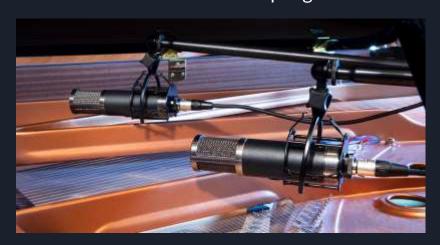
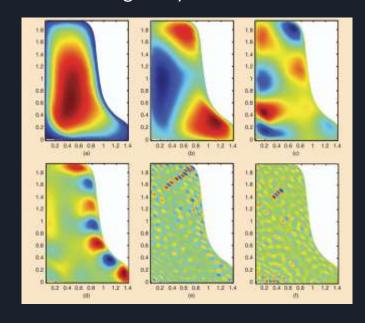
Digitally Replicating Acoustic Pianos


Stephen Cholvat PHYS 536 Winter 2022

Introduction


- Digital pianos offer a lot of benefits including portability, ability to use headphones, and different voices (instruments).
- Digital pianos need to faithfully reproduce the sound and feel of a concert grand piano
- Replicating that sound within the computational and memory constraints of digital pianos is challenging

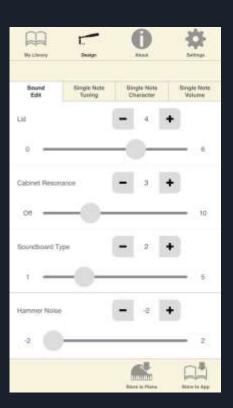
Approaches to Digital Reproduction

Acoustic Sampling

Digital Synthesis

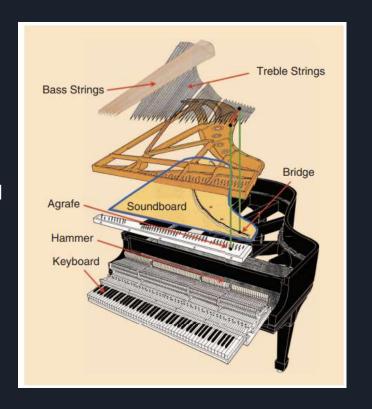
Acoustic Sampling

- Record every note at a variety of key velocities ("Velocity Layers")
 - O Cheaper pianos sometimes only sample 1 note in a group and then modify its pitch
- Compress audio to minimize file size
- When a key is pressed, play the corresponding sample based on key velocity
 - O Long decay is often looped to save memory
- Post processing adds reverberation and other effects



What affects the quality of the sampling?

- Quality of the recording
 - O High quality anechoic chamber
 - Well-tuned piano
- Number of velocity layers
 - O Hitting the key harder does more than just change the volume
- Compression of audio file
 - O Cheaper pianos have less memory and may require lossy compression
- Looping resonant decay
 - Different resonances decay at different rates, so looping is not very accurate
- Advanced features
 - Sympathetic resonance between strings
 - Binaural recording

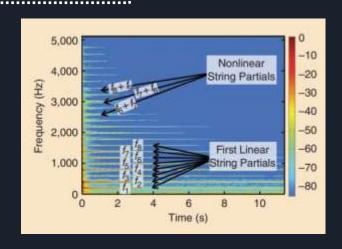

Why Digital Synthesis?

- Prevents expensive and timely recording sessions
 - O Takes months for a recording session
- Reduces memory requirements
 - O Does require more powerful processors
- Allows greater flexibility to tweak the sound of the piano
- Increased understanding of the physics behind pianos

How a Piano Works

- Key is pressed
- Action lifts the damper and hits the string with the hammer
- String resonates
- Sound is amplified through the sound board

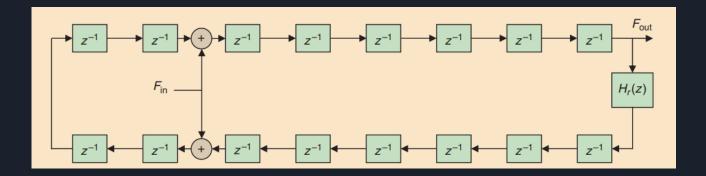
$$\mu \frac{\partial^2 y}{\partial t^2} = c^2 \cdot \frac{\partial^2 y}{\partial x^2}$$

