
ORIGINAL ARTICLE

Efficient Spiking Neural Network Model of Pattern Motion
Selectivity in Visual Cortex

Michael Beyeler & Micah Richert & Nikil D. Dutt &
Jeffrey L. Krichmar

Abstract Simulating large-scale models of biological motion
perception is challenging, due to the required memory to store
the network structure and the computational power needed to
quickly solve the neuronal dynamics. A low-cost yet high-
performance approach to simulating large-scale neural net-
work models in real-time is to leverage the parallel processing
capability of graphics processing units (GPUs). Based on this
approach, we present a two-stage model of visual areaMT that
we believe to be the first large-scale spiking network to
demonstrate pattern direction selectivity. In this model,
component-direction-selective (CDS) cells in MT linearly
combine inputs from V1 cells that have spatiotemporal recep-
tive fields according to the motion energymodel of Simoncelli
and Heeger. Pattern-direction-selective (PDS) cells in MT are
constructed by pooling over MT CDS cells with a wide range
of preferred directions. Responses of our model neurons are
comparable to electrophysiological results for grating and
plaid stimuli as well as speed tuning. The behavioral response
of the network in a motion discrimination task is in agreement
with psychophysical data. Moreover, our implementation out-
performs a previous implementation of the motion energy
model by orders of magnitude in terms of computational
speed and memory usage. The full network, which comprises
153,216 neurons and approximately 40 million synapses,
processes 20 frames per second of a 40×40 input video in
real-time using a single off-the-shelf GPU. To promote the use
of this algorithm among neuroscientists and computer vision

researchers, the source code for the simulator, the network,
and analysis scripts are publicly available.

Keywords Pattern motion selectivity . Spiking neural
network .MT . GPU . Real-time . CARLsim

Introduction

Visual motion perception is a challenging problem that is
critical for navigating through the environment and tracking
objects. Several software packages are available to the public
that deal with the neurobiologically plausible modeling of
motion perception in the mammalian brain, such as
spatiotemporal-energy models like the motion energy model
of Simoncelli and Heeger (1998), or gradient-based models
like ViSTARS (Browning et al. 2009a, b). However, in order
for these frameworks to become practical in, for example,
neuromorphic or robotics applications, they must be capable
of running large-scale networks in real-time. Moreover, to
take advantage of state-of-the-art neuromorphic hardware,
the elements of the algorithms need to be spiking neurons
(Indiveri et al. 2006; Merolla et al. 2007; Vogelstein et al.
2007; Khan et al. 2008; Srinivasa and Cruz-Albrecht 2012).
Developing such a simulation environment is challenging,
due to the required memory to store the network structure
and the computational power needed to quickly solve the
equations describing the neuronal dynamics. A low-cost yet
high-performance approach to simulating large-scale spiking
neural networks (SNNs) in real-time is to leverage the parallel
processing capability of graphics processing units (GPUs)
(Nageswaran et al. 2009; Fidjeland and Shanahan 2010;
Yudanov et al. 2010; Richert et al. 2011).

Based on this approach, we present a two-stage model of
visual area MT that we believe to be the first large-scale
spiking network to demonstrate pattern direction selectivity.
The model combines and extends two previous incarnations of

M. Beyeler (*) :N. D. Dutt : J. L. Krichmar
Department of Computer Science, University of California, Irvine,
Irvine, CA 92697, USA
e-mail: mbeyeler@uci.edu

M. Richert : J. L. Krichmar
Department of Cognitive Sciences, University of California Irvine,
Irvine, CA, USA

M. Richert
Brain Corporation, San Diego, CA, USA

Neuroinform (2014) 12:435–454
DOI 10.1007/s12021-014-9220-y

Published online: 5 February 2014
Springer Science+Business Media New York 2014

the motion energy model (Simoncelli and Heeger 1998; Rust
et al. 2006). Broadly speaking, our model integrates the V1
stage of Simoncelli and Heeger (1998) with the MT stage of
Rust et al. (2006) in the spiking domain. More precisely, our
model uses a bank of spatiotemporal filters (Adelson and
Bergen 1985; Simoncelli and Heeger 1998) to model the
receptive fields of directionally selective neurons in V1, which
then project to component-direction-selective (CDS) cells in
area MT. However, the local motion estimates coded by the
spike patterns of these neurons often vary drastically from the
global pattern motion of a visual stimulus, because the local
motion of a contour is intrinsically ambiguous (“aperture prob-
lem”). Therefore, in order to construct pattern-direction-
selective (PDS) cells in MT that signal the global pattern
motion, we implemented three design principles introduced
by Rust et al. (2006): 1) spatial pooling over V1 or MT CDS
cells with a wide range of preferred directions, 2) strong
motion opponent suppression, and 3) a tuned normalization
that may reflect center-surround interactions in MT. Whereas
the implementation by Rust et al. (2006) was restricted to
inputs that are mixtures of sinusoidal gratings of a fixed spatial
and temporal frequency, our model can operate on any spatio-
temporal image intensity.

The motion energy model of Simoncelli and Heeger (1998),
henceforth referred to as the S&H model, is conceptually
equivalent to an elaborated Reichardt detector at the end of
the V1 stage (van Santen and Sperling 1985), and is a specific
implementation of the intersection-of-constraints (IOC) princi-
ple at the end of the MT PDS stage (Bradley and Goyal 2008).
The IOC principle in turn is one possible solution to the
aperture problem; that is, a velocity-space construction that
finds the global pattern motion as the point in velocity-space
where the constraint lines of all local velocity samples inter-
sect. Adelson and Movshon (1982) differentiated among three
methods to estimate the global pattern motion; 1) IOC princi-
ple, 2) vector average (VA), and 3) blob or feature tracking,
which may be equally valid approaches to solving the aperture
problem (for a recent review on the topic see Bradley and
Goyal (2008)). Although the S&H model is not complete, in
the sense that it does not specify the exact pattern or object
velocity, the model in particular and the IOC principle in
general are consistent with various experimental data.

In the present paper, we introduce a large-scale spiking
neuron model of cortical areas critical for motion processing,
which is efficient enough to run in real-time on available
processors. We show that the responses of neurons in the
network are comparable to electrophysiological results for
grating and plaid stimuli, as well as speed tuning. The behav-
ioral response of the network in a two-alternative forced choice
(2AFC) motion discrimination task (that is, a random dot
motion coherence task) is in agreement with psychophysical
data. Moreover, our implementation outperforms a previous
rate-based C/Matlab implementation of the S&H model by up

to a factor of 12 in terms of computational speed and by orders
of magnitude in terms of memory usage. The full network,
which comprises 153,216 neurons and approximately 40 mil-
lion synapses, processes 20 frames per second of a 40×40
input video in real-time using a single off-the-shelf GPU.

The network was constructed using an open-source SNN
simulator (Richert et al. 2011) that provides a PyNN-like
programming interface; its neuron model, synapse model, and
address-event representation (AER) are compatible with recent
neuromorphic hardware (Srinivasa and Cruz-Albrecht 2012).
To promote the use of this algorithm among the neuroscientist
and computer vision research communities, the source code for
the simulator, the network, and analysis scripts are publicly
available at http://www.socsci.uci.edu/~jkrichma/CARLsim/.

Methods

The Simulator

The present model was developed on a simulator that was
previously published in Nageswaran et al. (2009) and Richert
et al. (2011). The first study demonstrated real-time perfor-
mance for a simulation of 100,000 neurons on a single
NVIDIA C1060 GPU. The latter added a wide range of func-
tionalities, such as equations for synaptic conductances, spike-
timing-dependent plasticity (STDP), and short-term plasticity
(STP). The present release builds on this mainly by: 1) provid-
ing the complete source code for a detailed large-scale model
of visual motion processing in V1 and MT, 2) improving the
original model to demonstrate PDS responses and speed
tuning, and 3) introducing source code-level optimizations that
improve GPU memory management and ensure code stability.
Whereas the optimizations should be applicable to a wide
range of GPU architectures, they are not directly relevant to
this paper and will thus not be discussed (for more information
please refer to the release notes).

The main code to run the experiments described in this
paper can be found in the file “examples/v1MTLIP/
main_v1MTLIP.cpp”, which is part of the CARLsim 2.1
software package. The “examples” directory also contains
a number of other experiments that were part of a previous
code release—for more information refer to Richert et al.
(2011). Matlab scripts to analyze the network output and
create the figures can be found in the directory “scripts/
v1MTLIP/”. Please note that Matlab is not necessary to use
the simulator, as the scripts are provided mainly for analysis
purposes.

Setting up a Simulation

Step-by-step instructions on how to set up, interact with, and
run a simulation can be found in the tutorial on our website

436 Neuroinform (2014) 12:435–454

and in our previous code release (Richert et al. 2011). For the
reader’s convenience, we include here a representative exam-
ple to illustrate the ease of setting up and running a simulation.
Listing 1 randomly connects ten Poisson spike generators

(gIn) firing at 50 Hz mean rate to a population of 100
excitatory Izhikevich neurons (gEx), records and stores the
spike times in a binary file “spkEx.dat”, and runs the
network for a second of simulation time:

In this example, connectivity (achieved through
CpuSNN:connect(…)) is random with an initial weight
of 1.0, a maximum weight of 1.0, a 10 % (0.10) connection
probability, a synaptic delay uniformly distributed between
1 ms and 20 ms, and static synapses (SYN_FIXED). Note that
any type of connectivity profile is possible by using a callback
mechanism. For a description of the Izhikevich neuron model
please refer to section “Neuron Model”.

