.
- Essentially introduce various **sparsity** into the DNN.
- Structured pruning can further speed up the DNN.

Prune redundancy.

Sparsity Pattern

Fine-grained sparsity

Group sparsity

Hierarchy sparsity

Sparsity Inducing Optimization Problem

$$\underset{\boldsymbol{x} \in \mathbb{R}^n}{\text{minimize}} f(\boldsymbol{x}), \text{ s.t. } \operatorname{Card} \{ g \in \mathcal{G} | [\boldsymbol{x}]_g = 0 \} = K$$

- Card is cardinality. Cardinality of one set is refers to the number of elements in that set.
- K is the target sparsity level.
- G is a partition of index set of variables.
- X is the trainable variables.
- F is the loss function.

This problem is hard to solve since the constraint is non-convex, non-smooth. So people relaxes it to some regularizer r(x). The problem becomes

 $\min_{x\in R^n} f(x) + \lambda r(x)$

Choices of r(x)

- Different Ω(x) results in different pattern of sparsity of model parameters.
- l1 norm of x:

 $\mathbf{r}(x) = \|x\|_1$

each element in x is individually set as zero.

• Mixed I1/Ip norm of x:

$$\mathbf{r}(x) = \sum_{g \in G} \left\| [x]_g \right\|_p$$

where G is a partition of variable indices, such norm can promote a group of elements as zero, referred group sparsity.

Mixed I1/Ip norm of x in Neural Models

• For CNN, a group of variables can be defined as a filter in ConvLayer.

• For RNN, the row or column of weight matrix can be selected a group.

Sparse Optimizer

- Proximal Method.
- ADMM.
- HSPG family. (Ours, the best so far.)

Two key metrics: a) low objective function value, and b) high group sparsity.

ADMM is somewhat equivalent to proximal method, but is **unnecessarily complicated**.

In optimization area, proximal method is the main trend, and appears on top-tier confs every year, e.g., Prox-SGD, SAGA, Spider.

However, ADMM merely appears in application papers.

Sparsity Optimizer Comparison

Effectively solve the following problem in stochastic setting:

 $\underset{\boldsymbol{x} \in \mathbb{R}^n}{\text{minimize } f(\boldsymbol{x}), \ \text{ s.t. } \operatorname{Card} \{g \in \mathcal{G} | [\boldsymbol{x}]_g = 0\} = K$

Metric	Proximal Method	ADMM	OBProxSG	HSPG
Convergence (final objective value)	#1	#1	#1	#1
Group-Sparsity	Poor	Depends	#1	#1
Runtime	Fast	Slow	Fast	Fast
One-shot	Yes	Depends	Yes	Yes

Why existing stochastic optimizers failed?

• Existing methods, such as proximal gradient method rarely generates group sparse solution. The solution is even fully dense.

 $[\boldsymbol{x}_{k+1}]_g = \max\{0, 1 - \alpha_k \lambda / \|[\widehat{\boldsymbol{x}}_{k+1}]_g\|\} \cdot [\widehat{\boldsymbol{x}}_{k+1}]_g.$

- Projection Region is too small.
 - In DNN, learning rate is typically less than 1e-3.
 - $\circ~$ Lambda is much less than 1.
- Randomness.

HSPG

- Resolve the poor capacity of sparsity exploration.
- **OBProxSG** is for fine-grained sparsity.
- HSPG is for group sparsity.

(b) Projection Region For Mixed ℓ_1/ℓ_2 Regularization

Experiment: Datasets

• DCASE2017.

The audio clips are decomposed into 10 seconds samples forming 4680 training samples (13 hours) and 1620 testing samples (4.5 hours).

• DCASE 2018.

17 hours of audio for training (6122 10-second clips) and 7 hours for evaluation (2518 10-second clips).

Experiments: DNN Architectures

ResNet

VGG

DenseNet

Experiment Setting

- Train 350 epochs.
- First 50 epochs for warm up training.
- Learning rate starts at 1e-4.
- Decay learning rate linearly till 5e-6 after 50 epochs.

Experiment Result

	VGG	DenseNet	ResNet
Baseline	67.90 ± 1.31	63.48 ± 4.96	67.19 ± 1.72
RN1	_	_	71.11 ± 1.19
m RN2	-	-	72.41 ± 0.96
RN3	_	_	71.74 ± 0.85
DN1	_	72.24 ± 1.00	_
HSPG $(\lambda = 10^{-3})$	$71.34 \ / \ 50.12$	$70.36 \ / \ 65.47$	$72.28 \ / \ 69.38$
HSPG $(\lambda = 10^{-4})$	$69.22 \ / \ 10.49$	68.26 / 8.08	$70.32 \ / \ 15.27$

Table 3: Accuracy (%) / Group Sparsity (%) on DCASE17

- Larger lambda higher group sparsity.
- Higher group sparsity higher accuracy.

Experiment Result

	VGG	DenseNet	ResNet
Baseline	$74.56 \pm \ 1.01$	71.55 ± 0.85	$71.05{\pm}~0.87$
RN1	_	-	77.34 ± 1.53
m RN2		-	75.71 ± 0.70
RN3	—	—	77.61 ± 0.22
DN1	—	76.39 ± 0.14	-
HSPG $(\lambda = 10^{-3})$	$75.29 \ / \ 53.42$	$75.33 \ / \ 61.48$	77.46 / 71.25
HSPG $(\lambda = 10^{-4})$	$73.24 \ / \ 6.21$	72.20 / 3.55	72.98 / 17.29

Table 4: Accuracy (%) / Group Sparsity (%) on DCASE18

- Larger lambda higher group sparsity.
- Higher group sparsity higher accuracy.

Thank you very much!