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Chapter 1

Descriptive Statistics



Overview of Chapter 1

e Random Sampling
e Picturing the Distribution

e Sample Statistics



Probability and Statistics

Population

Example: X,; = hours until failure of a particu-

lar lightbulb



Relative Frequency Histogram

Conveys a sense of how X is distributed.



Sample Mean

o Let X, Xy, ..., X, bearandom sample from
the distribution of X.

e The sample mean is a statistic and is
given by
n
IS, ¢
X = 1=1

n

e The population mean, y, is usually esti-
mated by X

e The observed value of the sample mean
is the number given from the data,

X

Tt

K|
|

n



Sample Median:

The sample median is found by arranging the
random sample X5, Xy, ..., X, in order, from
smallest to largest, and finding the middle,

) Tntl if n 1s odd
r = :L‘n?F:Cn_H ) )
—7—27— if n 1s even

Sample Mode:
The sample mode of a random sample is the
value that occurs most often.



Sample Variance and

Sample Standard Deviation

Let X1, Xy, ..., X,, be arandom sample of size
n from the distribution of X. Then the sample
variance is the statistic

n )2
82:Z<xz )
i=1 n—1

which can be calculated by

o (% z;)?
2 Ty — =l
2 1=1 n

5T n—1

The sample standard deviation is the statis-

tic
s =V s2
The population variance, o2, and the popula-

tion standard deviation o are estimated by s
and s respectively.



Chapter 2

Probability



Overview of Chapter 2

e Interpreting Probabilities

e Sample Spaces and Events

e Permutations and Combinations

e Axioms of Probability

e Probability Rules

e Conditional Probability

e Independence and the Multiplication Rule

e Bayes Theorem
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What is Probability?

e Probability: the assignment of a weight
between 0 and 1 to indicate the likelihood
of the occurence of an event.

e The probability of an event is defined
in terms of an experiment and a sample
space.

— Consider an experiment that generates
observations.

— The sample space of an experiment,
denoted S, is the set of all possible out-
comes, or sample points.

— An event is a subset of the sample space

S.
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Example: Coin Toss Experiment

e Consider an experiment that generates
observations.

— Example: Toss a fair coin 3 times in a
TOW

e The sample space of an experiment, de-
noted S, is the set of all possible outcomes,
or sample points.

— Example: The sample space for this ex-
periment has 8 sample points.

HHH, THH,
HHT, THT,
HTH, TTH,
HTT, TTT

12



Example: Continued

e An event is a subset of the sample space

S.

— Example: Look at 3 different events as
examples.

— The event of 3 heads,
A={HHH}
— The event of 2 heads,
B={HHT , HTH,THH}

— The event that the last toss is a head,

C={HHH,HTH,THH,TTH}
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Example: Continued

e The probability of an event indicates the
likelihood the event occurs

— Example: Look at the probability of the
same 3 events.

— The probability of getting 3 heads
P(A)=1/8

— The probability of getting 2 heads
P(B)=3/8

— The probability that the last toss is a

head
P(C)=4/8=1/2
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Review Sets:
Terminology & Notation

e A set is a well-defined collection of objects.

Each object in a set is called an element
of the set.

e The universal set S is the set of all ob-
jects under consideration. The null set, or
empty set, (), contains no elements.

e T'wo sets are equal if they contain the same
elements.

—Ex: A=1{1,2,3,4} equals B = {4,3,2,1}
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Review Set Relations

Suppose S is the universal set, with two subsets,
A and B.

o A set, A, is a subset of B if all elements of
A belong to B, A C B

e The union AUB ={z|x € Aor x € B}

S

Qo
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e The intersection AN B = {z | = €
A and z € B}

S

Qo

e The complement of A with respect to S
is denoted A®

S
@AC
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e Sets A and B are mutually exclusive or
disjoint, if and only if AN B = (.
S

00

e Any number of sets, Ay, Ay, A3, ... are mu-
tually exclusive if and only if A;NA; =0

for 1 # 7.
~©
.AlmA2:® AgﬂAgz@
AlmA?,:@ AQﬂA4:@

AlﬂA4:@ AgﬂAzl:@
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Venn Diagram Example

500 assembled machine parts are inspected be-
fore they are shipped. The inspection can detect
whether:

e o part contains at least one defective com-
ponent (D), and/or

e a part is improperly assembled (I)
Data:

e 15 parts contain at least one defective com-
ponent

e 30 parts have been improperly assembled

e 10 parts contain at least one defective com-
ponent and have been improperly assembled

e 465 parts are fine, i.e. have no defective
components and are properly assembled
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Fine: 465

9

e Defective: 151in D

e Improperly assembled: 30 in [

e Defective and Improperly assembled: 10 in
DnNlI

e Defective and Properly assembled: 5in DN
[C

e Improperly assembled and Not Defective: 20
in I N D¢

e Defective or Improperly assembled: 35 in
DuUI

20



Descriptive Statistics:

e What is the probability that 1 part selected
at random is fine?
P (a part is fine) = 465/500 = 0.93
The percentage of parts that are fine is 93%.

e How many parts are rejected for shipment?
The parts that are rejected are parts that are
either defective or improperly assembled, DU
I = FY so 35 parts are rejected for ship-
ment.

21



Counting Rules

Permutation: A permutation is an arrange-
ment of objects in a definite order.

Combination: A combination is a selection of
object with no regard to order.
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Multiplication Principle

Consider an experiment taking place in k stages.
Let n; denote the number of ways in which stage
¢ can occur, forv=1,2,....k.

Altogether the experiment can occur in

k
Il n; =ny*xng *---%xn, ways.
i=1

[llustrate with tree diagram, or slots

nl n2 o« o o nk’
Stage 1 Stage 2 Stage k
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Example

Toss a coin 3 times 1n a row

H/T H/T H/T

2 2 2
Ist  2nd  3rd
toss toss toss

23 =8
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Permutations

Suppose we have IV distinct objects, and we are
going to arrange, in some order, n of them. How
many permutations are there?

Since we are arranging n of them, we need n
slots. Also, the objects are distinct, and repeti-

tion 1s NOT allowed.

N (N—-1) -+ (N—=n+1)
st object 2nd object nth object

PY = N(N=1)(N—=2)...(N—n+1) =

(N —n)!
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Combinations

Suppose we have N distinct objects, and we
select n objects from them. (order does NOT
matter). How many combinations?

ON:(N): N
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Poker Hands

52 cards in a deck, 4 suits, 13 cards in a suit,

@7 <>7*7.

What is the probability of being dealt 3 aces
and 2 kings?

What is the probability of being dealt a run of
5 cards in sequence (A K,Q,J,10)
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Axioms of Probability

1. Let S denote a sample space for an experi-
ment,

P(S)=1
2. For every event A,
P(A) >0

3. Let A, Ay, ..., A,,...Dbe a finite or infinite
sequence of mutually exclusive events. Then

P(AlUAQUAg--') —
P(A1)+P(A2)+P(A3)+

Example: Draw a card from a deck

S P(S)=1
P(A)=1/4

A Y
Get A Diamond | | \ \ \
0 1/4 1/2 3/4
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Rules of Probability

e The probability of impossible events is 0:
P () =0

e Complement rule:

P(A%) =1-P(4)

S AC

e Addition rule:

P(AUAy) = P(A)+P (Ay)—P (A;n Ay)

CQ™
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More Rules of Probability

Definition: Let A and B be events with P (A) #
0. The conditional probability of B given A
1S

(AnB)
P(A)

p(BlA) =L

Note:
P (B|A) is undefined if P (A) = 0.

Multiplication Rule:
P(AnB)= P(B|A)P(A)
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Independence

Definition: Two events A and B are inde-
pendent if and only if

P(AnB)=P(A)P(B)
Otherwise they are dependent.