CPU vs. GPU Simulation Mode

A major advantage of our simulator is the possibility to
run a simulation either on standard x86 central process-

ing units (CPUs) or off-the-shelf NVIDIA GPUs, simply
by passing a constant with value CPU_MODE or
GPU_MODE as an additional function argument to
CpuSNN::runNetwork(…). A new feature is the op-
tion to pass a “device index” to the same method, which
can be used in multi-GPU systems to specify on which
CUDA device to establish a context. For example,
Listing 2 would run a built network for 1 second on
the second GPU (if such a device exists):

The two simulation modes allow the user to exploit the
advantages of both architectures. Whereas the CPU is more

efficient for relatively small networks, the GPU is most ad-
vantageous for network sizes of 1,000 neurons and up

#include "snn.h"
CpuSNN sim("My network");

// set up network
int gIn=sim.createSpikeGeneratorGroup("input", 10, EXCITATORY_NEURON);
int gEx=sim.createGroup("excitatory", 100, EXCITATORY_NEURON);
sim.setNeuronParameters(gEx, 0.02f, 0.2f, -65.0f, 8.0f); // RS neurons
sim.connect(gIn, gEx, "random", 1.0, 1.0, 0.10f, 1, 20, SYN_FIXED);

// write spike times to file
sim.setSpikeMonitor(gEx, "spkEx.dat");

// set spike rates and run network
PoissonRate inSpikes(100);
for (int i=0; i<100; i++)
 inSpikes.rates[i] = 50.0f; // 50 Hz
sim.setSpikeRate(gIn, &inSpikes);
sim.runNetwork(1,0); // run for 1 sec and 0 msec

Listing 1

CpuSNN sim(“My network”);
... // build network
int run_sec = 1; int run_msec = 0; // run for 1 s and 0 ms
bool onGPU = true; // run on GPU
int ithGPU = 1; // run on 2nd device (0-indexed)
sim.runNetwork(run_sec, run_msec, onGPU?GPU_MODE:CPU_MODE, ithGPU);

Listing 2

Neuroinform (2014) 12:435–454 437

(Nageswaran et al. 2009; Richert et al. 2011). It has been
demonstrated that a GPU implementation (on NVIDIA
GTX-280 with 1 GB of memory) for a simulation of
100,000 neurons and 50 million synaptic connections can
run up to 26 times faster than a CPU version (Core2 4600
@ 2.13 GHz with 4 GB of memory) of the same network
(Nageswaran et al. 2009). On the other hand, the CPU mode
allows for execution of extremely large networks that would
not fit within the GPU’s memory.

It is worth noting that a simulation can be run in CPUmode
even if the code is compiled in the presence of CUDA source
files. An example of this hybrid mode is the network ex-
plained in the present work, which contains a V1 stage purely
written in CUDA. In this case the network would be allocated
on the CPU’s memory, but the generation of motion energy
responses would be delegated to the GPU.

Neuron Model

The simulator currently supports four parameter Izhikevich
point-neurons (Izhikevich 2003). Other neuron models will
follow in future releases. The Izhikevich model aims to reduce
Hodgkin-Huxley-type neuronal models to a two-dimensional
system of ordinary differential equations,

dv tð Þ
dt

¼ 0:04v2 tð Þ þ 5v tð Þ þ 140−u tð Þ þ isyn tð Þ ð1Þ

du tð Þ
dt

¼ a b v tð Þ−u tð Þð Þ: ð2Þ

Here (1) describes the membrane potential v for a given
external current isyn, whereas (2) describes a recovery vari-
able u; the parameter a is the rate constant of the recovery
variable, and the parameter b describes the sensitivity of the
recovery variable to the subthreshold fluctuations of the
membrane potential. All parameters in (1) and (2) are di-
mensionless; however, the right-hand side of (1) is in a form
such that the membrane potential v has mV scale and the
time t has ms scale (Izhikevich 2003). The Izhikevich model
is well-suited for large-scale simulations, because it is com-
putationally inexpensive yet capable of spiking, bursting,
and being either an integrator or a resonator (Izhikevich
2004, 2007).

In contrast to other simple models such as the leaky
integrate-and-fire (LIF) neuron, the Izhikevich neuron is able
to generate the upstroke of the spike itself. Thus the voltage
reset occurs not at the threshold, but at the peak (vcutoff=+30),
of the spike. The action potential downstroke is modeled using
an instantaneous reset of the membrane potential whenever v

reaches the spike cutoff, plus a stepping of the recovery
variable:

v v > 30ð Þ ¼ c and u v > 30ð Þ ¼ u−d: ð3Þ

The inclusion of u in the model allows for the simulation of
typical spike patterns observed in biological neurons. The four
parameters a, b, c, and d can be set to simulate different types
of neurons. Unless otherwise specified, excitatory neurons in
all our simulations were modeled as regular spiking (RS)
neurons (class 1 excitable, a=0.02,b=0.2, c=−65, d=8),
and all inhibitory neurons were modeled as fast spiking (FS)
neurons (class 2 excitable, a=0.1, b=0.2, c=−65, d=2)
(Izhikevich 2003, 2004).

Synapse Model

A simulation can be run with either a current-based or a
conductance-based neuron model (sometimes referred to as
CUBA and COBA, respectively). All experiments in the
present study were run in COBA mode.

In a conductance-based model, each ionic current that
contributes to the total current isyn (see (1)) is associated with
a conductance. The simulator supports four of the most prom-
inent synaptic conductances found in the cortex: AMPA (fast
decay), NMDA (slow decay and voltage-dependent), GABAa
(fast decay), and GABAb (slow decay), which are modeled as
dynamic synaptic channels with zero rise time and exponen-
tial decay according to

dgr tð Þ
dt

¼ −
1

τ r
gr tð Þ þ w

X
i

δ t−tið Þ; ð4Þ

where δ is the Dirac delta, the sum is over all presynaptic spikes
arriving at times ti,w is the weight of that synapse, τr is its decay
time constant, and the subscript r denotes the receptor type; that
is, AMPA, NMDA, GABAa, or GABAb. Unless otherwise
specified, a spike arriving at a synapse that is post-synaptically
connected to an excitatory (inhibitory) neuron increases both
gAMPA and gNMDA (gGABAa

and gGABAb
Þ: In our simulations

we set the time constants to τAMPA ¼ 5 ms; τNMDA ¼ 150 ms;
τGABAa ¼ 6 ms; and τGABAb ¼ 150 ms (Dayan and Abbott
2001; Izhikevich et al. 2004). The rise time of these conduc-
tances was modeled as instantaneous, which is a reasonable
assumption in the case of AMPA, NMDA, and GABAa

(Dayan and Abbott 2001), but a simplification in the case of
GABAb, which has a rise time on the order of 10 ms (Koch
1999).

Then the total synaptic current isyn in (1) for each neuron is
given by:

438 Neuroinform (2014) 12:435–454

isyn ¼ −gAMPA v−0ð Þ

−gNMDA

vþ80
60

� �2
1þ vþ80

60

� �2 v−0ð Þ
−gGABAa vþ 70ð Þ
−gGABAb

vþ 90ð Þ

; ð5Þ

where v is the membrane potential of the neuron, and the
subscript indicates the receptor type. This equation is equiva-
lent to the one described in Izhikevich et al. (2004).

The Network

The network architecture is shown in Fig. 1. Grayscale videos
are fed frame-by-frame through a model of the primary visual
cortex (V1), the middle temporal area (MT), and the lateral
intraparietal cortex (LIP). Bold black arrows indicate synaptic
projections. Note that inhibitory populations and projections
are not shown for the sake of clarity. Numbers in parentheses
next to an element are the equations that describe the corre-
sponding neuronal response or synaptic projections, as will be
explained in the subsections below.

The V1 model consisted of a bank of spatiotemporal filters
(rate-based) according to the S&H model (Simoncelli and
Heeger 1998), which will be described in detail in section
“Spatiotemporal-EnergyModel of V1”. At each point in time,
a 32×32 input video frame was processed by V1 cells at three
different spatiotemporal resolutions (labeled “3 scales” in
Fig. 1). Simulated V1 simple cells computed an inner product
of the image contrast with one of 28 space-time oriented
receptive fields (third derivatives of a Gaussian), which was
then half-wave rectified, squared, and normalized within a
large Gaussian envelope. V1 complex cell responses were
computed as a weighted sum of simple cell afferents that
had the same space-time orientation, but were distributed over
a local spatial region. We interpreted these filter responses as
mean firing rates of Poisson spike trains (labeled “Hz” in the
figure) as explained in section “Spatiotemporal-EnergyModel
of V1”, which were first scaled to match the contrast sensitiv-
ity function of V1 simple cells, and then used to drive
Izhikevich spiking neurons representing cells in area MT.

Area MT consisted of two distinct populations of spiking
neurons (explained in section “Two-Stage Spiking Model of
MT”), the first one being selective to all local component
motions of a stimulus (CDS cells), and the other one
responding to the global pattern motion (PDS cells). MT
CDS cells responded to three different speeds (1.5 pixels/
frame, 0.125 pixels/frame, and 9 pixels/frame) illustrated as
three distinct populations in the MT CDS layer of Fig. 1.
Divisive normalization between these populations enabled
the generation of speed tuning curves that are in agreement
with neurophysiological experiments (Rodman and Albright

1987). The three MT CDS populations consisted of eight
subpopulations, each of which was not only selective to a
particular speed but also to one of eight directions of motion,
in 45° increments. PDS cells were constructed by 1) pooling
over MT CDS cells with a wide range of preferred directions,
2) using strong motion opponent suppression, and 3)
employing a tuned normalization that may reflect center-
surround interactions inMT (Rust et al. 2006). PDS cells were
selective to the same speed as their CDS afferents. For the
purpose of this paper we only implemented PDS cells selec-
tive to a speed of 1.5 pixels/frame (see MT PDS layer in
Fig. 1) to be used in a motion discrimination task. However,
it is straightforward to implement PDS cells that are selective
to another speed.

A layer of decision neurons (see section “Spiking Layer of
LIP Decision Neurons”) was responsible for integrating over
time the direction-specific sensory information that is encoded
by the responses ofMTPDS cells. Analogous to theMT layer,
the decision layer consisted of eight subpopulations, each of
which received projections from a subpopulation of MT PDS
cells selective to one of eight directions of motion. This
information was then used to make a perceptual decision
about the presented visual stimulus, such as determining the
global drift direction of a field of random moving dots in a
motion discrimination task (presented in section “Random
Dot Kinematogram”). Figure 1 exemplifies this situation by
showing a snapshot of the network’s response to a random dot
kinematogram (RDK) where dots drift to the right at a speed
of 1.5 pixels/frame. The subpopulation of decision neurons
that is coding for rightward motion is activated the strongest.
The temporal integration of sensory information might be
performed in one of several parietal and frontal cortical re-
gions in the macaque, such as LIP, where neurons have been
found whose firing rate are predictive of the behavioral reac-
tion time (RT) in a RDK task (Shadlen and Newsome 2001;
Roitman and Shadlen 2002).

The following subsections will explain the model in detail.

Spatiotemporal-Energy Model of V1

The first (V1) stage of the S&H model was implemented and
tested in a Compute Unified Device Architecture (CUDA)
environment (Richert et al. 2011). This part of the model is
equivalent to Eqs. 1–4 in Simoncelli and Heeger (1998) and
their subsequently released C/Matlab code, which can be
obtained from: http://www.cns.nyu.edu/~lcv/MTmodel/.
Unless otherwise stated, we used the same scaling factors
and parameter values as in the S&H model.

