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The pupillary light response has long been considered an
elementary reflex. However, evidence now shows that it
integrates information from such complex phenomena
as attention, contextual processing, and imagery. These
discoveries make pupillometry a promising tool for an
entirely new application: the study of high-level vision.

The long-standing view of pupil control
Constriction of the pupil in response to light may be the
simplest visually evoked behavior [1]. The basis for this
response has little to do with the visual system as we
usually think of it (forming an image of the world). In
large part, it is a simpler and archaic ‘sense of light’ used
for systemic adjustments, such as adapting rhythmic phys-
iological functions (e.g., sleep) to the local environment. It
depends primarily on a special class of retinal cells that
contain melanopsin and project almost exclusively to sub-
cortical targets, making little or no contribution to the
canonical image forming visual pathway to the cortex [2].

When light level is constant, another archaic circuit –
the autonomic system – induces fluctuations of pupil size
[1]. In humans, the balance between sympathetic and
parasympathetic activity varies in complex ways with
the cognitive and emotional status of the subject, and this
has led to the realization that non-light-dependent pupil
dilations could correlate with such constructs as cognitive
load and decision making, as described in several reviews
and recently revisited experimentally [3,4].

New evidence that complex vision influences the pupil
Rapidly accumulating evidence suggests that these two
circuits are not the only contributors to pupil control.
Specifically, pupillary light responses may integrate sig-
nals from the more complex image forming system. Evi-
dence for this comes from the study of three phenomena
that are characteristic of cortical visual processing: atten-
tion, contextual modulations, and mental imagery. All
three affect pupil size in a predictable and systematic
way. Covertly shifting attention to a brighter region of
an image produces pupillary constriction, despite the fact
that the cognitive load and pattern of retinal illumination
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remain constant [5]. Pupillary constriction is also evoked
by contextual information that is usually associated with
high light levels, such as a picture of the sun, even if the
actual luminance of the image is the same as in control
stimuli [6,7]. Moreover, mentally visualizing a bright scene
(compared with a darker scene) produces pupillary con-
striction [8]. Although surprising for many, these recent
findings connect with research from more than 50 years
ago, showing that pupillary light responses are inhibited
when perceptual sensitivity is transiently suppressed
[9]. Together, these results suggest that, while the subcor-
tical non-image forming system may be responsible for the
largest part of pupillary light responses, there is also a
contribution of other (likely cortical) signals.

What is the functional significance of these effects? In
other words, does the fact that complex visual processing
modulates pupil diameter serve any purpose? To answer
this question, the size of these effects must be considered.
In humans, light can change pupil diameter between
approximately 2 and 8 mm, with small but measurable
consequences on visual sensitivity, acuity, and depth of
field [1]. Pupil dilations related to arousal are more modest,
of the order of 1 mm, and pupil changes with shifts of
attention and context are often just a fraction of a millime-
ter. Many have speculated on how these tiny pupil modula-
tions may enhance vision (e.g., attention may improve
acuity at the behaviorally relevant light level). However,
no direct evidence has been provided so far and, extrapolat-
ing from data with larger pupil changes, one would predict
close to un-measurable effects on visual performance. This
opens intriguing questions about the origin of the modula-
tions (Box 1). However, no matter how subtle their impact
on vision is, these pupil modulations might be symptomatic
of a general phenomenon – the ubiquity of top–down influ-
ences on sensory processing – and thereby serve as a sensi-
tive, noninvasive tool for its study.

Pupillary modulation as a tool for studying sensory
processing
One key feature of pupillary responses is that they are
overt and easily measurable, much like behavioral perfor-
mance and perceptual reports. Unlike direct reports, how-
ever, pupil size is an objective parameter, and it can be
acquired with minimal cooperation on the part of the
subject.

One area where these features are particularly valuable
is the clinical evaluation of visual loss. Standard methods
require patients to perform a demanding detection task,
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Box 1. Origins of the contextual modulations of the

pupillary light response

If small pupil size changes are unlikely to enhance vision in any

meaningful way, what is the purpose of having such tight control

over pupil size? Why do we need to modulate the simple pupillary

light response by taking into account complex factors such as

attention and context? One possibility is that pupillomotor nuclei

are functionally linked to nearby oculomotor nuclei that are well

known to integrate cortical signals, for example, those controlling

the optokinetic reflex. Another hypothesis is that the origin of high

level influences dates far back in phylogeny; they may be ‘vestigial’

in humans, but have developed in species with enhanced pupil

mobility. In fact, pupils come in a variety of sizes and forms, and

some of these allow for more obvious changes in retinal illumina-

tion and image blur. An ancient origin would suggest that, like the

basic ‘reflex’ light response, high level effects are shared across

several species. By contrast, if these effects were by-products of

other circuits for oculomotor control, they might be specifically

associated with particular patterns of eye movement, and asso-

ciated with foveal vision. Preliminary insight into these questions

might come from studies that test the relationship between

pupillary responses and eye movements, for example, by juxtapos-

ing the effects of attention to spatial and non spatial (feature-based)