Theorem: Two events A and B are indepen-
dent if and only if

P(B|A) = P(B) it P(A) #£0
and P(A|B) = P(A) if P(B) %0
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Bayes’ Theorem

Let Ay, Ay, ..., A, bea collection of events which

partition S. Let B be an event, P (B) # 0.
Then, for any event A;, 7 =1,2... n,

P(B|A;)P(4;)

P(A;|B) = P(B|A))P(A))+ ...+ P(B|A,)P(A,)

\
/

/
\
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Bayes’ Theorem: Tree Diagram

Let A, Ao, ..., A, beacollection of events which
partition .S. These events form the first branches
of the tree. Let B be an event, P (B) # 0.
The events B and B¢ are leaves off of each A;

branch.
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Chapter 3:

Discrete Random Variables

34



Overview of Chapter 3

Definition and Properties:

e Discrete random variables
e Discrete probability distributions

e [ixpected value, mean, variance,
standard deviation

Discrete Probability Distributions:

e Uniform distribution

e Geometric distribution

e Binomial distribution

e Negative binomial distribution
e Hypergeometric distribution

e Poisson distribution

35



Discrete Random Variables

For a given sample space S of some experiment,
a random variable is any rule that associates
a number with each outcome in 5.

Example: Age

S =119,20,21,22,...,29,30"}

Y = age
Example: Coin Toss three times

S = {HHH, HHT, HTH, HTT,

THH, THT, TTH, TTT}

Y = number of heads
A random variable is discrete if its set of
possible values is a discrete set, i.e. has a
finite, or countably infinite, number of elements.
Example: Make ball bearings until one works

S - success, I - failure

S ={S, FS, FFS, FFFS, ...}

Y = number of ball bearings made

36



Discrete Probability Distribution

The density function for a discrete random
variable Y is a function p given by

ply) =P (Y =y)

The cumulative distribution function F(y),
for a discrete random variable Y with density
p, 1s defined by

Flyy=P(Y <y)= % px).

<y

37



Ball Bearing Example

e Make ball bearings until one is good (suc-
cessful)

e Y = # of ball bearings made

e Let p = probability a ball bearing is success-
ful. In this example, p = 0.6.

e Assume the ball bearings are independent.

(1)=p
(2)=(1-p)
(3)=(1-

p
p)°p

PY = y) = ply) =1 —p) 'p

38



Ball Bearing Example continued

y density cumulative distribution
ply) =P =y)| Fly)=P{ <y)

1 0.6 0.6

2 0.24 0.84

3 0.096 0.936

4 0.0384 0.9744

v (0.4)Y710.6) >/ _1(0.4)*71(0.6)

Density Distribution Function p(y)

p(y)

39



Ball Bearing Example continued

y density cumulative distribution
ply) =PV =y)| Fly =PI <y

1 0.6 0.6

2 0.24 0.84

3 0.096 0.936

4 0.0384 0.9744

v (0.4)Y71(0.6) Y _1(0.4)*710.6)

Cumulative Distribution Function F' (Y")

10 -
p(y) . &
06 + e—oO
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Characteristics of the Cumulative

Distribution Function, F(y):

e [ (Y) is defined for all real values, not just
outcomes.

e ['(Y) is non-decreasing (increasing or flat)

o lim, ..o F (V) =1

o lim, . o F(Y)=0

41



Dice Example

Roll a pair of dice
Y = total showing on the pair of dice

Y density cum. dist.
ply) =P =y) Fy) =P <y)
2 1/36 1/36
3 2/36 3/36
4 3/36 6,/36
5 4/36 10/36
§ 5/36 15/36
7 6/36 21/36
8 5/36 26/36
9 4/36 30/36
10 3/36 33/36
11 2/36 35/36
12 1/36 36/36
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Dice Example continued

Density p(y) = P (Y =y)

6/36 +
pO) |
3/36 +
L L L
2 3 4 5 6 7 8 9 10 11 12
y
F(y) 36/36 *—
O
30/36 o
24136 o
18/36 | ¢
O
12/36 |
&0
6/36 | O
O
o——° v v oy
R Y N N B
2 3 4 5 6 7 8 9 10 11 12
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The Expected Value, or Mean, of Y

Let Y be a discrete random variable, with set
of possible values D, and with density function

ply) = P (Y =y).
The expected value of Y is:

ElY|= X y-ply)= Xy PY =y

yeD yeD

It is also called the mean, and written
[ OT [y

Example: Y = total showing on a pair of dice
EY]=2(5) + 3(55) + 4(55) + 5(55)+

6(35) + T(56) + 8(55) + 9(36)+
10(2) + 11(2) + 12(5)

=7
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Ball Bearing Example
(Geometric Distribution)

p = probability a ball bearing is successtul

45



Proof of the Geometric F |Y]

To evaluate the infinite series, notice that

d((1—p)") ~1
- — ]_ — Yy
iy y(l = p)
also recall that =2 1Y = 1—;, for 0 <r < L
Therefore, we have
BlY] = 3 y-(1—p)"'p
~ x —d((1-p)) = d(l-p))
—al dp TTPET )

Interchanging the sum and the derivative

A Al )
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The Expected Value of a Function

Let Y be a discrete random variable, with set
of possible values D, and with density function

ply) =P =y)

Then the expected value of any function H(Y"),
denoted E/[H(Y')|, or pip(y), is

EHY) = ¥ H(y)-P(Y =y)

yeD
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Gambling Game Example

Example: How much would you be willing to
pay in order to play the following
gambling game?

Game:  Roll a pair of dice. If you get an
even number, win $2. If you get
a7oran ll, win $1.

62 ify =2 4 6.8, 10, 12
Hy) =151 ify=7, 11
$0 otherwise

EH(Y)] = ¥ HwP(Y =)

1 3 5 6
— (=) + 2(—=) + 2(==) + 1(=
(36) T2(55) +2(55) +150) +

5 3 2 1

2(%) + 2(@) + 1(%) + 2(@)
44

= — = 1.22
36
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Property of Expected Value

If @ and b are constants, then

ElaY +b=aF[Y]+b
Proof:
ElaY +b = X (ay+0b)- P(Y =y)

yeD
=aYy-PY=y+bx P(Y =y
yeD yeD

= FY] =1
= aE[Y]+b

Example: Suppose Y is the number of days until a
machine fails, and E [Y| = 4. Also, the
cost of using the machine is $10/day plus
$2 each time it fails. What is the cost
of using the machine until it fails?

H(Y) = 10Y +2
E[H(Y)] = 10E[Y] +2 = $42

49



More Properties of Expectation

o FlaY + b =aFE|Y]+b a,b constants
o F|lcY|=cE|Y] c constant
o Fc] =c

¢ B[Y + X] = E[Y] + E[X]
o Elg(Y)+ YY) =E[g(Y)|+ Er(Y)

e Notice: E|h(Y)| # h(E[Y]) for general

functions.

e For independent random variables X, Y,
EFlY - X|=FY] - F|X]

50



The Variance of Y

Let Y be a discrete random variable with den-
sity p(y) and E'|Y] = p. The variance of Y,

denoted Var (Y), or 0%, or 0? is

Var(Y) = ¥ (y - 1)*p(y)

= E|(Y — p)’|

The standard deviation of Y, oy or oy, equals
the square root of the variance of Y

o =\Vo?

Small 0 or & Large o2 or o
| ’fll
Most values close Most values far

to mean from mean
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Variance Examples

Example: Y = total showing on a pair of dice.
ElY|=17
Var (Y) = (2—7)%+ (3 -7)*%
o (12 = 7)%
~ 5.833
o~ 2.415

Example: Y = # of ball bearings made,
stop when one is successful
p = probability a ball bearing is
successtul

PY=y)={0—-p¥lp fory=1,2,...

Ely] =1

Geometric distribution with parameter p.