A visual stimulus is represented as a light intensity distribu-
tion I(x,y,t), that is, a function of two spatial dimensions (x,y)
and time t. The stimulus was processed at three different
spatiotemporal resolutions (or scales), r (labeled “3 scales” in
Fig. 1). The first scale, r=0, was equivalent to processing at the

Neuroinform (2014) 12:435–454 439

original image (and time) resolution. The other two scales were
achieved by successively blurring the image with a Gaussian
kernel. The three stimuli Ir(x,y,t) can thus be expressed as:

I0 x; y; tð Þ ¼ I x; y; tð Þ
I1 x; y; tð Þ ¼ exp

− x2 þ y2 þ t2ð Þ
2

� �
*I0 x; y; tð Þ

I2 x; y; tð Þ ¼ exp
− x2 þ y2 þ t2ð Þ

2

� �
*I1 x; y; tð Þ;

ð6Þ

where * denotes convolution. In order to circumvent the non-
causality of these convolutions (the response depends both on
past and future stimulus intensities), a time delay of four
frames was introduced (see (Simoncelli and Heeger 1998)).

V1 Simple Cells A large body of research has found that
neurons located in V1 that project to MT are directionally
selective and may be regarded as local motion energy filters
(Adelson and Bergen 1985; DeAngelis et al. 1993; Movshon
and Newsome 1996). In our network, V1 simple cells are
modeled as linear space-time-oriented filters whose receptive

R
et

in
a

Input
Grayscale

sp
ik

in
g

LI
P Output

LIP decision

50 Hz

0 Hz

M
T

MT PDS

MT CDS

50 Hz
0 Hz

50 Hz
0 Hz

V
1

V1 simple

V1 complex

ra
te

-b
as

ed

50 Hz

0 Hz

100 Hz

0 Hz

...

...

3 scales

(eqns. 1 - 5)

(eqns. 1 - 5)

(eqns. 1 - 5)

(eqn. 11)

(eqn. 10)

(eqn. 6)

(eqn. 12)

(eqn. 13)

Fig. 1 Network architecture. 32×32 grayscale images are fed through
model V1, MT, and LIP (as explained in sections “Spatiotemporal-Ener-
gy Model of V1 – Spiking Layer of LIP Decision Neurons”). Shown is a
snapshot in time of the network’s response to an example RDK stimulus
in which 50 % of the dots drift to the right. Black bold arrows denote
synaptic projections. Inhibitory projections and populations are not

shown. Numbers in parentheses next to an element are the equations that
describe the corresponding neuronal response or synaptic projections (see
text). V1 filter responses were mapped onto mean firing rates by repro-
ducing the contrast sensitivity function reported for V1 cells projecting to
MT, as explained in section “Spatiotemporal-Energy Model of V1”

440 Neuroinform (2014) 12:435–454

fields are third derivatives of a Gaussian (Simoncelli and
Heeger 1998). These filters are very similar to a Gabor filter,
but more computationally convenient as they allow for sepa-
rable convolution computations.

The full set of V1 linear receptive fields consisted of 28
space-time orientations that are evenly distributed on the
surface of a sphere in the spatiotemporal frequency domain.
The k th space-time-oriented filter in the V1 population can be

described by a unit vector buk ¼ buk;x;buk;y;buk;t� �0
that is par-

allel to the filter orientation, where k=1,2,…,28 and ' denotes
vector transposition. For more information please refer to
Simoncelli and Heeger (1998). An example of a spatiotempo-
ral receptive field is illustrated in Fig. 2, where the colored
ovals correspond to the orientation of the positive (green) and
negative (red) lobes of the spatiotemporal filter. If a drifting
dot traces out a path (dashed line) in space (x, for now ignoring
y) and time (t) that is oriented in the same way as the lobes,
then the filter could be activated by this motion (Fig. 2a). A

dot moving in the orthogonal direction would not elicit a filter
response because its path intersects both positive and negative
lobes of the filter (as depicted in Fig. 2b).

First, input images were filtered with a 3D Gaussian cor-
responding to the receptive field size of a V1 simple cell:

f r x; y; tð Þ ¼ exp
− x2 þ y2 þ t2ð Þ

2σ2
v1simple

 !
� I r x; y; tð Þ ð7Þ

where * is the convolution operator, r denotes the scale, and
σv1simple=1.25 pixels.

Then the underlying linear response of a simple cell at
spatial location (x,y) and scale r with space-time orientation
k is equivalent to the third-order derivative in the direction of

u ̂
k ; that is,

Lkr x; y; tð Þ ¼ αv1lin

X
T¼0

3 X3−T
Y¼0

3!

X !Y !T !
buk;x� �X buk;y� �Y buk;t� �T ∂3 f r x; y; tð Þ

∂xX ∂yY∂tT

� 	" #
; ð8Þ

where ! denotes the factorial,X=3−Y−T, andαv1lin=6.6084 is
a scaling factor. Note that the two sums combined yield
exactly 28 summands. This operation is equivalent to Eq. 2
in the original paper, and can also be expressed using vector
notation:

Lr ¼ αv1linMbr; ð9Þ

where Lr is the set of all V1 responses at scale r, each element
of br is one of the separable derivatives in (8) at scale r, and
each element of the 28×28 matrix M is a number
3!= X !Y !T !ð Þ buk;x� �X buk;y� �Y buk;t� �T

. Each row of M has a
different value for k, and each column of M has different
values for X, Y, and T. We will make use of this notation in
section “Two-Stage Spiking Model of MT”, where we will

t

x

t

x

a b

Fig. 2 A drifting dot traces out a path (dashed line) in space (x, ignoring
y) and time (t). The colored ovals correspond to the orientation of the
positive (green) and negative (red) lobes of a spatiotemporal filter a If the
filter is oriented in the same way as the dot’s space-time path it could be

activated by this motion b A dot moving in the opposite direction would
always contact both positive and negative lobes of the filter and therefore
could never produce a strong response. Adopted from (Bradley andGoyal
2008)

Neuroinform (2014) 12:435–454 441

explain the construction of synaptic projections from V1 to
MT.

At this stage of the model it is possible that filter responses
Lkr at positions (x,y) close to the image border have become
unreasonably large. We suppressed these edge effects by

applying a scaling factor to Lkr whenever (x,y) was near an
image border.

Simple cell responses were constructed by half-squaring
and normalizing the linear responses Lkr from (8) within a
large Gaussian envelope:

Skr x; y; tð Þ ¼ αfilt→rate;r αv1rect Lkr x; y; tð Þ2

αv1normexp
− x2 þ y2ð Þ
2σ2

v1norm

� �
� 1

28

X28

k¼1
Lkr x; y; tð Þ2

� �
þ α2

v1semi

; ð10Þ

where . denotes half-wave rectification, and * is the convolu-
tion operator. The scaling factors αv1rect=1.9263 and αv1semi=
0.1 (the semi-saturation constant) had the same values as in
the original S&H model. Instead of having a single global
normalization, our normalization occurs within a large spatial
neighborhood (Gaussian half-width σv1norm=3.35 pixels),
which is thought to be more biologically realistic. Therefore
the scaling factor αv1norm=1.0 had to be adjusted to compen-
sate for the implementation difference. This was done simul-
taneously by setting αfilt→rate,r=15 Hz, a scaling factor to map
the unit-less filter responses at each scale r onto more mean-
ingful mean firing rates, as will be explained below. In brief,
we opted to reproduce the contrast sensitivity function report-
ed for V1 cells projecting to MT (Movshon and Newsome
1996). Other than that, the computation in (10) is conceptually
equivalent to Eqs. 3–4 in Simoncelli and Heeger (1998).

V1 Complex Cells V1 complex cell responses were computed
as local weighted averages of simple cell responses,

Ckr x; y; tð Þ ¼ αv1compexp
− x2 þ y2ð Þ
2σ2

v1comp

 !
*Skr x; y; tð Þ; ð11Þ

where the half-width of the Gaussian was σv1comp=1.6, and
αv1comp=0.1 is a scaling factor.

The responses Ckr(x,y,t) described in (11) served as output
of the CUDA implementation. These responses were
interpreted as mean firing rates of Poisson spike generators,
following the procedure described in the next subsection. V1
complex cells then projected to MT CDS cells as explained in
section “Two-Stage Spiking Model of MT”.

Converting Filter Responses to Firing Rates In order to find a
meaningful mapping from unit-less filter responses to mean
firing rates, we opted to reproduce the contrast sensitivity
function reported for V1 cells projecting to MT (Movshon
and Newsome 1996), which is shown in Fig. 3. The red line is
the electrophysiological data adapted from Fig. 7 of Movshon

and Newsome (1996), whereas the blue line is our simulated
data. In order to arrive at this plot, we presented a drifting
sinusoidal grating of varying contrast to V1 simple cells
coding for scale r=0, and computed their mean response Sk0
from (10) over a stimulation period of 1 s. The drifting grating
had a spatial frequency of ωspat=0.1205 cycles/pixel and a
temporal frequency of ωtemp=0.1808 cycles/frame, which is
equivalent to the one used in section “Direction Tuning” for
MT direction tuning. Because the grating was drifting to the
right, we only looked at the subpopulation of V1 simple cells
that responded maximally to this stimulus (which was true for
k=24). The mean firing rate of neurons in this subpopulation,
S24,0, was then averaged over all cells in the subpopulation and
plotted in Fig. 3 (blue curve) for αv1norm=1.0 and αfilt→rate,0=
15 Hz. Vertical bars are the standard deviation on the popula-
tion average. The scaling factor αv1norm was gradually
changed until the curvature of the blue graph approximated
the curvature of the electrophysiological data. The scaling

0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

100

0.6 0.7 0.8 0.9 1.0
Contrast

R
es

po
ns

e
(s

pi
ke

s/
s)

Electrophysiology
Simulation

Fig. 3 The contrast sensitivity function of model V1 simple cells (blue)
is plotted against electrophysiological data adapted from Fig. 7 of
(Movshon and Newsome 1996). Each data point is a V1 mean response
to a drifting grating, averaged over both 1 s of stimulus presentation and
all neurons in the subpopulation. Vertical bars are the standard deviation
on the population average

442 Neuroinform (2014) 12:435–454

factor αfilt→rate,0 was then adjusted such that the simulated
responses saturated at approximately 100 Hz.

In order to tune V1 simple cells at the other two scales, that
is, Sk1 and Sk2 from (10), we used a RDK stimulus, which is
depicted as the sample input in Fig. 1 and explained in detail in
section “Random Dot Kinematogram”. We chose scaling
factors that would give equal response magnitudes at all three
scales in response to the RDK stimulus, which resulted in
αfilt→rate,1=17 Hz and αfilt→rect,2=11 Hz.

Because these filter response were transformed to mean
firing rates, it was straight-forward to assign the responses
Ckr(x,y,t) described in (11) to mean firing rates of Poisson
spike generators, which served as input to the spiking neurons
in area MT. The exact mapping of V1 complex onto MT CDS
cells is given in (12) (see section “Two-Stage Spiking Model
of MT”).

