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Much has been learned over the past 25 years about how attention influences neuronal responses to
stimuli in the visual cortex of monkeys and humans. The most recent studies have used parametric
manipulations of stimulus attributes such as orientation, direction of motion, and contrast to elucidate
the form of the attentional mechanism. The results of these studies do not always agree. However, some
of this inconsistency may be caused which attentional effects are considered, such as contrast gain,
response gain, or a baseline shift in firing rate with attention. Here, seven studies of spatial and fea-
ture-based attention, ranging from monkey electrophysiological studies in V4 and MT to fMRI studies
in human visual cortex, are reevaluated in the context of a single parametric model that incorporates a
variety of ways in which attention can influence neuronal responses. This reanalysis shows that most,
though not all, of these results can be explained by a similar combination of attentional mechanisms.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The first reports of spatial and feature-based attention in mon-
keys tended to focus on a restricted set of stimulus parameters,
(e.g. Moran & Desimone, 1985; Treue & Maunsell, 1996). These
are landmark studies because they were the first to show that re-
sponses in visual areas that are relatively early in the visual pro-
cessing stream can be influenced by factors other than the
physical properties of the stimulus. However, due to their re-
stricted set of parameters, these studies do not provide much in-
sight into the exact nature of how attention affects the neuronal
representation of a stimulus.

More recently, these investigators and others have extended
these early results by measuring the effects of attention on electro-
physiological responses across a range of stimulus and attentional
parameters, such as stimulus contrast, or the physical or attended
direction of motion (Martinez-Trujillo & Treue, 2004; McAdams &
Maunsell, 1999; Reynolds, Pasternak, & Desimone, 2000; Williford
& Maunsell, 2006). A related set of parametric studies have also
measured effects of attention on the population-based fMRI re-
sponse in humans (Buracas & Boynton, 2007; Li, Lu, Tjan, Dosher,
& Chu, 2008; Murray, 2008). These studies are important because
they help constrain the possible mechanisms of attention, such
as whether attention acts as a gain change on the effective contrast
ll rights reserved.
of a stimulus, a multiplicative gain change on the response to the
stimulus, or as an additive increase in response across all contrasts.

Some of these studies include a quantitative assessment of the
measured attentional effects. However, not all studies allow for the
same set of possible influences of attention. Also, due to the nature
of different measurement techniques, the electrophysiological re-
sults are typically fit to the responses of individual neurons, while
fMRI results are necessarily fit to a response that reflects a popula-
tion average. This has lead to the perception that there is a great
deal of disagreement in the results across laboratories and mea-
surement techniques.

To address this issue, the results from four electrophysiological
and three fMRI studies of attention are fit by a simple quantitative
model that is capable of describing a wide variety of effects of spa-
tial and feature-based attentional attention. This analysis shows
that the results across these studies are actually in reasonable
agreement when viewed within the context of a simple computa-
tional model that simultaneously considers the potential effects of
both spatial and feature-based attention.

2. The model

2.1. Defining stimuli

Stimuli are assumed to be composed of multiple individual
components (see Boynton, 2005). A stimulus consisting of two
fields of dots would be considered as containing two components,
as would two oriented lines. Each stimulus component is defined
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by two parameters; a feature dimension and contrast. A specific
component of a stimulus will be represented by a feature value
xi, and contrast, ci. For example, a 100% contrast plaid stimulus
can be defined as the sum of two components with feature values
x1 = 0 and x2 = 90 and contrasts c1 = 0.5 and c2 = 0.5. For simplicity,
components are considered to be either inside or outside the RF.

2.2. Response to a stimulus

The stimulus-driven response of a neuron is shown in Eq. (1).
Every neuron is assumed to have a sensitivity or tuning function
F(x) ranging between 0 and 1 that is described as a Gaussian with
standard deviation x with and a peak at some specific feature va-
lue (such as upward motion or vertical orientation). The output of
this tuning function is scaled by the contrast of the stimulus, which
can be thought of as a linear response to the stimulus component
filtered by a feature-selective receptive field.

The output of this linear filter stage is suppressed by a divisive
contrast normalization process. The total excitatory response in
the numerator is the sum of squared linear responses to each stim-
ulus component. The inhibitory response in the denominator is the
sum of squared contrasts within the neuron to each stimulus com-
ponent plus a semisaturation term. The summed squared contrast
in the denominator corresponds to the total contrast energy of the
stimulus and represents the summed response from a population
of neurons with peak sensitivities ranging across the spectrum of
feature space (Heeger, 1993). Note that the denominator is not fea-
ture-selective and only depends on the amount of contrast in the
stimulus. This normalized response is then multiplied by a gain
factor, c, which represents the maximum response. A baseline fir-
ing rate, d, is then added.