52



Special Expectations

Moments about the origin:
The expected value of Y is called the
k™ moment about the origin of Y,
EY* =syepyply)
when k = 1, this is simply the mean,
p=FEY]

Moments about the mean:
The function H(Y) = (Y — w)¥ is called
the k' moment about the mean of Y
E|(Y — ) = syenly — n)py)
when k = 2, this is the 2" moment about

the mean, or the variance.

Moment Generating Function
my<t) = E {ety}
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Rules for Variance

e Var(c)=0 ¢ constant
o Var (cY) = c*Var(Y)
e Var (aY +b) = a*Var (Y) a,b constants

e Var(Y)=E[Y — p)?| = E[Y?Y — 1

E[(Y —p? = E[Y?—2uY + 1/
= E[Y? - 2uE[Y] + i
= By

o [f Y and X are independent,
then Var (Y + X) =Var (V) + Var(X)
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Discrete Distributions

Uniform Discrete Distribution:
If Y assumes the values y1, v, ..., U,
with equal probability, then it has a
discrete uniform distribution

1
p<y):; fory:y17y27"'7yn
E [Y] _ Zi:l Yi
Sy (yi — )’
Var(Y)=—=

95



Example: Uniform Discrete Distrib.

Example: Tossing a single die.
Y = number showing

ply) =1/6fory=1,2,---,6

E [Y] _ 1+2+3g4+5+6 —35

Var (V) = (1—3.5)2+-é-+(6—3.5)2

35
B _99
|O(y)Jr
SEEEERK,
1 2 3 4 5 6
Yy
6/ PR
F(y) ‘51; e O
3?% - ©
1/ .—CI) I
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Geometric Distribution

A geometric experiment has 3 properties:

e The experiment consists of repeated trials,
each characterized as either a
success (s) or a failure (f).

e The trials are identical & independent of
each other; each has the same probability
of success, p, with 0 < p < 1.

e The random variable Y denotes the number
of trials needed to obtain the first success.

57



Geometric Distribution continued

For Y ~ Geometric(p)

ply)=PY =y =1-p¥'p y=12,...

FY)=P(Y <y)=x(1-p)"p

VOLT(Y):i where g =1 —p
p
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Binomial Distribution

A binomial experiment has 4 properties:
e The experiment consists of n repeated trials.

e Flach trial has two outcomes, Success or Fail-
ure. The trials are independent.

e The probability of success for a trial is p,
0 < p < 1, and is identical for all trials.

e A binomial random variable Y is the num-
ber of successes in n trials of a binomial ex-
periment.

59



Binomial Distribution continued

For Y ~ Binomial(n, p)

(Z)py(l —p)"Y fory=0,1,2,...,n
ply) =

0 otherwise

) n x n—x
F(Y) —xZO(x)p (1-p)

where |y| means the greatest integer less than
or equal to y.

EY]=np

Var (Y)=np(l - p)
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Negative Binomial Distribution

e Same as a binomial experiment, but instead
of counting the number of successes in n tri-
als, we are interested in

e Y = # of trials needed to obtain r successes

P (Y =y) = prob. that the r'" success occurs on
the ™™ trial, for y > 7,

= (i:i)(l—p)y_rpr

and r could be 1,2, 3, ...

Ely]="
p
1 —
Var(Y) = ?"(—219)
p
Note: in the special case when r = 1, this re-
duces to the geometric distribution.
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Hypergeometric Distribution

e A random sample of size n is chosen from
N items (the population), n < N, sampled
without replacement.

e Fach item is either a success or a failure, and
there are r successes in the population.

e Y is the number of succeses in the sample.

62



Hypergeometric Distribution cont.

Y = # of successes in the sample

number of ways to select y
successes and n — y failures
from the population

number of possible outcomes
in the experiment

Vit
“

where max (O, n — (N — ?")) <y < min(n, "“)

£ =n(5)
var ) =n () () (5=3)
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Poisson Distribution

The Poisson distribution is based on counting
events that occur during a time interval where:

e The probability of 2 events occuring in a
very short time interval is negligible.

e The probability of a single event occuring in
a short time interval is proportional to the
length of the interval.

e The number of events occuring in one time
interval are independent of those occuring
in a disjoint time interval.

e Y 1s the number of occurences of the event
in a given time interval.
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Poisson Distribution continued

Y = number of events in a time interval,
A = expected # of events in an interval
(mean arrival rate) and A > 0.

For Y ~ Poisson(\)

e~ M\

P =y)=—

y=0,1,2,...
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Relationships

e Poisson Dist. is a limiting case of the Bino-
mial Dist, as n — oo, p — 0 in such a way
that A = np.

e Binomial Dist. is a special case of the
Multinomial Dist.

e Geometric Dist. is a special case of the
Negative Binomial Dist.

e Compare: Binomial with Hypergeometric
(sampling with vs. without replacement)
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Chapter 4:

Continuous Random Variables

67



Overview of Chapter 4

Definition & Properties:

e Continuous densities

e [ixpectation and distribution parameters
Continuous Probability Distributions:

e Uniform distribution

e Normal distribution

e Normal Probability Rule and Chebyshev’s
Inequality

e Approximations
e Gamma distribution

e Weibull distribution

68



Uniform Distribution:
from discrete to continuous

Discrete Uniform Distribution
Y assumes values yq, yo, ..., Y
with equal probability

PY=y) =3fory=y,y2....u
pPY)

“ 11T

i
Y

Continuous Uniform Distribution
Y assumes values in interval [A,B|
with equal probability:.
fly) =55 A<y<B

f(y)
1/(B-A) ? ?

T T
A B

69



Continuous Random Variables

Let Y be a continuous random variable. A
probability density function (pdf) of Y is a func-
tion f(y) such that, for any two numbers a and
b with a < b,

Pla<Y <b) = f(y)dy

Note: /72 f(y)dy =1 and 0 < f(y)
for all y

f(y)

70



Continuous Random Variables cont.

I[f Y is a continuous random variable, then P (Y = ¢) =
0 for any number c. Also, for any 2 numbers a,
b with a < b, then

Pl@a<Y <b) = Pla<Y <)

= P(a<Y <b)
= Pla<Y <b)

Notice this was not true for a discrete random
variable.
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Cumulative Distribution Function

Let Y be a continuous random variable. The
cumulative distribution function F'(y) is defined
for every number y by

Fly)=PY <y)=/"_T

f(y)

F(y)

72



Discrete Continuous

density function density function

ply) =P (Y =vy) f(y)
Cum. Dist. Fn. Cum. Dist. Fn.
F(y) F(y)

p(y)

f(y)m
v 1

e—O
F(y) o—O F(y)
e—O
F (y) is F (y) is the
the sum of p(y) integral of f(y)

p(y) is the difference f(y) is the derivative
between two of F'(y);

F'(y) values fly) = F'(y)
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Discrete
)

F(y) = % p(z)

74

Continuous

F(y)=["_ flz)dx
EY]=["yf(y)dy

E[H(Y)]




Continuous Distributions Example

Suppose the density, f(y), of the magnitude Y
of a dynamic load on a bridge (in newtons) is
given by

1, 3 -
sty H0<y<?2
/ (y) {O otherwise

718 -
1/8

Find the probability the load exceeds 1, and
find the expected load.

PY>1)=1-P(Y <1)=1-F(1)
EY]= [l yf(y)dy

y
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Continuous Dist. Example Cont.

Determine F (y):

F(y) = P(Y <y) /y

/1 3 1+3 oY
= —+-T)ar = -xr + —=T
08 g 8 8-27 |y
y 3

— 24 flor0<y<2
8+16y or Y

F(y)
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Continuous Dist. Example Cont.