Two-Stage Spiking Model of MT

The two-stage model of MT is based on the idea that CDS
cells represent an earlier stage of motion processing than PDS
cells (Movshon et al. 1985; Smith et al. 2005). The present
model is built on this idea, making MT CDS cells similar in
terms of direction and speed tuning to the model V1 complex
cells used by Simoncelli and Heeger (1998). In fact, it has
been shown that MT cells exhibit speed tuning characteristics
similar to V1 complex cells (Priebe et al. 2006), which has led
to the suggestion that speed tuning in MT might be inherited
from V1. Livingstone and Conway (2007) have shown that
even some V1 simple cells are speed-tuned in macaque.
Whereas CDS cells give responses whose selectivity is stable
and consistent from the time they are first activated, PDS cells
often respond with different and broader selectivity when first
activated, sometimes even resembling CDS cells, and only
over a time-course on the order of 100 ms do they establish
pattern selectivity (Smith et al. 2005). At least in anesthetized
monkeys, MT is believed to consist of roughly 40 % CDS
cells, 25 % PDS cells, and 35 % unclassified cells (Movshon
et al. 1985). However, in awake animals the situation might be
more complicated (Pack et al. 2001).

All cells in MT were Izhikevich spiking neurons, whose
membrane potential was thus described by a pair of coupled
differential equations (see (1) and (2)).

Component-Direction-Selective Cells CDS cells are selective
to a particular direction and speed of motion (an orientation in
space-time). The name is an indication that these cells, when
presented with a plaid stimulus consisting of two
superimposed sine gratings, preferably respond to the motion
of each grating (component) rather than the global motion
pattern produced by the combination of the two gratings
(Movshon et al. 1985).

MT CDS cells in our model responded preferentially to
motion in one of eight different directions (in 45° increments)
and three different speeds (1.5 pixels per frame, 0.125 pixels
per frame, and 9 pixels per frame) at any pixel location. These
values can be easily adjusted by running the Matlab script
“scripts/v1MTLIP/projectV1toMT.m”. The re-
sponse properties of MT CDS cells were given by 1) a set of
both excitatory and inhibitory interpolated weights (as ex-
plained next) coming from V1 complex cells (Simoncelli
and Heeger 1998), and 2) projections from an inhibitory group
of MT interneurons to account for response normalization.

Because the directional derivatives of a Gaussian are steer-
able (Freeman and Adelson 1991), the response of an arbi-
trarily oriented filter can be synthesized from a fixed bank of
basis filters (the third derivatives of a Gaussian). Thus the
projection weights from V1 complex cells to MT were inter-

polated as follows. Let bα ¼ bαx; bαy; bαt

� �0
be the unit vector

parallel to an arbitrary space-time orientation (direction and

speed of motion), akin to the unit vectors u ̂
k described in

section “Spatiotemporal-Energy Model of V1”. Then we can

write the third directional derivative in direction of α ̂ anal-
ogously to (9) as:

∂3 f r

∂bα3 ¼ v0 bα� �
M−1

h i
br ¼ wbαbr; ð12Þ

where the matrix M and the vector br are the same as in (9),
each element of the vector v bαð Þ is a number
6!= X !Y !T !ð ÞbαX

x bαY
y bαT

t analogous to (8), and ' denotes vector
transposition. The product v0 bαð ÞM−1
 �

thus is a set
wbα ¼ wbα;1;…;wbα;28� �

of interpolated weights, where the
k th element of this vector, wbα;k , determined the strength of
the projection from the k th V1 complex cell onto a MT CDS
cell. The two cells were connected only if they were located at
the same pixel location, (x,y). Speed tuning arose from the fact
that bα corresponds to a specific direction and speed of
motion. Thus, in order to achieve MT CDS cells tuned to
different speeds, bα was the only parameter that needed to be
adjusted (refer to the Matlab script mentioned above). A MT
CDS cell received projections from V1 complex cells at all
three spatiotemporal resolutions, r. Note that it is possible to
construct a network with the same functionality by using only
one spatiotemporal resolution, which has been shown in
Simoncelli and Heeger’s own C/Matlab implementation.
Using multiple spatiotemporal resolutions, however, makes
the network more robust in responding to motion of different-
sized objects.

Because the interpolated weights could assume both posi-
tive and negative values, it was necessary to relay the projec-
tions with negative weights to a population of inhibitory
neurons. In this case (that is, if wbα;k < 0), the weights in

Neuroinform (2014) 12:435–454 443

(12) are applied to excitatory projections from V1 complex

cells to the MT inhibitory population (where wbα;k;inh ¼ wbα;k��� ���),
and the inhibitory population sends one-to-one connections
back to the pool of MT CDS cells. Overall the interpolated
weights are equivalent to the parameters pnm in Eq. 5 of
Simoncelli and Heeger (1998).

In order to model response normalization equivalent to the
one in Eq. 6 of Simoncelli and Heeger (1998), we introduced
another pool of inhibitory interneurons, which integrated the
activity of all MT CDS cells within a large Gaussian neigh-
borhood (across direction and speed), and projected back to all
three pools of MT CDS cells with one-to-one connections.
This response normalization is important to qualitatively re-
produce the speed tuning curves (see section “Speed
Tuning”).

Pattern-Direction-Selective Cells PDS cells differ from CDS
cells in that they, when presented with a plaid stimulus
consisting of two superimposed sine gratings, preferentially
respond to the overall motion direction, not the individual
components (Movshon et al. 1985). Because visual stimuli
typically contain many oriented components, local motion
measurements must be appropriately combined in order to
sense the true global motion of the stimulus (aperture prob-
lem). Thus it has been suggested that PDS neurons reflect a
higher-order computation that acts on V1 or MT CDS affer-
ents (Movshon et al. 1985). MT PDS cells in our model
received direct input from CDS cells, and thus conserved their
speed and direction preferences.

Pooling over MT CDS cells and opponent suppression
were implemented by pooling CDS responses across spatial
position and across direction preference, such that the strength
of a projection from a CDS cell selective to motion direction
θCDS at location (xCDS,yCDS) to a PDS cell selective to motion
direction θPDS at location (xPDS,yPDS) can be expressed as:

wCDS→PDS ¼ αCDS→PDScos Δθð Þexp
− Δxð Þ2 þ Δyð Þ2
� �

2σ2
PDS;pool

0@ 1A;

ð13Þ

where Δθ=θPDS−θCDS, Δx=xPDS−xCDS, Δy=yPDS−yCDS,
the half-width of the Gaussian neighborhood σPDS,pool=3
pixels, and αCDS→PDS is a scaling factor. If the resulting
weight was negative, due to Δθj j > π

2 , the projection was
relayed to a population of inhibitory interneurons. Following
the reasoning of Rust et al. (2006), the pattern index of a MT
cell can be reduced simply by sharpening the cosine tuning
component in (13) (see third column of Fig. 6 in Rust et al.
(2006)).

Tuned normalization was implemented by an inhibitory
self-connection with a narrowly tuned Gaussian across direc-
tion (see second column of Fig. 6 in Rust et al. (2006)).
Analogous to previous projections, this was implemented by
relaying the inhibitory projection to a pool of inhibitory inter-
neurons:

wPDS→PDS;inh ¼ exp
− Δθð Þ2

2σ2
PDS;tuned;dir

 !
exp

− Δxð Þ2 þ Δyð Þ2
� �
2σ2

PDS;tuned;loc

0@ 1A;

ð14Þ

where σPDS,tuned,dir<45° (such that only one of the eight
subpopulations was activated), σPDS,tuned,loc=2 pixels, and
the inhibitory population sent one-to-one connections back
to the pool of MT PDS cells.

Spiking Layer of LIP Decision Neurons

A layer of decision neurons was responsible for integrating
over time the direction-specific sensory information that is
encoded by the responses of MT PDS cells. This information
was then used to make a perceptual decision about the pre-
sented visual stimulus, such as determining the global drift
direction of a field of random moving dots in a motion
discrimination task (presented in section “Random Dot
Kinematogram”). A good candidate for such an integrator
area in macaques might be LIP, where neurons have been
found whose firing rate are predictive of the behavioral reac-
tion time (RT) in a motion discrimination task (Shadlen and
Newsome 2001; Roitman and Shadlen 2002).

Spiking neurons in a simulated LIP area were grouped into
eight pools of 50 neurons, each pool receiving projections
from exactly one of the eight pools of MT PDS cells with
10 % connection probability. As a result of this connectivity
profile, each pool of decision neurons accumulated sensory
evidence for a particular direction of motion, based on the
response of MT PDS cells.

Additionally, each decision pool received inhibitory pro-
jections from other decision pools if the two preferred direc-
tions of motion were close to opposite. More precisely, a
decision neuron in pool i (thus selective to direction θi) re-
ceived an inhibitory projection from neurons in pool j (selec-
tive to direction θj) with strength

wdec;inh→dec ¼ cos θi−θ j þ π
� �

; ð15Þ

and 10 % connection probability.
LIP decision neurons did not employ any internal noise.

444 Neuroinform (2014) 12:435–454

Implementation Details

In order for our implementation to be useful to researchers
already working with the S&Hmodel, we tried to stay as close
to the S&H C/Matlab implementation as possible. However,
there are a few minor differences worth mentioning. First, as
explained in section “Spatiotemporal-Energy Model of V1”,
we normalize V1 simple cell responses in a large Gaussian
neighborhood rather than across the whole population.
Second, whereas the S&H model deals with edge effects by
temporarily “padding” the input image with an invisible bor-
der, we opted for the computationally more economical alter-
native to simply decrease the responses of V1 simple cells
located close to image borders. Third, in the S&H C/Matlab
implementation there are two additional scaling factors (called
v1Blur and v1Complex, with values 0.99 and 1.02, re-
spectively) that we do not apply in order to save execution
time. Fourth, our model processes input images at three dif-
ferent scales as described in (6), which is a feature that is not
implemented in the original S&H model.

The most crucial mathematical operation in the V1 stage of
the model is the convolution. Because the filter kernels used in
our implementation are relatively small, employing the fast
Fourier transform (FFT) would actually hurt performance.
Instead we perform all convolution operations in the space-
time domain using a custom function, which makes use of the
fact that the Gaussian filter and its derivative are dimension-
ally separable. Future work could be directed towards further
optimizing the convolution operation in CUDA.

Results

We conducted a number of experiments to ensure the accuracy
and efficiency of our implementation. Here we demonstrate
that the network is able to exhibit direction and speed tuning
for drifting bar and plaid stimuli that are in agreement with
neurophysiological recordings, and that the network qualita-
tively reproduces both the psychometric and chronometric
function in a 2AFC motion discrimination task. Additionally,
we measured both the computational performance and memo-
ry consumption of our model and compared it to the S&H
C/Matlab implementation.