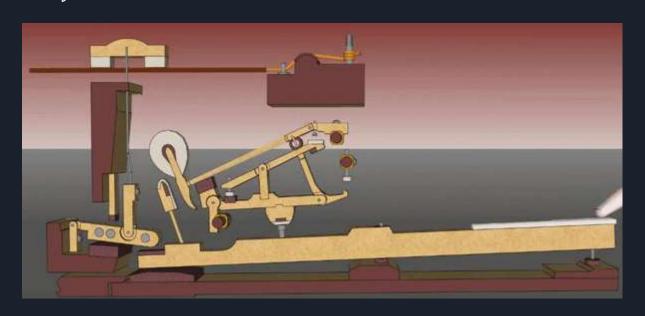

Start with the wave equation for a string:

$$\mu \frac{\partial^2 y}{\partial t^2} = c^2 \cdot \frac{\partial^2 y}{\partial x^2} - 2R\mu \frac{\partial y}{\partial t} + 2\eta \mu \frac{\partial^3 y}{\partial t \partial x^2}$$

- Add decay factor caused by radiation losses:
 - First term is a constant loss
 - Second term accounts for frequency dependent losses

$$\mu \frac{\partial^2 y}{\partial t^2} = c^2 \cdot \frac{\partial^2 y}{\partial x^2} - 2R\mu \frac{\partial y}{\partial t} + 2\eta \mu \frac{\partial^3 y}{\partial t \partial x^2} - ES\kappa^2 \frac{\partial y^4}{\partial x^4}$$

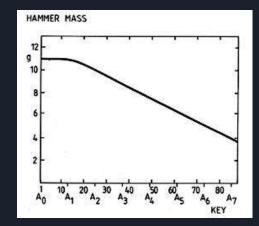

- Piano strings are quite stiff
- Causes higher frequency resonances that decay faster
- Can be compared to vibrational modes of metal bars
- E= Young's Modulous

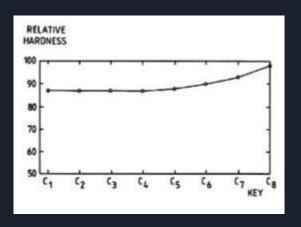

$$\mu \frac{\partial^2 y}{\partial t^2} = c^2 \cdot \frac{\partial^2 y}{\partial x^2} - 2R\mu \frac{\partial y}{\partial t} + 2\eta \mu \frac{\partial^3 y}{\partial t \partial x^2} - ES\kappa^2 \frac{\partial y^4}{\partial x^4} + d_y(x, t)$$

ullet d_{y} accounts for the external force of the hammer

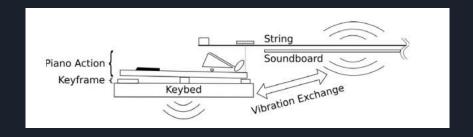
- Differential equation can be processed using Finite Element Modeling (FEM)
- Can also be modelled analytically as a travelling wave
 - F_{in} represents hammer strike
 - F_{out} represents connection to resonating sound board
 - $H_r(z)$ is a "reflection filter", modelling losses

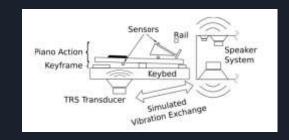
What is $d_y(x, t)$?

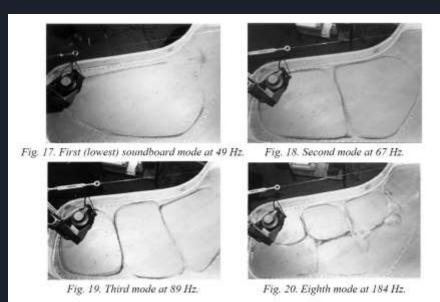


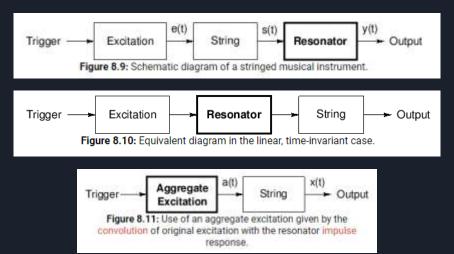

- Simplest model impulse response
- More detailed model a small mass connected to a non-linear spring
 - o Models the compression of the felt in the hammer

$$F_h(\Delta y) = \begin{cases} K_h \cdot \Delta y^{P_h} & \text{if } \Delta y > 0\\ 0 & \text{if } \Delta y \le 0 \end{cases}$$
$$F_h(t) = -m_h \frac{d^2 y_h(t)}{dt^2}$$