P(Y >1)

prob. the load exceeds 1

1 3
1 —F(1)=1— (=4
. (1) 5+ 15
~ — 0.688
16
1 3

/()ny(y)dy/ozy(8+8y) dy

]' 2 3 32
s oY T3.3Y,
A

77



Normal Distribution

A continuous random variable Y has a normal
distribution with parameters pu and o (or o?),
written Y ~ N(u, o), where —oco < p < +00
and 0 < o < +o00, if the probability density
function is:

L 027952
f(y;MaU):—/Q—mje WP —00 <y < 400
Then,

EY]=pu, Var (Y) =0 and

F(y) is given in tables, or evaluated numeri-
cally.

f(y)
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Standard Normal Distribution

Z ~ N(0,1) has astandard normal distribution
(b=0,0=1)

|
a Cl) 7

Y—;H has a standard normal distribution; if

Y ~ N(p,0), then £ ~ N(0, 1)
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zr Notation

The notation z, denotes the value on the axis
of a standard normal density for which

P(Z>z)=r

f(2)

It is said that z, is the 100(1 — ) percentile
of the standard normal distribution.
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Evaluate Y ~ N(u, o)
using Z ~ N(0,1)

If Y ~ N(u,0), a normal distribution, then
/ = Y—;/ﬁ has a standard normal distribution.

EY|—p

0

Check E [Z]: E[Z] = E[*=4] =

o

Check Var (Z): Var (Z) = Var (¥=2)

vt
1
= ;Var(Y)
2
o
= — = 1

Check cumulative distribution function: see text
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Normal Distribution Example

Suppose Y is the breaking strength (newtons)

of a material, and

Y ~ N(p=800,0 = 10).

We need this material to have a breaking strength

of at least 772.

Find P (Y > 772).

Transform Y to Z using Z =

Y—u
(0

PY >772) = P(y— p> 722 —800)
— P (Yt > T

= P(Z>"2)=P(z> -238)
= 1—P(2<-28)=1-10.0026

= 0.9974

fy) /m )

772 80 y
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Relating o to density

Normal Probability Rule:

IfY ~ N(u,o) then
P(—o<Y—pu< o) ~ 0.68
P(—20 <Y —pu<20) ~ 0.95
P(=30 <Y —pu<30) ~ 0.99
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Relating ¢ to Density continued

Chebyshev’s Inequality:

If Y is any random variable, with mean p and
standard deviation o, then for £ > 0,

1

k=1 P(—o<Y—-—pu<o)>1-

k=2 P(—20<Y —u<20)>1-

|
OO W O

Ol = —— | =

k=3 P((-30<Y—-—u<30)>1-

f(y)
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Using Normal Distribution To

Approximate Binomial Distribution

Suppose Y ~ Binomial(n, p)

po= np
0'2 = npq

and suppose the binomial distribution is fairly
symmetric (np > 5 and ng > 5).

ThenP<Y§y)~P(Z§%ﬂ)

f(y) ey

AR RN

—y+0.5
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Family of Gamma Distributions

Y ~ Gamma(a, 3)

fly,a,8) = mya‘le‘y/ﬁ if y >0
po=ap
o’ = af?

Y ~ Exponential()\) Y ~ Chi-Squared(r)
fly ) =X flyv) = gopgy? e
2

p=3 p=v
o2 = le o2 = v
Special case of Special case of
Gamma(a = 1,0 = %) Gamma(a = 7, 8 = 2)

Used in reliability, = Used in hypothesis testing
quality & queueing (v degrees of freedom)

86



Define Gamma Function, I'(«)

Definition:

For a > 0, the gamma function is defined by
Dla) = [Ty e Vdy

Properties:

e Forany a > 1, I'(a) = (a — 1)['(a — 1)
e [or any positive integer n,

['(n)=(n—1)
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Gamma Function Example

Example:

Y = survival time (weeks) of a mouse
exposed to gamma radiation

Y ~ Gamma(a =8, = 15)

Mean survival time = E Y| = af

(8)(15) = 120 weeks
Variance = Var (y) = a8* = 1800

Standard Deviation = o = /1800 = 42.43 weeks

Prob. a mouse survives at least 30 weeks

=P(Y >30) =1-P(Y <30)
: evaluate numerically

1 —0.001 —0.999

Q
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Exponential Distribution

1
Y ~ Exponential(A) (Gamma(a =1,0 = <))

h\
[ deMiify >0
FlyA) = { 0 otherwise
_ 1
)
2 _
=%

0 y <0
F(ya)‘):{l_e)\yy>0

Useful in statistical quality control, reliability
and queueing.

1__

f(y) \ F(y)

y y
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Chi-Squared Distribution

Y ~ Chi-Squared(v) (Gamma(a = g

often denoted Y2, v is called
degrees of freedom

1 w/2)=1o=y/2 4 >
flyw) = FPORY Y =
0 otherwise

po=v

o’ = 2u

Usetul in hypothesis testing.
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Weibull Distribution

Y ~ Weibull(a, 5)

% a_le_(y/ﬁ)a > O
f(y;oz,ﬁ){ﬁy =

0 y <0
po=PFrl+1/a)
Y= T(1+2/a) - AT+ 1/a))?

. 0 y <0
F(y,@,ﬁ) — {1_6@/5)0‘ yZO

Notice: The exponential distribution (\) is
also a special case of the Weibull
distribution with (o = 1,3 = 1/\).

Usetul in reliability.
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Chapter 5

Joint Probability Distributions
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Overview of Chapter 5

e Joint Densities and Independence
e [ixpectation and Covariance
e Correlation

e Conditional Densities
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Joint Probability Distributions
for Discrete Random Variables

Let X and Y be discrete random variables. The
joint density function for X and Y is,

pxy(z,y) = P(X =z and Y =y).

e T'wo Conditions:

(1) pxy(z,y) >0

(2) ¥ % pxv(z,y) =1
all x all y

e The discrete marginal density for X is,

pe(a) = ¥ por(ey)

e The discrete marginal density for Y is,

py(y) = a%:prY<$a Y)
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Example: Suppose we have 100 light bulbs,
we choose 2 randomly and 2 attributes are tested:

(1) Does the light work? (element)
(2) Does it fit the socket? (thread)

X = number of light bulbs with defective
elements

Y = number of light bulbs with defective
threads

Suppose 10 lightbulbs have defective elements
5 lighbulbs have defective threads,
3 lightbulbs have defective elements
and threads.

88 Nondef.

Def. Elements
7 Def. Threads
2
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What is the joint probability distribution?

P(X=x,Y=y) | y=0 y=1 y=2

x=0

88 Nondef.

Def. Elements
7 Def. Threads
2

96



Example continued:

PX=xY=y) |y=0 y=1 y=2 |px(z)

x=0 0.7733 0.0356 0.0002]0.8091

x=1 0.1244 0.0562 0.00120.1818

=2 0.0042 0.0042 0.0006 | 0.0090

py (y) 0.9019 0.0960 0.0020 ] 1.0000
r=2Yy=2

Notice that ZO Zop(x, y) = 1.0
r=0y=
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Density Functions

e Joint Density Function

fo(xy)

v

e Marginal Density Functions

) 4 fx A
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Joint Probability Distribution

for Continuous Random Variables

Let X and Y be continuous random variables.
The joint density function for X and Y is,

fxv(z,y).

e ['wo conditions:

(1) fxv(z,y) >0
(2) 220 fxv(@,y)dady = 1

e The continuous marginal density for X:

fx(@) = [ fev(@,y)dy

e The continuous marginal density for Y:

fr(z) = [ fxy(z,y)dz
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Example: A bank operates a drive-in facility
and a walk-up window.

