Statistical Hypothesis Test "Flow Chart" (QSCI 482 Winter 2013)

One population (sample)

One population (sample)		
Interval/Ratio Scale –		
Test of mean / location / central tendency –		
Pop'n standard deviation known or large sample:	Z-test (1, 3)	
Pop'n standard deviation Unknown, small sample:	<i>t</i> -test (4)	
Test of variance / dispersion:	χ^2 variance test (6)	
Test of distribution:	<i>K-S</i> test for continuous data (14)	
Ordinal Scale –		
Test of "fit" of a uniform distribution for data in categories:	<i>K-S</i> test for ordinal data (14.1)	
Nominal Scale –		
Single factor affecting distribution of data among categories:	χ^2 Goodness-of-fit test (15)	
Two or more factors affecting distribution among categories:	χ^2 test of independence (17)	
Two populations (samples)		
Independent samples –		
Interval/Ratio scale –		
Normal Distribution of data –		
To detect difference in means / locations / central tendencies –		
Equal variances:	"standard" two-sample <i>t</i> -test (7)	
Unequal variances:	Welch's two-sample <i>t</i> -test (7-6)	
Detect difference in variances / dispersions:	F-test (variance ratio test) (9)	
Non-normal Distribution of data –		
Difference in means / locations / central tendencies:	Mann-Whitney U-test (12)	
Difference in variances / dispersions:	Squared-Ranks test (12)	
Ordinal / Nominal scale –		
Diff. between populations in data distribution over categories:	χ^2 test of homogeneity	
Paired (correlated or "blocked") samples –		
Normal Distribution of data:	Paired <i>t</i> -test (10)	
Non-normally distributed data:	Wilcoxon signed-ranks test (13)	

Three or more populations (samples)

NOTE: Use factors with <i>fixed</i> effects to detect differences in sp	<i>pecific</i> treatment means;
Use random factors to identify sources of variation (va	riance components) in a larger
population from which the studied treatments came	
Completely Randomized Design (Independent Experimental Ur	nits) –
Normal Distribution of data –	
Single "thing" (factor) affects treatment outcome:	One-way ANOVA (F-tests) (20)
Two (or more) factors affect treatment outcome:	Two (or higher)-way ANOVA (27)
Non-normal data, single factor:	Kruskal-Wallis test (30)
Randomized Block Design (associated / correlated Exptl. Units)) —
Normal distribution of data:	2-way ANOVA (no interaction) (29)
Non-normal data:	Friedman's test
Post-ANOVA analysis (which treatments are actually different?	?)
Normal Distribution of data –	
All pair-wise comparisons:	Tukey's HSD (if CI's needed),
	or SNK (24)
Compare all treatments to control	Dunnett's test (25)
Data "snooping"	Scheffe's contrasts (26)
Non-Normal Distribution of data –	
All pair-wise comparisons:	Tukey analogues (30)
Compare all treatments to control	Dunnett's analogue (30)
Data "snooping"	Scheffe's analogue (30)