Hðx; cÞ ¼ c

P

i
ðciFðxiÞÞ2

P

i
c2

i þ r2
þ d ð1Þ

where

FðxiÞ ¼ eð�ðxi�xpÞ2Þ=w2 ð2Þ

and xp is the neuron’s preferred feature value.
This well-established normalization process predicts a variety

of stimulus-dependent responses in the macaque and cat visual
cortex (Carandini, Heeger, & Movshon, 1997; Heeger, 1993; Hee-
ger, Simoncelli, & Movshon, 1996), including how the selectivity
of a neuron for a given feature is invariant to stimulus contrast
(Albrecht & Hamilton, 1982; Dean, 1981; Sclar & Freeman, 1982;
Tolhurst, 1973).

This model also predicts a sigmoidal contrast-response function
that is suppressed divisively when non-preferred stimuli are added
to the RF. For example, the model makes the simple prediction that
when two high contrast stimuli are placed in the RF of the neuron,
the response to the pair is roughly the average of the response to
the two individual components alone. This is because for high con-
trasts, the effect of the semisaturation constant r becomes negligi-
ble. This prediction was demonstrated by Reynolds et al (Reynolds,
Chelazzi, & Desimone, 1999) in area V4. In their experiment 1, indi-
vidual or pairs of oriented bars were placed in the RFs of V4 neu-
rons while the monkey attended outside the RF. One stimulus
was defined as the Probe, the other as the Reference. Reynolds
et al calculated the regression line through a scatter plot of re-
sponses across neurons where the x-axis was defined as the differ-
ence in the response to Reference and the Probe, and the y-axis was
the difference in the response to both Reference and Probe pre-
sented together and the response to the Probe in isolation. The
regression line had a slope of 0.55, which is close to the slope of
0.5 as predicted by the model.
2.3. Three possible influences of spatial attention

2.3.1. Contrast gain
Two recent electrophysiological studies of attention suggest

that attention directed inside the RF of a neuron shifts the con-
trast-response function leftward when plotted on a log-contrast
axis in V4 (Reynolds et al., 2000) and MT (Martinez-Trujillo &
Treue, 2002). This can be incorporated in the model either by mul-
tiplying the contrast of all components within the receptive field
by a constant, or equivalently, by dividing the semisaturation
parameter, r, by the same constant. Dividing the parameter r by
a constant s > 1 increases the effective contrast of the stimulus
by the same factor, shifting the contrast-response function left-
ward on a log-contrast axis. This is often referred to as ‘contrast
gain’. One significant implication of contrast gain, as implemented
by this model, is that spatial attention simply increases the effec-
tive contrast of all stimulus components in the RF, regardless of
which component is attended.
2.3.2. Baseline shift
While the presence of contrast gain with spatial attention is

reasonably well-established in the literature, there is physiological
and fMRI evidence suggesting that spatial attention may also in-
crease the baseline response of neurons in the absence of visual
stimulation (Bisley, Zaksas, Droll, & Pasternak, 2004; Chelazzi, Mill-
er, Duncan, & Desimone, 1993; Ferrera, Rudolph, & Maunsell, 1994;
Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999; Luck,
Chelazzi, Hillyard, & Desimone, 1997; Ress, Backus, & Heeger,
2000); for review see (Pasternak & Greenlee, 2005). This effect of
attention on the baseline response can be incorporated by adding
a positive value d to the baseline response d when spatial attention
is directed inside the RF of the neuron.
2.3.3. Multiplicative gain
A third option is a multiplicative gain change with spatial atten-

tion, sometimes called ‘response gain’ (Williford & Maunsell,
2006). Response gain is a multiplicative scaling of the response
(prior to any baseline shift) to any stimulus inside the RF when
attention is directed inside the RF. This can be modeled by multi-
plying the gain factor c by a constant g > 1 when attention is direc-
ted inside the RF.

To incorporate all three effects of spatial attention, the response
to a stimulus when attention is directed inside the RF is

Hðx; cÞ ¼ ðcgÞ

P

i
ðciFðxiÞÞ2

P

i
c2

i þ ðr=sÞ2
þ ðdþ dÞ ð3Þ

where s > 1 represents contrast gain, d > 0 represents an additive
shift and g > 1 represents multiplicative gain.