Let X = proportion of time the drive-in is used
Y = proportion of time the walk-up is used

Sz +y?) for0<2<1,0<y<1
— 15 =T = LU=V
Fxv (@, y) { 0 otherwise
O O 6
Note: [0 [*> S(x +yf)dzdy = 1
fxs)(x,y)
£0,0=0  f(0,1)=6/5
> f(1,1)=12/5 £(1,0)=6/5

(%)

v
[
<
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Example continued:

Marginal density functions:

00 §)
fx(@) = /joo fxv(z,y)dy = /015<x+y2)dy
B g(x+%) for0<z<1,0<y<1
|0 otherwise
00 6
fr(y) = /joo fxy (@, y)dr = /Olg(eryQ)dx

_ g(y2+%) for0<z<1,0<y <1
0 otherwise

f (A fylVh

-
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Independence

Let X and Y be random variables with joint
density fxy(z,y) and marginal densities fx(x)
and fy(y) respectively.

The two random variables X and Y are independent
if and only if

fxy(z,y) = fx(x) fr(y)

for all z and y.
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Expected Value

Let X and Y be 2 random variables. Then the
expected value of a function H(X,Y") denoted
as F|H(X,Y)] is:

E[H(X,Y)

> X H(z,y)pxv(z,y) if X,V
att x altl y

discrete

[ H () fxy (@, y)dyde if X, Y

continuous

Examples:



Covariance

A measure of how strongly X and Y are related
to one another.

OOU(X, Y) = 0Oxy — E[(X _MX)<Y_NY)]
= FE|XY| — pxpy

Py a%y(w-ux) (y-py)Dxv (T, Y) if X,V

discrete

/j;o /j;o(x—ux)(y—uy)f)(y(az,y)da:dy if X,Y

continuous

It X and Y are independent, then
Cov(X,Y) = 0.

But Cov(X,Y) can = 0, when X and Y are
dependent.
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Correlation

The correlation coefficient of X and Y denoted
Corr(X,Y), or pxy is:

Cov(X,Y)

OxX0y

PXY =

e If a, c are either both positive or both nega-

tive, Corr(aX +b,cY +d) = Corr(X,Y)
e For any X, Y, then
—1<Corr(X,Y) <1

o [f X, Y are independent, then pxy =0

Note: pxy = 0 does not imply X, Y are inde-
pendent
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Conditional Probability

Let X and Y be two random variables with joint
density fxy and marginal densities fx and fy.

The conditional density for X given Y = y is,

fX\Y<x> _ foi((:Z)y)

The conditional density for Y given X = z is,

fY|X<y> — f)}i(é;f)
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Chapters 6 and 7

Point and Interval Estimation
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Overview of Chapters 6 and 7

e Point Listimation

e Unbiased Estimators

e Interval Estimators (Confidence Intervals)
e [istimation of a Population Mean

e [istimation of a Population Variance

e [istimation of a Population Proportion
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Point Estimation

A point estimate of a parameter 6 is obtained
by selecting an appropriate statistic, and com-
puting its value using the sample data. The
selected statistic is called the point estimator.

Example:
Parameter of interest:

Statistic or estimator:

Point estimate:

Example:
Parameter of interest:
Statistic or estimator:
Point estimate:

Example:
Parameter of interest:

Statistic or estimator:

Point estimate:

109

L4, the pop mean
Y = Z Yi/n =

p, prob. of success

Y/n=p

0.65

o2, variance )

2= 3 (Y; = Y)’
i=1 n—1



Unbiased Estimators

An estimator 6 is an unbiased estimator for a
parameter 6 if and only if

AN

E|0) = 0.
e [ixample:

—If Y ~ Binomial(n, p), then the sample
proportion, Y /n is an unbiased estimator
of p, probability of success

— To check:

E[Y/n] = ~E)Y]="2 =}

n n
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e Fixample:
—ItY], YQ, ..., Y, isarandom sample, then
Y = Z Y / n is an unbiased estimator of

(L.
— To check:

E[Y] = E[S Yi/n
= HEN]+ B3] + ...+ E[Y;)

=(p+p+. 4 p) ="t

3|*—‘ 3|*—‘

I
=
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o Let s? be the sample variance based on a
random sample of size n, from a distribution

with mean p and variance o

e s’ is an unbiased estimator for o2, but s is

a biased estimator for o. (as long as n is
large, the bias is negligible)

e To check:

E[s’) = 75E[X (Y - Y)’

n—1

— ﬁ(naz — o?)

:02
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e There may be several unbiased estimators
for a parameter.

e For example,

- minY; + maxY; -

Y Y Yrimme
s Loy 9 y Lt d

are all unbiased estimators for p.
e How to choose among them?

— Method of Moments
— Maximum Likelihood Estimators

— MVUE Minimum Variance Unbiased Es-

timator
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Confidence Intervals

e Instead of a point estimator, an interval es-
timator (or confidence intervals) gives more
information.

e A 100(1 — )% confidence interval for a pa-
rameter 6 is a random interval [ Ly, Ly|, such
that

P(L1§€§L2)%1—oz

e To find Ly and Ly, we need to know the
distribution of a random variable involving

0.

e For example, Y — {1, and we need distribu-
tion of Y.

o Let V1.Y5,....Y, be a random sample of
size n from a normal distribution with mean
u and variance o2. Then

Y ~ Normal(uy = p, 0% = 0 /n)
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Sums of Normal R.V.’s

o [1Y].Y,,....Y, areindependent random vari-
ables with Y; ~ N(u;, 0;) then

Y =a Y1 +a0Yo+ ...+ a,Y,
Y ~ N(/LY7O-Y)

e where
Hy = {1+ pfo+ ...+ ly

2 _ 2 2 2 2 2 2
oy = aj0{+a505+ ...+ a,0

n-n
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The Central Limit Theorem

e Let Y7,Y5,....Y, be arandom sample with

mean p and variance .

e For sufficiently large n,
Y ~ N(uy = p, 0y = 0°/n)

e and

T, ~ N(ur, = np, 07, = no”)

e The larger n, the better the approximation.
(if n > 30, CLT can be used)
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Example:

40 samples of one-gallon cans of paint were tested
to see how many square feet could be covered
with 1 can. The results of the experiment are
given below. Construct a confidence interval
for average square footage covered by 1 can of
paint.

508 | 486 | 551 | 536 | 432
534 | 4721489 | 529 | 452
4771507 508|459 | 528
530|490 | 541 | 504 | 553
507|540 | 508 | 549 | 492
544|515 483|516 | 533
531|516 (478|564 | 581
546 | 472|555 | 465 | 501
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95% Confidence Interval for pu

e Suppose we have a random sample Y7, Y5, ..., Y,
where Y; ~ N(u, 0?) and p is unknown and
o is known. Then

P(Y—-1.960/v/n < u < Y+1.960/+y/n) = .95

e Now suppose we observe Y; = yq,Yy =
Y2y - -y Yn = Yp and we compute g and sub-
stitute y for Y. Then

(y — 1.960 /+/n,y + 1.960 /+/n)

is called a 95% confidence interval for u or
Y —1.960/v/n < u <Y +1.960/v/n
with 95% confidence
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Interpreting Confidence Intervals

Suppose we sampled another 40 paint cans and
constructed a confidence interval. And if we did
this again and again, approximately 95% of the
constructed intervals would contain u, and 5%
of the constructed intervals would not contain

L.