GPU simulations were run on a NVIDIA Tesla M2090
(6 GB of memory) using CUDA, and CPU simulations (in-
cluding Matlab) were run on an Intel Xeon X5675 at
3.07 GHz (24 GB of RAM). The same exact network running
on a single GPU produced all results; the only difference per
experiment was the presented input stimulus. The full network
consisted of 153,216 neurons and approximately 33 million
synapses, which corresponds to a 32×32 pixels input
resolution.

Direction Tuning

We tested the ability of our model MT cells to signal the
direction of motion for drifting grating and plaid stimuli.
Responses were simulated for CDS cells and PDS cells in
MT. The first stimulus was a drifting sinusoidal grating
consisting of spatial and temporal frequency components that
were preferred by MT neurons selective to a speed of 1.5
pixels per frame (that is, ωspat=0.1205 cycles/pixel,ωtemp=
0.1808 cycles/frame). The second stimulus was a pair of
superimposed gratings drifting in a direction orthogonal to
their orientation, which together formed a coherently drifting
plaid pattern. The two gratings both had the same spatial
frequency ωspat, but their orientation and drift direction dif-
fered by 120°. The direction of these particular patterns lay
equidistant between the directions of motion of the two com-
ponent gratings. The stimulus contrast for both grating and
plaid was 30 %.

Our model was able to reproduce direction tuning curves
that are in agreement with single-cell electrophysiological data
(Movshon et al. 1985; Rodman and Albright 1989; Movshon
andNewsome 1996) for V1 cells,MTCDS cells, andMT PDS
cells. Figure 4 shows polar plots of direction tuning for V1
neurons (Panels b and f), MT CDS cells (Panels c and g), and
MT PDS cells (Panels d and h), where the angle denotes
motion direction and the radius is the firing rate in spikes per
second (compare also Fig. 9 in Simoncelli and Heeger (1998)
and Fig. 1 in Rust et al. (2006)). Tuning curves were obtained
by calculating the mean firing rate of a neuron’s response to a
drifting grating during two seconds of stimulus presentation.
These responses were averaged over all neurons in the popu-
lation selective to the same direction of motion (black: mean
neuronal response, blue: mean plus standard deviation on the
population average, green: mean minus standard deviation).
As a result of suppressing edge effects, neurons that coded for
locations closer than five pixels from the image border were
only weakly activated, and were thus excluded from the plot.
The tuning curves in the top row were generated in response to
the sinusoidal grating drifting upwards, which is illustrated in
Panel a. Analogously, the tuning curves in the bottom row
were generated in response to the plaid stimulus drifting up-
wards, which is illustrated in Panel e (red arrow: patternmotion
direction, black arrows: motion direction of the grating com-
ponents). The direction tuning curve for gratings is unimodal
for all three neuron classes, but the direction tuning curve for
plaids shows two distinct lobes for V1 complex cells (Panel f)
and MT CDS cells (Panel g). Each lobe corresponds to one of
the component gratings of the plaid. OnlyMTPDS cells (Panel
h) responded to the motion of the entire plaid pattern rather
than to the motions of the individual component gratings.

In order to quantify the pattern selectivity of our model
PDS cells, we computed the pattern index for each CDS and
PDS cell (see Fig. 5) using the standard technique (Movshon

Neuroinform (2014) 12:435–454 445

et al. 1985; Movshon and Newsome 1996; Smith et al. 2005).
Based on the tuning curve for the drifting grating described
above, we generated two predictions for each cell’s tuning
curve to drifting plaids (Fig. 5a); either the cell would respond
to the plaid in the same way as it responded to the grating
(“pattern” prediction, black solid line), or it would respond
independently to the two grating components (“component”

prediction, black dashed line). We then computed the correla-
tion (rc,rp) between the cell’s actual response to a plaid stim-
ulus and the component and pattern predictions. To remove
the influence of correlations between the predictions them-
selves, we calculated partial correlations Rc and Rp for the
component and pattern predictions, respectively, using the
standard formulas:

30

210

270

150

180 0

1 8 16 24 32

1

8

16

24

32

1

8

16

24

32
1 8 16 24 32

150

180 180 180

180

a b d

e f g h

90
120 60

 60

 20
 40

240 300

330

30

210

270

150

180 0

90
120 60

240 300

330

30

210

270

0

90
120 60

240 300

330

30

210

270

150

0

90
120 60

240 300

330

30

210

270

150

0

90
120 60

240 300

330

30

210

270

150

0

90
120 60

240 300

330
μ +

μ -
μ

 30
 10

 20
 30

 10 20
 30

 10
 20

 30
 10

 20
 30

 10
 20

c

μ +

μ -
μ

μ +

μ -
μ

μ +

μ -
μ

μ +

μ -
μ

μ +

μ -
μ

Fig. 4 Polar plots of direction tuning for a sinusoidal grating a–d and a
plaid stimulus e–h drifting upwards, where the angle denotes motion
direction and the radius is the firing rate in spikes per second. Tuning
curves were obtained by taking the mean firing rate of a neuron to a
drifting grating during 2 s of stimulus presentation, averaged over all
neurons in the population selective to the same stimulus direction (black:

mean neuronal response, blue: mean plus standard deviation on the
population average, green: mean minus standard deviation). Shown are
mean responses for V1 complex cells (b and f), MT CDS cells (c and g),
and MT PDS cells (d and h). Only MT PDS cells h responded to the
motion of the entire plaid pattern rather than to the motions of the
individual component gratings

30

210

60

240

90

270

120

300

150

330

180 0

component

−6 −4 −2 0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

8

10

12

component

Z)c

Z
) p

ba

Z
-t

ra
ns

fo
rm

ed
 p

at
te

rn
 c

or
re

la
tio

n

Z-transformed component correlation

pattern

pattern

Fig. 5 The pattern index is
computed for all MT CDS cells
(blue) and all MT PDS cells (red),
and plotted as a Fisher Z-score.
The black solid lines are the
classification region boundaries,
indicating that all MT CDS cells
have indeed been classified as
component-selective, and all MT
PDS cells have been classified as
pattern-selective

446 Neuroinform (2014) 12:435–454

Rc ¼ rc−rprpcffi
1−r2p
� �

1−r2pc
� �r

Rp ¼ rp−rcrpcffi
1−r2c
� �

1−r2pc
� �r ; ð16Þ

where rc and rp are the simple correlations between the data
and the component and pattern predictions, respectively, and
rpc is the simple correlation between the predictions (Movshon
and Newsome 1996). Because the sampling distribution of
Pearson’s r is not normal, we converted the correlation mea-
sures Rc and Rp to a Fisher Z -score,

Zc ¼
0:5ln

1þ Rc

1−Rc

� �
ffiffiffiffiffiffi
1

df

r ¼ atanh Rcð Þffiffiffiffiffiffi
1

df

r
Zp ¼

atanh Rp

� �ffiffiffiffiffiffi
1

df

r
; ð17Þ

where the numerator is the Fisher r -to- Z transformation and
df is the degrees of freedom, equal to the number of values in
the tuning curve (in our case 24) minus three (Smith et al.
2005). The Z -scores of all CDS and PDS cells (excluding
neurons coding for locations closer than five pixels from the
image border) in the network are plotted in Fig. 5b. Each value
of Zc and Zp was tested for significance using a criterion of
1.28, which is equivalent to P=0.90 (Smith et al. 2005). For a
PDS cell (red) to be judged as pattern-selective, the value of Zp
had to exceed the value of Zc by a minimum of 1.28 (black
solid lines). All PDS cells in Fig. 5b met this criterion and,
therefore, were indeed pattern-selective. Analogously, all
CDS cells (blue) could be judged as component-selective.

Speed Tuning

We next considered the ability of our implementation to
reproduce MT speed tuning curves as demonstrated in
Simoncelli and Heeger (1998).MT neurons have been divided
into three distinct classes based on their speed tuning proper-
ties (Rodman and Albright 1987). The first class of neurons is
relatively sharply tuned for a particular speed and direction of
motion (“speed-tuned” or “band-pass”). This class of neurons
is also strongly suppressed by motion in the anti-preferred
(opposite) direction; the suppression is strongest when the
stimulus moves in the opposite direction at roughly the pre-
ferred speed. The second class of neurons prefers low speeds
in both the preferred and anti-preferred direction (“low-pass”).

The third class responds to high speed stimuli in both direc-
tions (“high-pass”).

Figure 6 faithfully reproduces the speed tuning character-
istics of these three distinct classes (compare also Fig. 10 in
Simoncelli and Heeger (1998)). The stimulus consisted of a
single bar drifting over the entire visual field either to the right
(preferred direction) or to the left (anti-preferred direction) at
different speeds. Each data point is the mean firing rate of a
particular MT CDS neuron located near the center of the
visual field, averaged over the time course of a specific speed
and direction configuration. The relatively low mean firing
rates can be explained by the fact that the stimulus resides
outside the neuron’s receptive field for most of the time. The
first neuron class (Panel a, “band-pass”) preferentially
responded to a bar moving at 1.5 pixels per frame to the right,
and was strongly suppressed when the bar moved at the same
speed to the left. The second neuron class (Panel b, “low-
pass”) exhibited a preference for low speeds (0.125 pixels per

100
0

2

4

6

8

10
MT1 ("band−pass")

speed (pixels/frame)

10-14 10

2

0

4

6

8

10
MT2 ("low−pass")

speed (pixels/frame)

100 101
0

5

10

15
MT3 ("high−pass")

speed (pixels/frame)

preferred direction

anti−preferred direction

a

b

c

preferred direction

anti−preferred direction

preferred direction

anti−preferred direction

4·1003·10-1

-2 5·10-1

Fig. 6 Speed tuning curves for three different classes of MT neurons.
The stimulus consisted of a single bar drifting over the entire visual field
either to the right (preferred direction) or to the left (anti-preferred
direction) at different speeds a Response of a “speed-tuned” neuron
(selective to motion at 1.5 pixels per frame) b Response of a “low-pass”
neuron (selective to motion at 0.125 pixels per frame) c Response of a
“high-pass” neuron (selective to motion at 9 pixels per frame)

Neuroinform (2014) 12:435–454 447

frame) in both directions. With increasing speed the response
of the neuron to dots moving in the anti-preferred direction
weakened. This behavior can be explained by the fact that the
Fourier planes corresponding to low speed motions in oppo-
site directions are both close to the ωt=0 plane, and thus close
to each other (Simoncelli and Heeger 1998). Also, this class of
neurons was suppressed by fast stimuli moving in either
direction. Similarly, the third neuron class (Panel c, “high-
pass”), which had a high preferred speed (9 pixels per frame)
in one direction, was excited by fast stimuli moving in the
opposite direction, but was suppressed by slow stimuli mov-
ing in either direction.