2.4. Single unit vs. population averages

It should be noted that although the model describes firing rates
for single neurons, in the following sections the model was fit only
to population averages. This was to allow a direct comparison be-
tween the electrophysiological results and the fMRI results which
presumably reflect something related to a population average
(Heeger, Huk, Geisler, & Albrecht, 2000; Rees, Friston, & Koch,
2000).

The way effects of attention on individual neurons are seen in
the population average can be complex. This is because the model
is nonlinear, so the best-fitting parameter values to the averaged
responses are not necessarily the same as the average of best-fit-
ting parameter values to the individual neuronal responses.
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A useful way to illustrate the effects of attention on population
responses is with a simulation. Parameters describing contrast-re-
sponse functions for 100 simulated macaque V1 neurons were gen-
erated by sampling from population distributions that matched the
means, medians and standard deviations of parameters that
described the responses of 71 neurons reported by Geisler and
Albrecht (1997). Simulated contrast-response functions (contrasts
of 2.5, 5, 10, 20, 40 and 80%) were then generated from these sam-
pled parameters, and the resulting values were taken as contrast-
response functions for unattended stimuli. The responses to
attended stimuli were then estimated by varying each of the three
spatial attention parameters, s, d and g for each simulated neuron.
Means and standard errors for these 100 simulated neurons were
calculated to generate a simulated population contrast-response
functions for unattended and attended stimuli.

Fig. 1A shows the simulated population average after incorpo-
rating a contrast gain parameter s = 2 with attention on each indi-
vidual neuron. Dark symbols and lines represent average responses
to attended stimuli, open symbols and gray lines are for unat-
tended stimuli. Contrast gain is apparent in the population average
(by a leftward shift of the contrast-response function). The dashed
lines are fits of the data with a with four free parameters: three
stimulus-driven parameters r, d and c, and the contrast gain spa-
tial attention parameter, s. The solid curves through the data are
best fits of the model while allowing the three stimulus-driven
parameters and all three spatial attention parameters s, d and g
to vary. Allowing the contrast gain parameter to vary alone cap-
tures the majority of the effect of attention. A nested model F-test
shows that adding the two parameters d and g does not signifi-
cantly improve the fit (F(2,6) = 1.19 p = 0.3665), as can be observed
in the figure by the similarity between the predictions of the model
with the single attention factor s, and the model with all three fac-
tors. With all three spatial attention parameters allowed to vary,
the best-fitting parameters for the contrast gain parameter, s,
was 1.44, which is lower than the value of 2 used to simulate the
individual neurons. The best-fitting baseline shift parameter was
d = 0.04, and the best-fitting multiplicative gain factor was
g = 1.10 (all best-fitting parameter values are shown in Table 1).
This analysis shows that although the estimated contrast gain
parameter for the population is smaller than that for the individual
neurons, the overall effect on the population average was domi-
nated by the same contrast gain mechanism that was incorporated
in the individual neurons. It should be noted also that the popula-
tion average shows a small baseline shift with attention that was
not present in the individual neurons.
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Fig. 1. Results from a simulation showing how the effects of attention on individual neu
without attention in 100 simulated neurons were generated by sampling from paramete
lines represent the response to the attended stimulus, and open symbols with gray lines fo
where spatial attention for each neuron was implemented by a contrast gain paramete
attention. Solid lines are best fits allowing for all three spatial attention parameters to va
factor g = 1.5. Dashed curves are best fits to the population average allowing the paramet
vary.
Fig. 1B shows the simulation when spatial attention is incorpo-
rated as a multiplicative gain factor g = 1.5 on the same simulated
neurons. Again, solid symbols and dark lines indicate responses to
attended stimuli, open symbols and gray lines are for unattended
stimuli. Dashed lines are for the fit when only allowing for the mul-
tiplicative gain factor with attention, g, and solid lines are with all
three spatial attention parameters allowed to vary. A nested model
F-test shows that adding the two parameters d and s does not sig-
nificantly improve the fit (F(2,6) = 3.12 p = 0.1180), although a
deviation can be seen at low contrasts between the two models.
The model’s best-fitting multiplicative gain factor for the popula-
tion average was also g = 1.5. Mathematically, it is easy to show
that the multiplicative gain factor for the population should be
similar to the gain factor for the individual neurons. The other
best-fitting spatial attention parameters were s = 1.01, d = 0.06
(see Table 1 for all best-fitting parameter values). The population
average shows little evidence of contrast gain, but it does show a
small baseline change with attention.