True Value ofp

Interval 1

Interval 2

Interval 3

Interval 4

Interval 5

Interval 6

Interval 7

Interval 8
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Confidence Interval for u

A 100(1 — )% confidence interval, 0 < a < 1,
for the mean p of a Normal population (when
o is known) is given by:

(Y - Za/ZO-/\/ﬁ S S Y + Z&/QO-/\/E)

1-a
o2 o/2

“Cai2 o2
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Deriving a Confidence Interval

e We can derive a confidence interval for any
statistic

e Suppose Y7, Yy, ...,Y, is a random sample
and we want to estimate 6

e Find an estimator § and its distribution

e This suggests a function h(Y7, Y5, ..., Y,;0)
with

Pla < h(Y,Ys,... . Ys0) <b)=1—a
e [solate 0

P(L(Y1,Ys,....Y) <0< b(Y],Ys,....Y,)) = 1—a

e The lower and upper confidence limits for a
100(1— )% confidence interval are given by

l1<3/17 )/27 s 7Yn) and 12<3/17 }/27 s 7Yn)

121



Estimating the Mean

e Y is our estimator for the population p

e If the population o is known, and the sam-
ple comes from a normal distribution, then

7 = Y=L Y155 a standard normal distribu-
O'/\/ﬁ
tion

o If the population ¢? is unknown but the

sample comes from a normal distribution,

then T = 5}’/7_\/% has a t-distribution with

v =mn — 1 degrees of freedom
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t-distribution

The t-distribution (77), is similar to the stan-
dard normal distribution ()

e both means equal zero (uy = pt, = 0)
e both are bell-shaped

e the normal distribution has two parameters
(i, o), but the t-distribution has only one
parameter (v = DOF)

e the density ¢, is spread out more than the
standard normal, oy, > 07 =1

® as 7 — +00, t, — standard normal
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Estimating the Mean continued

If the population o is known, and the sample
comes from a normal distribution, we had:

gives

P(Y—Za/gﬁg Y+Za/2\/—)—1—05

If the population ¢ is unknown but the sam-

ple comes from a normal distribution, we have:

P( a/2<T S/\/—<+ta/2)_1_@

1-a
o2 o/2
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Estimating the Mean summarized

100(1-a)% CI on p when o is known:

Let Y1,Y5, ..., Yy be a random sample from a
normal distribution with mean p and variance
0. A 100(1 — a)% confidence interval on g is

given by
o

Y + Z&/Qﬁ

100(1-a)% CI on p when o is unknown:

Let Y1,Y5, ..., Yy be a random sample from a
normal distribution with mean p and variance
0. A 100(1 — a)% confidence interval on g is

given by o
Y £t n—

NG
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Estimating the Variance

2

e s° is our estimator for the population o

e If the sample comes from a normal distribu-
tion, then
(n —1)s*

5
2 i=1 o

(Vi —Y)

o

has a chi-squared distribution with n — 1
degrees of freedom

Chi-squared (x?) distribution:

8 degrees of freedom

100 o

12 degrees of freedom

»
»
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Estimating the Variance continued

f0
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Estimating the Variance concluded

e [f the sample comes from a normal distribu-
tion, we have:

n—1)s?
P(XT_ a2 < ( 02) <xep)=1l—a
and we isolate o? using: o0? < %2_1—)82 and
1—a/2
(L}LSQ < ¢? obtaining a
Xa/2
e 100(1 — )% Confidence Interval on o*
_ 2 _ 2
p (n 21)3 <o’ < (n2 1)s g
Xa/2 X1—a/2
Let Y1,Y5,...,Y, be a random sample from a

normal distribution with mean p and variance
0. A 100(1 — )% confidence interval on o is
given by

(n —1)s* (n—1)s*

ng/z | X%—a/z
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Estimating Proportions

e Let p be the proportion of “successes” in a
population.

e et Y be the number of successes in a sam-
Y

ple of size n. The sample proportion, p = —

is our estimator for p. It is an unbiased es-
timator because
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Estimating Proportions Continued

e By the Central Limit Theorem,
Y { approx. Normal distribution }

- — Y

n with mean p & variance 7@.
© g w P Standard Normal
= 0 1S approx. otandard Norma

e When n is large enough,

Yy
P (_Z‘“/ 2 = wéﬁ—iw S tHa) 2) —loa

P (X — Zas p(ln—p) <p< %Jr Za/2 p(l—p)>

n

e [t is so difficult to completely isolate p that
we replace p by its unbiased estimator p =
Y /n to obtain the

Confidence Interval on p:
p = za/2y/p(1 — p)/n
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Sample Size for Estimating p

r he 0
| | |
| | |
ﬁ_za/Q\/ﬁ(l _ﬁ)/n ﬁ ﬁ+za/2\/ﬁ(1 _ﬁ)/n

We are 100(1 — a)% confident that p is in the
above interval, of length 2d, where

A= Zop P~ P/

Solve for n:
9 A . 9
n A a)2 p(l — p) < “a /2
d? — 4d?
(since p(1 —p) < 1/4).
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Estimating Proportions Example

A certain treatment was effective in 32 out of 50
cases in which it was tried. Find a 95% confi-
dence interval for the probability of effectiveness
in a single treatment.

Y 32

P T 0
Since 50 is large, a 95% confidence interval is
given by:

(p— zap2 (L= D)/n , P+ 2ap2 - B(1—p)/n)

32 32 18 32 32 18
1096|122, = 4196 |—. =
( 96J50 AT 96J50 50/50J

50
(0.64 — 0.133 , 0.64+0.133)

(0.507 , 0.773)
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Chapter 8

Test of Hypotheses
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Overview of Chapter 8

e Elements of a Statistical Test

e Choosing the Null and Alternative Hypothe-
ses

e Testing a Population Mean

e Testing a Population Proportion

e Comparing Two Population Means

e Comparing Two Population Proportions
e Comparing Two Population Variances

e Comparing Means with Paired Data
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Hypothesis Testing

1. State the null hypothesis, Hy and the alter-
native hypothesis H 4.

Ex: Two-tailed test One-tailed test

Ho: p = po Ho: p=po (1 < po)
Hat po# o Hy: po > o

2. Select the appropriate test statistic

Ex: Use Y to estimate u, and use T = ?T_\/%Q

3. Specity the rest of the experiment, such as:

3i. Choose the critical region for specific a
and n, or

3ii. Choose n for specific a and 3.
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Hypothesis Testing Continued

4. Compute the value of the test statistic from

5)

the data
Ex: Compute 7 and t.

. Decision:

e if the value of the test statistic is in the
critical region, reject Hy with a level of
significance, or

e find the P-value, i.e. the smallest level
of significance at which Hy would be re-
jected, or

e conclude there is insufficient evidence to
reject H
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2 Types of Errors

H, is True H, is False
Accept H, No Error Type Il Error
Reject H, Type | Error No Error

P (type I error) «— level of significance
= P (reject Hy|Hy is true)

P (type II error) «— power of the test

P (accept Hy|H is false)

Rejection Region Acceptance Region Rejection Region

/ |
N V

1 )

Critical values
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Stating the Null Hypothesis

In statistics, we can only reject hypotheses.
We can never prove a hypothesis, all we can
say 18, we had insufficient evidence to reject the
hypothesis. The strong conclusion is to provide
sufficient evidence to reject the hypothesis.

State the null hypothesis, hoping we can reject
it.

Example:

A beer company is going to contract a glass
company to supply bottles. The mean bursting
strength should exceed 100 psi. They will do an
experiment & decide whether to sign the con-
tract.
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I: Hy: p < 100psi
Ha: > 100psi
If the data allows
us to reject Hy,
we conclude the
bottles are
strong enough

2: Hy: p > 100psi
Ha: p < 100pst
If the data allows
us to reject H,
we conclude the
bottles are
too weak

This formulation
forces the glass co.
to demonstrate the

bottles are
strong enough.

This formulation
forces a
demonstration of an
unusual number
of weak bottles.
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Diagram of a For Tests on Pop. Mean

a = P (type I error) = P (reject Hy|Hy is true)
using Y to estimate pu,
a = P (Y is in rejection region|u = pyp)

e Upper-tailed test:
Hy: p=py (n<po) Ha: p>pg

|
— [

y-scale Ho c
t-scale 0 t,

L A J

Acceptance Region Rejection Region
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Diagram of o for Pop. Mean Cont.

e [ower-tailed test:
Hy: p=po (p<po) Ha: p<po

|
_C "
-t 0
L A J
N N
Rejection Region Acceptance Region

e T'wo-tailed test:

Hy: p= po Hy: p# o
|
-C C
-t Ho t,
N S S
Rejection Acceptance Rejection
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Example of New Design Testing

A company produces bias-ply tires & is consid-

ering a change in the tread design. The tire life
should be able to exceed 20,000 miles.