Random Dot Kinematogram

In order to compare the performance of the model with be-
havioral data from 2AFC motion discrimination tasks, we
developed a paradigm equivalent to the RDK experiments
performed with monkeys and humans (Roitman and Shadlen
2002; Resulaj et al. 2009). We constructed a simple decision
criterion based on the race model (Shadlen and Newsome
2001; Smith and Ratcliff 2004), in which eight pools of
decision neurons (one for each of the directions of motion,
50 neurons per pool) sum the responses of MT PDS cells
selective to a particular direction and speed of motion. The
first decision pool to emit 500 spikes (on average ten spikes
per neuron) “won the race” and thus signaled a choice for that
direction. A correct decision was the event in which the
winning decision pool was selective to the actual motion
direction of the stimulus. The time it took the network to reach
the decision threshold was termed the reaction time (RT).

The RDK stimulus was constructed out of approximately
150 dots (15 % dot density, maximum stimulus contrast) on a
32 × 32 input movie. An example frame is shown as the input
stimulus in Fig. 1. Each stimulus frame was presented to the
network for 50ms. A trial consisted of 20 stimulus frames of a
particular motion direction and coherence level. Motion co-
herence in the stimulus was varied between 0 and 50 %.
Coherently moving dots drifted in one of eight possible direc-
tions, in 45° increments, at a speed of 1.5 pixels per frame.
Note that, therefore, only MT PDS cells that were selective to
this particular stimulus speed were connected to the decision
layer.

Choice accuracy and RT as a function of task difficulty
(coherence of dot motion) are shown in Fig. 7 (Panel a and b,
respectively), where the thick red lines are human behavioral
data extracted from a RTexperiment (see Fig. 3 and Table 2 in
Roitman and Shadlen (2002)) and simulated data is shown in
blue. Each data point (blue) is the mean outcome of 80 trials
(fixed coherence level, ten repetitions per motion direction),
and the vertical bars are the standard error and standard
deviation for accuracy (Panel a) and RT (Panel b),

respectively. As in Fig. 3 in Roitman and Shadlen (2002),
we did not show RTs on error trials.

Our network performance is comparable to human accura-
cy, and it qualitatively emulates the effect of motion strength
on RT. Decreasing RT for a relatively easy task (e.g., high
motion coherence) is a direct consequence of the race model.
Conversely, when the difficulty of a decision is high (e.g., low
coherence level), information favoring a particular response
grows more slowly (Smith and Ratcliff 2004), and the prob-
ability of making an error is higher (Shadlen and Newsome
2001). The quantitative difference between behavioral and
simulated RT in Fig. 7 could be eradicated by fine-tuning
the excitatory weights from MT cells to the decision layer.
However, such an exercise would be meaningless, because
our model does not take into consideration neural areas in-
volved in characteristics of the decision-making process that
influence the length of RT, such as the time-course of LIP
neuronal dynamics or the gating of saccadic eye movements
(Shadlen and Newsome 2001), which have been successfully
modeled in detail by others (Grossberg and Pilly 2008).

Computational Performance

In order to compare our CUDA implementation of V1 (that is,
the file v1colorME.cu) to the original, unmodified S&H
implementation (which features code in both C and Matlab)
we computed V1 complex cell responses (see section
“Spatiotemporal-Energy Model of V1”) at a single spatiotem-
poral scale to a drifting sinusoidal grating (the same stimulus
as described in section “Direction Tuning”) and recorded the
model’s execution time. The S&H C/Matlab code was exe-
cuted as shModel(stim,pars,‘v1Complex’), where
stim was the input stimulus, and pars were the default
parameters (shPars). Figure 8a shows the execution time
per video frame for both models. Our GPU implementation
(red) was not only faster (except for relatively small networks)
than the S&H C/Matlab implementation (blue), but it also
scaled better with network size. Note that the C/Matlab im-
plementation was a single-threaded computation. The largest
speedup, a factor of 12, was observed for a network consisting
of 96×96=9,216 neurons. It is likely that even greater
speedups could have been achieved on larger networks, but
these networks could not run with the S&H C/Matlab imple-
mentation because they ran out of memory. Timing was
performed using standard commands tic and toc in
Matlab, and the <ctime> function time in C++/CUDA.
For the S&H C/Matlab implementation, the time it took to
create the stimulus was not included in the time measurement.
On the other hand, in the CUDA implementation the stimulus
had to be read from file frame-by-frame and copied to the
GPU card. However, we did not include the time it takes to
transfer the response back from the device to the host.

448 Neuroinform (2014) 12:435–454

Additionally, the S&H C/Matlab implementation is
memory-intensive (see Fig. 8b), and execution times for net-
works above size 128×128=16,384 could not be computed
because the CPU ran out of memory, even though we had a
relatively large amount of RAM (24GB) available.Measuring
memory usage in Matlab is not straight-forward. In order to
demonstrate the excessive memory consumption of the S&H
C/Matlab implementation (see Fig. 8b) we opted to measure
two metrics: the size of the output argument ans to function
call shModel (blue, filled circle in Fig. 8b) and the maximum
memory usage of the Matlab process at any point in time
(blue, open circle). The first was measured with native
Matlab command whos, and the latter was measured by
running a bash script in the background that reported the
memory usage of the process every second (using linux com-
mand ps). The blue dashed line is the 24 GB limit of the
system’s RAM. Note the log scale on the ordinate. Less
memory was required to run the process than to store the
output argument, which consisted of a matrix whose size
was proportional to the product of the stimulus dimensions
and the number of frames. A straightforward way of making

the S&H C/Matlab implementation capable of handling large
inputs would thus be to break up the output argument into
smaller chunks of data. On the other hand, the memory usage
of the GPU implementation was significantly lower (red line
in Fig. 8b) and scaled better with network size. We used
CUDA command cuMemGetInfo to identify the amount
of allocated memory on the GPU. The red dashed line is the
upper limit of GPU memory available to the user (roughly
5.2 GB on our card).

Comparing the performance between GPU simulation
mode and CPU simulation mode with the full network on
the specific processor remains to be demonstrated. Recall
from section “CPU vs. GPU Simulation Mode” that in GPU
mode all data structures are allocated on the GPU, whereas in
CPU mode the network would be allocated on the CPU’s
memory, and only the generation of motion energy responses
(written in CUDA) would be delegated to the GPU. Hence we
evaluated the computational performance by running the full
network in both CPU and GPU mode with input images from
16×16 pixels (38,784 neurons) to 64×64 pixels (610,944
neurons). The simulation speed is given as the ratio of execu-

10−1 100 101
40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

 c
or

re
ct

)

0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

900

1000

Psychophysics

a bFig. 7 Random dot
kinematogram. The RDK
stimulus was constructed out of
approximately 150 dots (15 % dot
density, maximum stimulus
contrast) on a 32×32 input movie
a Psychometric function. The
network’s accuracy increased
with increasing motion strength
(coherence level) b Chronometric
function. The network’s RT
decreased with increasing motion
strength

0 50 100 150 200 250 300
0

10

20

30

40

50

60

S&H C/Matlab
CARLsim CUDA

100

101

102

103

104

105

S&H C/Matlab: max
S&H C/Matlab: ans
CARLsim CUDA: used

0 5 10 15 20 25 30 35 40
Number of neurons (x1000) Number of neurons (x1000)

a b

E
xe

cu
tio

n
tim

e
pe

r
fr

am
e

(m
s/

fr
am

e)

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

Fig. 8 a Execution time of a
Matlab implementation (blue) of
V1 complex cells versus a CUDA
implementation (red) b Observed
memory usage for the Matlab
implementation (blue) and
CUDA implementation (red)

Neuroinform (2014) 12:435–454 449

tion time over the simulation time (see Fig. 9a) for networks
run in CPU mode (blue) and GPU mode (red). Note that in
both modes, the V1 CUDA implementation was executed
(green), whose run-time is part of the total simulation time
(in blue and red). The GPU simulations not only ran faster, but
also simulation speed scaled better with network size. Note
that the CPU simulation was a single-threaded computation.
The full network at 40×40 input resolution (239,040 neurons)
ran in real-time on the GPU. At 32×32 input resolution
(153,216 neurons) the simulation was 1.5 times faster than
real-time. This result compares favorably with previous re-
leases of our simulator (Nageswaran et al. 2009; Richert et al.
2011), which is partly due to code-level optimizations, but
mostly due to differences in GPU hardware and the V1 stage
of the network being spatiotemporal filters instead of spiking
neurons. As the network size increased, the GPU simulations
showed a significant speedup over the CPU (see Fig. 9b).
Speedup was computed as the ratio of CPU to GPU execution
time. The largest network we could fit on a single GPU
roughly corresponded to 64×64 input resolution (610,944
neurons), which ran approximately 30 times faster than on
the CPU. Larger networks currently do not fit on a single GPU
and as such must be run on the CPU, which would be more
than 70 times slower than real-time judging from Fig. 9a.

Discussion

We presented a large-scale spiking model of visual area MT
that 1) is capable of exhibiting both component and pattern
motion selectivity, 2) generates speed tuning curves that are in
agreement with electrophysiological data, 3) reproduces be-
havioral responses from a 2AFC task, 4) outperforms a pre-
vious rate-based implementation of the motion energy model
(Simoncelli and Heeger 1998) in terms of computational

speed and memory usage, 5) is implemented on a publicly
available SNN simulator that allows for real-time execution
on off-the-shelf GPUs, and 6) is comprised of a neuronmodel,
synapse model, and address-event representation (AER),
which is compatible with recent neuromorphic hardware
(Srinivasa and Cruz-Albrecht 2012).

The model is based on two previous models of motion
processing in MT (Simoncelli and Heeger 1998; Rust et al.
2006), but differs from these models in several ways. First, our
model contains the tuned normalization in the MT stage that
was not present in Simoncelli and Heeger (1998) but intro-
duced by Rust et al. (2006). Second, the implementation by
Rust et al. (2006) was restricted to inputs that are mixtures of
12 sinusoidal gratings of a fixed spatial and temporal frequen-
cy, whereas our model can operate on any spatiotemporal
image intensity. Third, MT PDS cells in our model sum over
inputs fromMTCDS cells as opposed to inputs fromV1 cells,
although the two approaches are conceptually equivalent.
Fourth, instead of using linear summation and a static nonlin-
ear transformation, all neuronal and synaptic dynamics in our
model MT were achieved using Izhikevich spiking neurons
and conductance-based synapses.

