
QSCI 482w HW9 Key

	Color	Time (mean)
1a	Red	10.8
	Green	22.2
	Black	8

1b Color Time (variance)
Red 6.2
Green 23.7

Black 12.5

sp2 = 14.133

1c Yes, the null hypothesis would likely be rejected by the anova test.

It looks like red and black door colors have similar times, and the green door a longer time

1d Homogeneity of group variances and independent observations

1e Df SS MS F P color 2 565.7 282.87 20.01 0.000151 *** Residuals 12 169.6 14.13

1f $\delta = \operatorname{sqrt}(2*k*\phi 2*MSE/n)$ about 9.5

2 Observed

	w/ disease w/o	disease	
Area 1	26	54	80
Area 2	20	72	92
	46	126	172

Expected

			w/ disease	w/o disease
80*46/172	80*126/172	Area 1	21.4	58.6
92*46/172	92*126/172	Area 2	24.6	67.4

Chi-sqaure uncorrected

$$(26-21.4)^2/21.4 + (54-58.6)^2/58.6 + (20-24.6)^2/24.6 + (92-67.4)^2/67.4$$
 2.529

Yates

$$172(26*72 - 54*20) - 172/2)^2/(80*92*46*126)$$
 2.0097

Cochran

The corrected chi-squares are smaller than the uncorrected, being less likely to reject the null hypothesis.

However, in this case, none of the tests rejected Ho, meaning the prevelance of disease is not different.

The probability of disease for the two areas combined would be 46/172, or 26.7 %

3	Df	SS	MS	F	P
block		3	42.8	14.27	$4.106 \ 0.025 < P < 0.05$
treatmen	nt	4	216.7	54.18	15.59 P < 0.005
block:tr	eatm	12	41.7	3.47	

There is signficincant effects from block and treatment on mean root weight.

$$Sx1-x2 = sqrt(MSE/2 (1/n1 + 1/n2)) = sqrt((3.47/2)(1/4 + 1/4))$$
 0.931

4	observed expected		(fi-fi-hat)^2/fi-hat	
peanuts	269	5 5/10*500	250 (250-269)^2/250	1.444
hazelnuts	112	2 2/10*500	100 (100-112)^2/100	1.44
cashews	74	2 2/10*500	100 (100-74)^2/100	6.76
pecans	45	1 1/10*500	50 (50-45)^2/50	0.5
_	500	10		10.144

Ho: The machine mixes nuts in the 5:2:2:1 ratio Ha: The machine mixes nuts in some other ratio

X-obs = 10.144 X0.5, 3 = 7.815

Reject Ho. There is evidence to suggest that the machine does not mix nuts in the 5:2:2:1 ratio

5 Observed

	Carcass condition						
Beach	F	В	M	D	Tota	l	
Seadrift		12	16	3	21	52	
Limantour		3	2	9	16	30	
RCA		12	9	2	9	32	
Total		27	27	14	46		

Expected

Carcass condition

Beach	F	В	M	D	
Seadrift		12.3	12.3	6.4	21.0
Limantour		7.1	7.1	3.8	12.1
RCA		7.6	7.6	3.9	69.1

Ho. The proportion of carcases in each condition class is not dependent on the beach Ha. The proportion of carcasses in each condition class depends on the beach

X-obs = 22.844

X-crit = 12.592

Reject Ho. There is a relationship between beach and carase conditions