In order to convince management that the new
design significantly changes the average tire life
to exeed 20,000 miles, we formulate the follow-
ing null hypothesis.

1. Hy: p=20,000 (u < 20,000)
Ha: > 20,000

2. Choose the test statistic & identify distribu-
tion;
use Y to estimate u,
since our population is bell-shaped, we will
use
oY H

s/\/n

with n — 1 degrees of freedom.
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New Design Testing Cont.

3. Specify the rest of the experiment, n, critical
region, «, (3, . . .

3i. First, fix a = 0.01 level of significance,
and find the critical region for a fixed n.

x-scale
t-scale

oF+
(¢}

P(Y > clp = py) = P(T:TT_\/%>75Q)

= P(V > po+tals/\/n) = a

143



New Design Testing Cont.

For example; if n = 16, s = 1500,
and py = 20,000, o = 0.01,

to = T0.01 = 2.602
(check table, 15 deg. of freedom)
and then

c = 20,000 + 2.602(%) = 20,976
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New Design Testing Cont.

4. Calculate test statistic from the data

Example: 7 = 20,857, s = 1500
and n = 16.

Calculate t:

g —po 20,857 — 20,000
- s/y/n 1500/4/16

¢ = 2.285

c=20,976
to =262

DATA: 20,857
2.285

|
— |
x-scale H
t-scale 0
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New Design Testing Cont.

5. Decision:
There is insufficient evidence to reject
the null hypothesis at a 0.01 level of signifi-
cance.

However, we would be able to reject the null
hypothesis at a 0.05 level of significance.

('To check this, use table to get tg g5 = 1.753,
with 15 degrees of freedom.)

Find the P-value; the value at which we
could just reject the null hypothesis.

146



The exact P-value is hard to calculate. Some
computer packages numerically estimate P-value
quite well.

The table in the text only gives certain values
for a:

v\ F| 090 095 0.975 0.99
15 [1.341 1.753 2.131 2.602

0.05
0.025
| 0.01

I 1.753 2.131 2.602
0]

Since our calculated t-value is 2.285, which
1s inbetween t0_025 — 2.131 and t()'()l — 2602,
then we conclude that we can reject the null

hypothesis at a 0.025 level of significance (our
P-value is 0.025).
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Tossing a Coin Example:
Estimating a Proportion p

I lost a gambling game with coin tosses and I
suspect that the coin was weighted. I want to
conduct an experiment to demonstrate the coin
is unfair.

1. H()I D = 1/2:p0
Ha:p#1/2

2. Select the appropriate test statistic:
use p = Y/n to estimate p.

if n is large:

p ~ Normal(uy = po, 05 = y/po(1 — po)/n)
(and npy > 5 and n(1 — py) > 5)

if n 1s small:
Y ~ Binomial(ux = np, ox = \/npq)
(or npy 2 5 or n(l — py) £ 5)
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Tossing a Coin Example, Cont.

3. Specify the rest of the experiment. For exam-

ple, suppose the critical values are 0.4 and
0.6.

and suppose n = 10. Find a and ((0.8)
a = P (reject Hy|Hy is true)

= P(0.6 < or - < 0.4)p=0.5)

= P(6<YorY >4p=0.5)

— 1 3634 ( 1y0 ) (0.5)9(0.5)10

o (( 140) (5)104 ( 150) (.5)19; ( 160) <.5>10)

= 1 — (210 + 252 + 210)(0.5")
= 1—0.656 = 0.344
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Tossing a Coin Example, Cont.

53(0.8) = P (accept Hy|H is false)
— P(4<Y <6lp=0.8)

6
= X (10) (0.8)4(0.2)197% ~ 0.12
y=4\ Y

Since tossing a coin Is an inexpensive experi-
ment, we may wish to have n be very large,
and have a narrow critical region.

If n is large, then

Y

p="
n

has an approx. Normal distribution,with

py =p and o3 = p(1 — p)/n
(also used for conf. interval) or
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Tossing a Coin Example, Cont.

Now, find n so that o = 0.02 and we want a
tight interval of £0.1.
As before:

1. Hy p=1/2

Hap#1/2
2. p is estimator for p, and use Z-statistic.
3.a =002, —z,, =—2.33

because P (Z < —2.33) = 0.01

2

: ~Y ZO(/Q .
Use the expression n = —= with z,/9 =

Ad?
2.33 and d = 0.1
(2.33)?
= = 135.7
T 401
Use n = 136

4. Conduct the experiment with n = 136, de-
termine p = Y/n.

5. Use P-value to reject the hypothesis with a
specific level of significance.
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Comparing Two Means,
Proportions, or Variances

This section shows how to draw statistical infer-
ences when comparing 2 random variables. The
basic steps for developing confidence intervals &
hypothesis testing remain the same.

Random sample

Population 1 -
size n,

H, O,
@)

Random sample
size n,

Population 2
M, O,°
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e What are you trying to estimate or what is
your hypothesis?

— Difference between means, pq — o.
— Ratio of variances, 0% /03,
— Difference between proportions, p; — po.

e What is your test statistic and what is its
distribution?

— Distribution of Y] — Y5, 512/537

p1 — Po, depend on assumptions.
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Difference Between 2 Pop. Means

Example: Compare the strength of cold-rolled
steel (u1) with galvanized steel (usy), where we
suspect that galvanized steel is stronger.

Population 1: Population 2:
Cold Rolled Steel Galvanized Steel

2 2
1,04 2, 09
random sample random sample
of size nq of size no

e We want to estimate p; — o

e Test statistic: Y] — Y,
What is the distribution of Y| — Y57
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Distribution of Y7 — Y5

If the sample means Y] and Y5 are from random
samples that are independent, and sampled
from normal distributions with means p; and
1o and variances o and o3, respectively, and
sample sizes nqy and noy, then

I mean = (4] —
Y, — Y5 ~ Normal H

. 02 02
varlance = -t 4 =2
ni no
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Difference of 2 Means

Independent samples, population has a bell-shaped
distribution.

(Y1 —Y5) — (1 — po) Standard Normal
(Z) Distribution

2 2
ﬁ+§2
ni ny

Using S? & 52 to estimate 0% & o3

Y1 —Y3) — (1 —p2) T-distribution
St 4 S5 with v deg. of freedom
ny no
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Difference of 2 Means: Example

Cold-rolled steel:

A random sample of n; = 38 gives an
average strength of 77 = 29.8Kksi,
with 59 = 16

Galvanized steel:
A random sample of ny = 32 gives an
average strength of 75 = 34.7ksi,
with s5 = 25

1. Null Hypothesis Hy:

pr—p2 =0 (1 > p2)
Alternative Hypothesis H 4:

p—po <0 (pr < o)
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Difference of 2 Means Ex., Cont.

2. Select the test statistic:

71—72—(#1—,112)

> > ~ t-distribution
St 4 53
ny no

5, 53’
ni ny

)

T:l—l + n22—1
4 2
i

with

~ 59 (round down)

158



Difference of 2 Means Ex., Cont.

4. Calculate the value of the test statistic:

(Y1 = Y5) — (i — p2)o
LY S3
Exe
(29.8 — 34.7) — 0
16 , 25
V38t 32
(null hypothesis is p; — po = 0)
= —4.4688
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Difference of 2 Means Ex., Cont.