One could argue that the inclusion of Izhikevich spiking
neurons and conductance-based synapses is unnecessary,
since previous incarnations of the motion energy model did
not feature these mechanisms yet were perfectly capable of
reproducing speed tuning and motion selectivity. However,
our approach is to be understood as a first step into modeling
large-scale networks of visual motion processing in more
biological detail, with the ultimate goal of understanding
how the brain solves the aperture problem, among other open
issues in motion perception. Integrating the functionality dem-
onstrated in previous models with more neurobiologically
plausible neuronal and synaptic dynamics is a necessary first
step into analyzing the temporal dynamics of model neurons

0 200 400 600
10−2

10 -1

10 0

10 1

10 2

Number of neurons (x1000)

E
xe

cu
tio

n
T

im
e

/ S
im

ul
at

io
n

T
im

e
(s

)

0 200 400 600
12

14

16

18

20

22

24

26

28

30

Number of neurons (x1000)

G
P

U
/C

P
U

 S
pe

ed
up

ba

CPU mode
GPU mode
V1 CUDA only

Fig. 9 a Simulation speed is
given as the ratio of execution
time over the simulation time for
networks run in CPU mode (blue)
and GPU mode (red). In both
cases, the V1 CUDA
implementation was executed
(green), which is part of the total
simulation time (in blue and red).
Note the log scale on the ordinate.
The GPU simulations did not only
run faster, but simulation speed
scaled better with network size b
Speedup is given as the ratio of
CPU execution time over GPU
execution time

450 Neuroinform (2014) 12:435–454

in MT, which may 1) help to explain how MT PDS cell
establish their pattern selectivity not instantly but over a
time-course on the order of 100 ms (Smith et al. 2005) and
2) enable the addition of spike-based learning rules such as
STDP; both of which might be harder to achieve with previ-
ous model incarnations. Additionally, the introduction of the
present neuron model, synapse model, and address-event rep-
resentation (AER) did not affect performance, yet enabled the
integration of the S&Hmodel with recent neuromorphic hard-
ware (Srinivasa and Cruz-Albrecht 2012) (see also section
“Practical Implications”).

On the other hand, it is possible (if not likely) that some
response dynamics produced by the neural circuitry in the
retina, the lateral geniculate nucleus (LGN), and V1 may
account for certain response properties of neurons in MT.
Thus future work could be directed towards implementing
the entire early visual system in the spiking domain.
However, for the purpose of this study we deem a rate-based
preprocessor to be an adequate abstraction, as the core func-
tionality of directionally selective cells in V1 seem to be well-
characterized by local motion energy filters (Adelson and
Bergen 1985; DeAngelis et al. 1993; Movshon and
Newsome 1996).

Neurophysiological Evidence and Model Alternatives

There is evidence that MT firing rates represent the velocity of
moving objects using the IOC principle. A psychophysical
study showed that the perception of moving plaids depends on
conditions that specifically affect the detection of individual
grating velocities (Adelson and Movshon 1982). This is con-
sistent with a two-stage model in which component velocities
are first detected and then pooled to compute pattern velocity.
Subsequent physiological studies broadly support such a cas-
cade model (Perrone and Thiele 2001; Rust et al. 2006; Smith
et al. 2005).

However, other psychophysical results exist where the
perceived direction of plaid motion deviates significantly from
the IOC direction (Ferrera and Wilson 1990; Burke and
Wenderoth 1993). Alternatives to the IOC principle are, for
example, vector average (VA) or feature tracking. VA predicts
that the perceived pattern motion is the vector average of the
component velocity vectors. Blob or feature tracking is the
process of locating something (a “feature”) that does not suffer
from the aperture problem, such as a bright spot or a T-
junction, and tracking it over time (Wilson et al. 1992).
Ultimately, one needs to consider the interactions of the mo-
tion pathway with form mechanisms (Majaj et al. 2007), and
model the processing of more complex stimuli (e.g., motion
transparency, additional self-motion, multiplemoving objects)
(Raudies et al. 2011; Layton et al. 2012). Clarifying by which
rule (or combination of rules) the brain integrates motion

signals is still a field of ongoing research. For recent reviews
on the topic see (Bradley and Goyal 2008; Nishida 2011).

Although clear evidence for spatiotemporal frequency in-
separability in MT neurons has been found (Perrone and
Thiele 2001), which supports the idea of a motion energy
model, later studies reported it to be a weak effect (Priebe
et al. 2003, 2006). The actual proportion of neurons in the
primate visual system that are tuned to spatiotemporal fre-
quency is currently not known.

Model Limitations

Although our model is able to capture many attributes of
motion selectivity (e.g., direction selectivity, speed tuning,
component and pattern motion), it is not yet complete for the
following reasons. First, it does not explicitly specify the exact
pattern velocity, but instead reports an activity distribution
over the population of MT neurons, whose firing rates are
indicative of the observed pattern motion. In order to estimate
the speed of a target stimulus, it has been proposed to use a
suitable population decoding mechanism that operates on MT
responses (Perrone 2012; Hohl et al. 2013). Second, our
model does not attempt to predict the temporal dynamics of
MT PDS cells, which often respond with broad selectivity
when first activated, sometimes even resembling CDS cells,
and only over a time-course on the order of 100 ms establish
their pattern motion selectivity (Smith et al. 2005). A possible
explanation for these temporal dynamics is given in Chey
et al. (1997). Third, it does not consider the visual form
pathway and abstracts early visual details that may be critical
for operation in natural settings. Fourth, the extent to which
each stage in the motion energy model can be mapped onto
specific neuronal populations is rather limited. Tiling the
spatiotemporal frequency space according to the motion en-
ergy model is biologically implausible, and the temporal
extent of the filters is unrealistically long (especially the low
speed filters). However, a way to combine spatiotemporal
filters based on V1 neuron properties into a pattern motion
detector has been proposed in Perrone and Thiele (2002).

Another more fundamental limitation is that the S&H
model (or for that matter, any spatiotemporal-energy based
model including the elaborated Reichardt detector) can only
sense so-called first-order motion, which is defined as spatio-
temporal variations in image intensity (first-order image
statistics) that give rise to a Fourier spectrum. Second-order
stimuli, such as the motion of a contrast modulation over a
texture, are non-Fourier and thus invisible to the model, yet
can be readily perceived by humans (Chubb and Sperling
1988). In addition, the existence of a third motion channel
has been suggested, which is supposed to operate through
selective attention and saliency maps (Lu and Sperling
1995). Also, MT has been shown to be involved in color-
based motion perception (Thiele et al. 2001).

Neuroinform (2014) 12:435–454 451

There is also a plainly technical limitation to our model,
which is manifested in the amount of available GPU memory.
Due to their size, large-scale spiking networks have demand-
ing memory requirements. The largest network that could fit
on a single NVIDIATeslaM2090 (with 6 GB ofmemory) was
comprised of 610,944 neurons and approximately 137 million
synapses, which corresponds to processing a 64×64 input
video. In order to run larger networks on current-generation
GPU cards, a change in model (or software and hardware)
architecture is required. One should note that this is only a
temporary limitation and could become obsolete as soon as
with the next generation of GPU cards. Another possible
solution would be to employ multi-GPU systems; however,
more work is required to efficiently integrate our SNN simu-
lator with such a system.

Practical Implications

The present network might be of interest to the neuroscientist
and computer vision research communities for the following
reasons.

First, our implementation outperforms the S&H C/Matlab
implementation by orders of magnitude in terms of computa-
tional speed and memory usage. Thus our CUDA implemen-
tation can be used to save computation time, as well as be
applied to input resolutions that the C/Matlab implementation
cannot handle due to memory constraints. Additionally, the
CUDA implementation can act as a stand-alone module that
could potentially be used in computer vision as an alternative
to computationally expensive operations such as Gabor filter-
ing for edge detection or dense optic flow computations.

Second, we have demonstrated that our approach is fast,
efficient, and scalable; although current GPU cards limit the
size of the simulations due to memory constraints.
Nevertheless, our model processes a 40×40 input video at
20 frames per second in real-time, which corresponds to a total
of 239,040 neurons in the simulated V1,MT, and LIP areas, at
20 frames per second using a single GPU, which enables the
potential use of our software in real-time applications ranging
from robot vision to autonomous driving.

Third, our implementation might be of particular interest to
the neuromorphic modeling community, as the present neuron
model, synapse model, and AER are compatible with recent
neuromorphic hardware (Srinivasa and Cruz-Albrecht 2012).
Thus our algorithm could be used as a neural controller in
neuromorphic and neurorobotics applications. Future work
could be directed toward creating an interface by which net-
works can be automatically exported onto neuromorphic
hardware.

Fourth, because of the modular code structure, our imple-
mentation can be readily extended to include, for example,
higher-order visual areas or biologically plausible synaptic
learning rules such as STDP. Thus our implementation may

facilitate the testing of hypotheses and the study of the tem-
poral dynamics that govern visual motion processes in area
MT, which might prove harder to study using previous (rate-
based) model incarnations.

Lastly, the network was constructed using a SNN simulator
that is publicly available at http://www.socsci.uci.edu/
~jkrichma/CARLsim/. The present release features the
complete source code for the simulator, the network, and
analysis scripts. As such it is the next step towards our goal
of making efficient simulations of large-scale spiking net-
works available to a wide range of researchers, without the
need of a cluster or supercomputer.

Information Sharing Statement

The source code for the simulator, for the network, and anal-
ysis scripts are publicly available at http://www.socsci.uci.
edu/~jkrichma/CARLsim/. This website does also feature
installation instructions, source code documentation and a
tutorial on how to set up, run, and interact with a simulation.
In order to run the simulator in CUDA mode, the NVIDIA
CUDA software developer kit must be installed (freeware,
available at https://developer.nvidia.com/cuda-downloads).

Acknowledgments This work was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) subcontract 801888-BS.
We thank Jayram M. Nageswaran for his work developing the custom
spiking neural network simulator. We also thank Michael Avery, Kris
Carlson, and Steve Grossberg for valuable feedback and discussion on
this project.

Conflict of Interest The authors have no conflicts of interest with this
manuscript.

References

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energymodels for
the perception of motion. Journal of the Optical Society of America
A, 2(2), 284–299.

Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of
moving visual patterns. Nature, 300(5892), 523–525.

Bradley, D. C., & Goyal, M. S. (2008). Velocity computation in the
primate visual system. Nature Reviews Neuroscience, 9(9), 686–
695. doi:10.1038/Nrn2472.