attributes [15].
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and this is not always possible and reliable. However,
pupillary responses can be recorded rapidly while the
patient simply stares at a screen, and the results for
mapping visual field loss in several retinal pathologies
this way are encouraging [10]. Importantly, given the
evidence suggesting that pupillary light responses inte-
grate high level information, these methods could be ex-
tended to blindness of nonretinal origin. For example,
patients with lesions of early visual cortex may experience
blindsight, or an inability to consciously perceive stimuli
in part of the visual field; however, some retained the
ability to correctly guess their features. Quantifying this
ability is notoriously challenging and relies on the patients’
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Figure 1. Constriction from attention to brightness and pictures of bright scenes. (A) The
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dilation was expected. However, the pictures of the sun induced significant pupillary c
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capability and willingness to report on sensations that they
don’t consciously experience. However, recent research
[11,12] indicates that a reliable index of this phenomenon
can be obtained by comparing pupillary responses to sti-
muli in the ‘blind’ versus spared visual fields.

Pupillometry may also have a major impact on research
in nonclinical populations, supporting the investigation of
conscious perception and the related construct of attention.
Specifically, it may be important for linking behavioral
and neurophysiological levels of investigation. For exam-
ple, we have shown that pupillary responses to light are
attenuated when the light stimuli are not attended [5]. This
modulation of the pupillary light response provides a
quantitative, graded, and time-continuous index of how
attention to a stimulus enhances its processing; that is, an
index that shares key features with neurophysiological
measures (including independence from response criteri-
on, since pupillary responses are involuntary), while cor-
relating tightly with behavioral performance [13]. If
attention affects pupillary light responses, then the modu-
lation of these responses can also indicate how attention is
deployed across the visual scene, provided that the scene
contains a range of luminances. This measure has impor-
tant advantages over other overt parameters. First, it is
acquired without interfering with the subject’s behavior or
the deployment of attention itself, unlike measuring be-
havioral performance on a secondary task or at invalidly
cued locations. Second, the measured pupil variations per
se are expected to have minimal or no impact on visual
performance (see above), unlike overt shifts of attention
(eye movements) that shift the fovea and change the
spatiotemporal pattern of visual sensitivity.

It is important to note that actual online tracking of
attention (trial-by-trial, millisecond-by-millisecond) by
pupillometry is not quite possible yet, mainly because of
the difficulty in parsing the multiple factors affecting pupil
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 stimulus display comprised two luminance disks, one brighter and one darker than

vert attention shifted (yellow shaded area in icons), eye position remained fixed at

ls. However, pupil size was smaller when the brighter disk was attended, across the

ffset marked by vertical unbroken lines). Adapted, with permission, from [5]. (B)

ean luminance: uniform gray squares, phase-scrambles of the sun pictures (same

pictures was always lower than their bright white background, implying that pupil

onstriction relative to all controls. Adapted, with permission, from [6].
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traces: light and its interaction with attention, plus cogni-
tive effort, effects of transients and general arousal. How-
ever, several approaches to overcome this challenge are
becoming available, including computational modeling [4].

In addition to its challenges, the multifactorial nature of
pupil constriction can also be advantageous for its use as a
research tool. A good example is the phenomenon of binoc-
ular rivalry, in which the two eyes are shown different
images and these alternate in conscious perception. While
perception oscillates, two effects are seen at the level of the
pupil: light responses indicate which eye is currently dom-
inant [9], and transient dilations precede each switch in
perception, probably indexing a peak of norepinephrine
release [3]. Thus, pupil size effectively monitors both sen-
sory processing and neurochemical equilibrium, possibly
providing a new tool for exploring their relationship.

Finally, ease of recording, objectivity, and minimal task
requirements make pupillometry a promising tool for com-
parative study across populations.

There is a precedent for the use of pupillometry to
compare cognitive strategies in toddlers with autism spec-
trum disorder and controls [14]. Measuring pupillary
responses to images such as those in Figure 1B (in a simple
passive viewing paradigm) could give new insight into
another much debated area of research on autism spec-
trum disorder: contextual processing, or whether context
has an anomalous influence on perception from a very
young age.

Revived interest in pupillary light responses has also
been recently motivated by its use in the comparative
study of melanopsin-dependent retinal transmission
across mammals [2]. Testing responses to stimuli more
complex than light flashes, such as those in Figure 1, could
additionally provide us with an index of brightness illu-
sions and attentional boost mechanisms – an index that
would be directly comparable across species, even when
their phylogenetic distance makes it difficult both to es-
tablish homologies between neural recording sites and to
meaningfully adapt behavioral paradigms.

Concluding remarks
Pupil size changes are simple, overt physiological
responses that can be recorded noninvasively and in a
relatively inexpensive and straightforward way. Despite
this apparent simplicity, pupillary light responses inte-
grate information from multiple brain processes, including
complex ones such as attention and contextual modulation
of perception. Thus, they provide a window to these con-
structs that still awaits full exploitation.
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