- $F_h = Force \ of \ the \ hammer \ onto \ the \ string$
- $\Delta y = y_h(t) y_s(t) = Compression of the hammer felt$
- $y_h(t) = Position of the hammer$
- $y_s(t) = Position of the string$
- $K_h = Stiffness coefficient$
- $P_h = Stiffness exponent$
- $m_h = Mass of the hammer$


- More complex models:
 - The wooden linkage resonates around 260Hz
 - Hammer mass and felt durometer changes depending on the note
 - Dampers have a complex effect in dissipating the sound


- The key action vibrates the key, giving tactile feedback
- Key vibrates below 500Hz
- Fingertip is most sensitive to vibrations between 200 to 300Hz
- High-end digital pianos simulate this tactile feedback


Soundboard

- Soundboards are complex resonators to amplify the sound from the string
- Most computationally intensive part to model
- Can be modelled using Kirchoff-Love Equations for 2D plates using FEM


Soundboard

- Commuted Synthesis used to simplify computation
 - o Assume a linear time-invariant (LTI) system
 - o Sound board can be modelled as a finite impulse response (FIR) filter
 - Prevents modelling of non-linearities such as restrike
 - Computationally much simpler

Bridge

- The bridge couples the string vibrations to the soundboard
- Most models assume ideal coupling
- Some more advanced models take non-idealities into account

Conclusion

- Digitally recreating a 300-year-old instrument is challenging
- Acoustic sampling is possible but is expensive and inflexible
- String resonance is more complicated than the ideal wave equation
- Hammers strike the string in a complex way
- Sound boards provide important amplification but are hard to model
- Trade-off in accuracy vs. computational needs

References

- [1] B. Bank and J. Chabassier, "Model-based digital pianos: From physics to sound synthesis," *IEEE Signal Processing Magazine*, vol. 36, no. 1, pp. 103–114, 2019.
- [2] B. Bank, "ENERGY-BASED SYNTHESIS OF TENSION MODULATION IN STRINGS," *Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09)*, Sep. 2009.
- [3] "Commuted synthesis: Physical audio signal processing," DSP. [Online]. Available: https://www.dsprelated.com/freebooks/pasp/Commuted_S ynthesis.html. [Accessed: 26-Feb-2023].
- [4] G. Gordon, "How do digital pianos get their sound?," *Riverton Piano Blog*, 01-Mar-2021. [Online]. Available: https://blog.rivertonpiano.com/2021/03/01/how-do-digital-pianos-get-their-sound/. [Accessed: 26-Feb-2023].
- [5] "Guide to sound engines," *Digitalpiano.com*, 23-Mar-2021. [Online]. Available: https://www.digitalpiano.com/dk/en/blog/post/guide-sound-engines/. [Accessed: 26-Feb-2023].

- [6] H. A. Conklin, A. Askenfelt, E. Janson, and D. E. Hall, "Contents," *Five lecture on the Acoustics of the piano*, 1990. [Online]. Available:
- https://www.speech.kth.se/music/5_lectures/contents.html. [Accessed: 26-Feb-2023].
- [7] M. Fluckiger, T. Grosshauser, and G. Troster, "Evaluation of a digital grand piano for vibrotactile feedback experiments and impact of finger touch on piano key vibrations," 2018 IEEE Haptics Symposium (HAPTICS), 2018.
- [8] "Modeling vs sampling: Which makes better digital piano sounds?," *Alamo Music*, 14-May-2021. [Online]. Available: https://www.alamomusic.com/whats-new/modeling-vs-sampling-which-makes-better-digital-piano-sounds/. [Accessed: 26-Feb-2023].
- [9] R. Corporation, "Piano designer: IOS/android app," *Roland*. [Online]. Available: https://www.roland.com/us/products/piano designer/.

https://www.roland.com/us/products/piano_designer/ [Accessed: 26-Feb-2023].