Browning, N. A., Grossberg, S., & Mingolla, E. (2009a). Cortical dy-
namics of navigation and steering in natural scenes: motion-based
object segmentation, heading, and obstacle avoidance. Neural
Networks, 22(10), 1383–1398. doi:10.1016/j.neunet.2009.05.007.

Browning, N. A., Grossberg, S., & Mingolla, E. (2009b). A neural model
of how the brain computes heading from optic flow in realistic
scenes. Cognitive Psychology, 59(4), 320–356. doi:10.1016/j.
cogpsych.2009.07.002.

Burke, D., & Wenderoth, P. (1993). The effect of interactions between
one-dimensional component gratings on 2-dimensional motion per-
ception. Vision Research, 33(3), 343–350. doi:10.1016/0042-
6989(93)90090-J.

452 Neuroinform (2014) 12:435–454

Chey, J., Grossberg, S., & Mingolla, E. (1997). Neural dynamics of
motion grouping: from aperture ambiguity to object speed and
direction. Journal of the Optical Society of America a-Optics
Image Science and Vision, 14(10), 2570–2594. doi:10.1364/Josaa.
14.002570.

Chubb, C., & Sperling, G. (1988). Drift-balanced random stimuli—a
general basis for studying non-fourier motion perception. Journal
of the Optical Society of America a-Optics Image Science and
Vision, 5(11), 1986–2007. doi:10.1364/Josaa.5.001986.

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience:
Computational and mathematical modeling of neural systems
(Computational neuroscience). Cambridge: Massachusetts Institute
of Technology Press.

DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1993). Spatiotemporal
organization of simple-cell receptive fields in the cat's striate cortex.
II. Linearity of temporal and spatial summation. Journal of
Neurophysiology, 69(4), 1118–1135.

Ferrera, V. P., & Wilson, H. R. (1990). Perceived direction of moving
two-dimensional patterns. Vision Research, 30(2), 273–287.

Fidjeland, A. K., & Shanahan, M. P. (2010). Accelerated simulation of
spiking neural networks using GPUs. In Neural Networks (IJCNN),
The 2010 International Joint Conference on, 18–23 July 2010 (pp.
1–8). doi:10.1109/IJCNN.2010.5596678.

Freeman,W. T., & Adelson, E. H. (1991). The design and use of steerable
filters. In IEEE Pattern Analysis and Machine Intelligence (Vol. 13,
pp. 891–906).

Grossberg, S., & Pilly, P. K. (2008). Temporal dynamics of
decision-making during motion perception in the visual cortex.
Vision Research, 48(12), 1345–1373. doi:10.1016/j.visres.2008.
02.019.

Hohl, S. S., Chaisanguanthum, K. S., & Lisberger, S. G. (2013). Sensory
population decoding for visually guided movements.Neuron, 79(1),
167–179. doi:10.1016/j.neuron.2013.05.026.

Indiveri, G., Chicca, E., & Douglas, R. (2006). A VLSI array of low-
power spiking neurons and bistable synapses with spike-timing
dependent plasticity. IEEE Transactions on Neural Networks,
17(1), 211–221. doi:10.1109/Tnn.2005.860850.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE
Transactions on Neural Networks, 14(6), 1569–1572. doi:10.1109/
Tnn.2003.820440.

Izhikevich, E. M. (2004). Which model to use for cortical spiking
neurons? IEEE Transactions on Neural Networks, 15(5), 1063–
1070. doi:10.1109/Tnn.2004.832719.

Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The ge-
ometry of excitability and bursting (Computational neuroscience).
Cambridge: MIT Press.

Izhikevich, E. M., Gally, J. A., & Edelman, G. M. (2004). Spike-timing
dynamics of neuronal groups.Cerebral Cortex, 14(8), 933–944. doi:
10.1093/cercor/bhh053.

Khan, M., Lester, D., Plana, L., Rast, A., Jin, X., & Painkras, E.
SpiNNaker: Mapping neural networks onto a massively-parallel
chip multiprocessor. In IEEE International Joint Conference on
Neural Networks, 2008 (pp. 2849–2856).

Koch, C. (1999). Biophysics of computation: Information processing in
single neurons (Computational neuroscience). New York: Oxford
University Press.

Layton, O. W., Mingolla, E., & Browning, N. A. (2012). A motion
pooling model of visually guided navigation explains human be-
havior in the presence of independently moving objects. Journal of
Vision, 12(1), doi:10.1167/12.1.20.

Livingstone, M. S., & Conway, B. R. (2007). Contrast affects speed
tuning, space-time slant, and receptive-field organization of simple
cells in macaque V1. Journal of Neurophysiology, 97(1), 849–857.
doi:10.1152/jn.00762.2006.

Lu, Z. L., & Sperling, G. (1995). Attention-generated apparent motion.
Nature, 377(6546), 237–239. doi:10.1038/377237a0.

Majaj, N. J., Carandini, M., &Movshon, J. A. (2007).Motion integration by
neurons in macaque MT is local, not global. Journal of Neuroscience,
27(2), 366–370. doi:10.1523/JNEUROSCI.3183-06.2007.

Merolla, P. A., Arthur, J. V., Shi, B. E., & Boahen, K. A. (2007).
Expandable networks for neuromorphic chips. IEEE Transactions
on Circuits and Systems I-Regular Papers, 54(2), 301–311. doi:10.
1109/Tcsi.2006.887474.

Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of
striate cortical neurons projecting to area MT in macaque monkeys.
Journal of Neuroscience, 16(23), 7733–7741.

Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985).
The analysis of moving visual patterns (Pattern recognition
mechanisms). New York: Springer.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., &
Veidenbaum, A. V. (2009). A configurable simulation environment
for the efficient simulation of large-scale spiking neural networks on
graphics processors. Neural Networks, 22(5–6), 791–800. doi:10.
1016/j.neunet.2009.06.028.

Nishida, S. (2011). Advancement of motion psychophysics: review
2001–2010. Journal of Vision, 11(5), Artn 11. doi:10.1167/11.5.11.

Pack, C. C., Berezovskii, V. K., & Born, R. T. (2001). Dynamic
properties of neurons in cortical area MT in alert and anaes-
thetized macaque monkeys. Nature, 414(6866), 905–908. doi:
10.1038/414905a.

Perrone, J. A. (2012). A neural-based code for computing image velocity
from small sets of middle temporal (MT/V5) neuron inputs. Journal
of Vision, 12(8), doi:10.1167/12.8.1.

Perrone, J. A., & Thiele, A. (2001). Speed skills: measuring the visual
speed analyzing properties of primate MT neurons. Nature
Neuroscience, 4(5), 526–532.

Perrone, J. A., & Thiele, A. (2002). A model of speed tuning in MT
neurons. Vision Research, 42(8), 1035–1051.

Priebe, N. J., Cassanello, C. R., & Lisberger, S. G. (2003). The neural
representation of speed in macaque area MT/V5. Journal of
Neuroscience, 23(13), 5650–5661.

Priebe, N. J., Lisberger, S. G., & Movshon, J. A. (2006). Tuning for
spatiotemporal frequency and speed in directionally selective neu-
rons of macaque striate cortex. Journal of Neuroscience, 26(11),
2941–2950. doi:10.1523/JNEUROSCI.3936-05.2006.

Raudies, F., Mingolla, E., & Neumann, H. (2011). A model of motion
transparency processing with local center-surround interactions and
feedback. Neural Computation, 23(11), 2868–2914. doi:10.1162/
NECO_a_00193.

Resulaj, A., Kiani, R.,Wolpert, D.M., & Shadlen,M. N. (2009). Changes
of mind in decision-making. Nature, 461(7261), 263–U141. doi:10.
1038/Nature08275.

Richert, M., Nageswaran, J. M., Dutt, N., & Krichmar, J. L. (2011). An
efficient simulation environment for modeling large-scale cortical
processing. Frontiers Neuroinformatics, 5, 19. doi:10.3389/fninf.
2011.00019.

Rodman, H. R., & Albright, T. D. (1987). Coding of visual stimulus
velocity in area Mt of the Macaque. Vision Research, 27(12), 2035–
2048. doi:10.1016/0042-6989(87)90118-0.

Rodman, H. R., & Albright, T. D. (1989). Single-unit analysis of pattern-
motion selective properties in the middle temporal visual area (MT).
Experimental Brain Research, 75(1), 53–64.

Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in
the lateral intraparietal area during a combined visual dis-
crimination reaction time task. Journal of Neuroscience, 22(21),
9475–9489.

Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How
MT cells analyze the motion of visual patterns. Nature
Neuroscience, 9(11), 1421–1431. doi:10.1038/Nn1786.

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual
decision in the parietal cortex (area LIP) of the rhesus monkey.
Journal of Neurophysiology, 86(4), 1916–1936.

Neuroinform (2014) 12:435–454 453

Simoncelli, E. P., & Heeger, D. J. (1998). A model of neuronal responses
in visual area MT. Vision Research, 38(5), 743–761. doi:10.1016/
S0042-6989(97)00183-1.

Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of
simple decisions. Trends in Neurosciences, 27(3), 161–168. doi:
10.1016/j.tins.2004.01.006.

Smith, M. A., Majaj, N. J., & Movshon, J. A. (2005). Dynamics of
motion signaling by neurons in macaque area MT. Nature
Neuroscience, 8(2), 220–228. doi:10.1038/Nn1382.

Srinivasa, N., & Cruz-Albrecht, J. M. (2012). Neuromorphic adaptive
plastic scalable electronics analog learning systems. IEEE Pulse,
3(1), 51–56. doi:10.1109/Mpul.2011.2175639.

Thiele, A., Dobkins, K. R., & Albright, T. D. (2001). Neural
correlates of chromatic motion perception. Neuron, 32(2),
351–358.

van Santen, J. P. H., & Sperling, G. (1985). Elaborated Reichardt detec-
tors. Journal of the Optical Society of America a-Optics Image
Science and Vision, 2(2), 300–321.

Vogelstein, R. J., Mallik, U., Culurciello, E., Cauwenberghs, G., &
Etienne-Cummings, R. (2007). A multichip neuromorphic system
for spike-based visual information processing.Neural Computation,
19(9), 2281–2300. doi:10.1162/neco.2007.19.9.2281.

Wilson, H. R., Ferrera, V. P., & Yo, C. (1992). A psychophysically
motivated model for 2-dimensional motion perception. Visual
Neuroscience, 9(1), 79–97.

Yudanov, D., Shaaban, M., Melton, R., & Reznik, L. (2010). GPU-based
simulation of spiking neural networks with real-time performance
& high accuracy. In Neural Networks (IJCNN), The 2010
International Joint Conference on, 18–23 July 2010 (pp. 1–8). doi:
10.1109/IJCNN.2010.5596334.

454 Neuroinform (2014) 12:435–454