5. Decision:

Fl--- 090 095 --- 0.995 0.9995

~
40 1.303 1.684 2.704 3.551

60 1.296 1.671 2.660 3.460

o0 1.282 1.645 2.076 3.291

We can reject the null hypothesis at a very high
level of significance (P-value less than 0.0005).
Therefore we conclude that with a very high
probability, galvanized steel is stronger than cold-
rolled steel.
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Confidence Interval for u; — uo

(Y1 = Y5) — (1 — p2)o
I

ni ni

Assuming

has a t-distribution, upper & lower confidence
limits for 100(1 — )% confidence, are given as:

L St S St | 5%
Ui——tap | —+— , Ti—TPtlap| — + =
ny N9 ny Ny

Example: For steel example, a 99% confidence
mterval would give a = 0.01, 80 ¢, /9 = t0.005 =
2.704. (From before, v = 59, but I used v = 40
in the tables to be conservative.)

16 25

71— Tz £ (2.704) a3 + 29 (29.8 — 34.7) +2.96

= —4.9x2.96

—786 < p; — puy < —1.94 with 99% confi-
dence.
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Pooled t-test

To compare 1y — po, assuming:
independent samples
normal populations

equal variances, o = o3

Y — Y5 — (11 — 1) t-distribution with
o1 5 ~ ny+no — 2
\/ p<n_1 T n_g) degrees of freedom

(m — 1)512 -+ (n2 — 1)522
ny + ng — 2

where Sg —
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Comparing Two Proportions

Let:
p1 be the proportion from pop. 1, and
p2 be the proportion from pop. 2.

For large sample sizes (ny & ny):

Y, Y.
p]:—landp}:—Qand
ni ny
.Y

PI—p2=DI—Pr= — — —
1 9
For large sample sizes, the estimator p; — po

is approx. normal with mean p; — py and vari-

1 — 1 —
Ance p1< p1) +p2< p2)'

ni n9

The 100(1 — a)% C.I. for p; — py is:

pi(l — pi) N pa(1l — p2)
nq 79

(p1 —p2) £ Za/QJ
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Comparing Two Proportions:

Hypothesis Testing

Three Forms:

L. Ho: p1 —p2 = (p1 — 2
Hi:pr—p2> (p1 — p2
2. Hy: p1 —p2 = (
Hy: p1 —po < (p1 — 2
3. Hy: p1 —p2 = (p1 — p2
H3: pr —po # (

We use (p1 p2) <p1 — p2)0

Jm(l —p1) +p2(1 —72)
ni

na

as an approx. standard normal.
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Comparing Variances

Hypothesis tests on two pop. variances:
Right-tailed: Hy: 0§ = 03
Hy: O'% > O'%
Left-tailed: Hy: 0% = 03
Hy: 0% < o3
Two-tailed:  Hy: 0§ = 03
Hy: 0% +# o3

Test Statistic: S%/S57

o If 07 = 03, then 5%/5% is close to 1.
o If 07 < 03, then S?/57% is close to 0.

e If 07 > 03, then S?/S% is much larger than

1.
F'-distribution
$2/52 (ratio of 2 indep. x-squared r.v.s)
1 2 With”yl:nl—land’}@:ng—l
assuming null hyp. is true, 0% = 03
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Comparing Variances

e The test is not very powerful (often fail to
reject the null Hypothesis 0% = o3, when
indeed the variances are different).

e The test performs best when sample sizes
are equal (n; = ng) & large.

e The test is very sensitive to the normality as-
sumption. If a histogram is not bell-shaped,
do not use the test.
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Comparing Variances Example

We wish to determine whether there is less vari-
ability in the silver plating done by Company 1
than Company 2. Independent samples of work
done by the two companies yield:

Company 1: n; = 16, s; = 0.035mil
Company 2: ny = 10, s9 = 0.062mil

Test the hypothesis at 0.05 sig level.

o2 D _

Hy: 0% < o3
Determine test stat. & dist.

S%/52 F-distribution
’)/1:77,1—1:15 ’yQZNQ—1:9
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Comparing Variances Example Cont.

Calculate test statistic from data;
s7/s5 = 0.035%/0.062% = 0.319

Rejection region:

(15,9 deg. of freedon

Reciprocal relationship:

1
15.9 df) =
foos(15,9 df) o509, 15 df)

and fy5(9,15 df) = 2.59

1
SO f0_95<15, 9 df) — E = 0.3801
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Comparing Variances Example Cont.

Decision: The test statistic 0.319 is less than
0.3861, so we reject the null hypothesis. The
data support the conclusion that the silver plat-
ing done by Company 1 is less variable than
Company 2.

169



Comparing Means: Paired Data

Before, we had a random sample of size n; from
population 1, and an independent random
sample of size ny from population 2.

Now, we make n observations, and collect two
types of data per observation.

Example: Sample 6 river locations & measure
zinc concentration in bottom water
and surface water. Does the data
suggest that the average concentra-
tion in bottom water exceeds that of
surface water?

Location 1 2 3 4 5 6
Zinc bot, y; [0.430 0.266 0.567 0.531 0.707 0.716
Zinc surf, yo [ 0.415 0.238 0.390 0.410 0.605 0.609
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Comparing Means: Paired Data Ex.

Two different methods (finite element method,
and a new approximation method) are being
compared to predict buckling load of a certain
structure under 10 different conditions. Is the
average difference equal to zero? Are the 2
methods consistent?
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The Paired t-test

The data consist of n pairs of observations;
<X17 Yl)a (X27 Y2)7 T <Xn7 Yn)

Let D; = difference = X;—Y;fori =1,2,...,n
We can get Dy, Do, ---, D, and

1 D -0 t-distribution
S, //n with n-1 degrees of freedom

S, = sample standard deviation

_ [97 = JZ%(Dz‘ — D)

n—1

100(1 — )% Confidence limits on px — py for
paired data:

ensl
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Paired t-test Example

HD = HBottom — MSurface
H()I Up = 0

H 4 Wwp > 0
(i.e., more zinc conc. in bottom water than sur-
face)

d
Sa/v/n
Data: d = 0.0917, s34 = 0.003683, n = 6

Test Statistic:

d

= 3.70
Sd/\/ﬁ

173



Paired t-test Example Cont

For t-test, using 5 = n - 1 degrees of freedom,
to.o1 = 3.365. Since 3.70 > 3.365, we reject the
null hypothesis at a 0.01 level of significance.
We conclude that zinc concentration in bottom
water does exceed zinc concentration in surface

water.
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p1 — po Hypothesis Test

In the 1954 Salk polio vaccine experiment, one
eroup had a placebo & one group had the new
vaccine.

Let:

p1 = probability of getting paralytic polio for
control group

py = probability of getting paralytic polio for
vaccinated group

Hy: pp—p2=10
Hp:pp —p2 >0

(i.e., a vaccinated child is less likely to contract
polio than an unvaccinated child.)
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p1 — po Hypothesis Test Cont

Find sample size if o = 0.05 and @ = 0.1, when
p; = 0.0003 and py = 0.00015

2
 (2Zaf(pr +p2) (@1 + @2)/2 4 25/ Pran T Paga)
d2

N
|

Q

171, 400

where d = p; — py = 0.0003 — 0.00015

Zo = 2005 = 1.045
Zﬁ — 20.1 — 1.28
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p1 — po Hypothesis Test Cont

Actual data: Placebo, n; = 201, 229
y1 = 110 polio cases
Vaccine, ng = 200, 745
Yo = 33 polio cases

P — P2
—————— ~ 0.47
¢m<n—1 + ;)

Calculate z =

PR | (I 33

wllere — E—
Pr=501,229° ¥~ 200.745
Yyr+y2 110 + 33

P ny 201,229 + 200, 745

The p-value is less than 0.0003, so we reject the
null hypothesis (p; — po = 0), and conclude
that the probability of contracting polio with
the vaccine is different from the control group.
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