Adding a baseline shift with attention on the individual neurons
has a predictable effect on the population response. Since the base-
line effect is added after the nonlinear contrast-response function,
the baseline shift parameter d for the individual neurons will result
in the same shift in the averaged response across neurons.

This analysis shows that the dominant effect on the population
average was the same effect imposed on the individual neurons.
This is at least true for these simulated V1 neurons based on the
parameters published by Geisler and Albrecht (1997). Of course,
parameters that describe neuronal responses in other visual areas
will have different distributions of values, which could lead to mis-
leading conclusions when looking at the population average. Also,
the choices for the size of the attentional effect (e.g. s = 2 and
g = 1.5) are somewhat arbitrary, and are also likely to vary across
individual neurons.

2.5. Predicting electrophysiological studies of spatial attention

The effect of spatial attention on contrast-response functions
for two electrophysiological studies (Reynolds et al., 2000; Willi-
ford & Maunsell, 2006) will be discussed next in the context of
the model.

Fig. 2A shows the results from Reynolds et al. (2000) Fig. 5A in
their paper) in which contrast-response functions were measured
in macaque area V4 for sinusoidal grating stimuli. The monkey
was trained to detect an oriented target grating that was either
presented in the RF, or on the opposite side of the visual field.
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rons affect the averaged population response. Contrast-response functions with and
r distributions as published by Geisler and Albrecht (1997). Filled symbols and dark
r the unattended stimulus. Panel A: Average response across 100 simulated neurons
r s = 2.0. Dashed lines are best fits of the model allowing for a contrast gain with
ry (s, d and g). Panel B: Similar analysis for spatial attention as a multiplicative gain
er g to vary. Solid lines are fits with all three spatial attention parameters allowed to



Table 1
Best-fitting parameter values. As described in the text above. Numbers in bold font represent parameters that were allowed to vary to fit a given experiment. Other parameters
were held constant.

Publication Figure Stimulus-dependent parameters Attentional parameters

c r (%) d x s d g w Gmax Gmin

Simulation 1a 0.66 22.7 0.22 90 1.44 0.04 1.10 1 1 1
1b 0.52 22.7 0.17 90 1.01 0.07 1.50 1 1 1

Reynolds et al. (2000) 2a 0.54 13.4 0.30 90 1.97 0.03 1.00 1 1 1
2b 0.51 14.4 0.42 90 0.96 0.03 1.10 1 1 1

Williford and Maunsell (2006) 3a 0.63 11.1 0.09 90 1.00 0.05 1.03 1 1 1
3b 0.35 12.1 0.10 90 1.18 0.05 0.99 1 1 1

Buracas and Boynton (2007) 4a 0.50 23.3 0.37 90 0.88 0.16 1.01 1 1 1
4b 0.31 22.4 0.48 90 1.00 0.21 1.12 1 1 1

Li et al. (2008) 5a 0.42 11.1 0.48 90 4.42 0.07 0.77 1 1 1
5b 0.52 8.2 0.24 90 2.83 0.25 0.81 1 1 1

Murray (2008) 6a 0.37 0.01 0.44 90 0.85 0.12 0.97 1 1 1
6b 0.37 0.03 0.43 90 0.94 0.15 1.00 1 1 1

Martinez-Trujillo and Treue (2004) 7 0.71 67.3 0.26 78.5 1 0.01 1 0.967 1.30 0.76
McAdams and Maunsell (1999) 8 1 1.11 0.36 36.2 1 0.00 1 1.03 1.23 1.10
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Fig. 2. Results from Reynolds et al. (2000), Fig. 5A and B) with best-fitting model predictions. Filled symbols and dark lines represent the response to the attended stimulus,
and open symbols with gray lines for the unattended stimulus. Best-fitting parameters are shown in Table 1. Panel A Average response across the 39 neurons that showed a
significant effect of spatial attention. Dashed lines are best fits of the model allowing only for a contrast gain change with spatial attention. Solid lines are for allowing all three
spatial attention parameters (s, d and g) to vary. Panel B Average response across the 45 neurons that did not show, individually, a significant effect of spatial attention.
Dashed lines are best fits of the model allowing only for a baseline change with spatial attention. Solid lines are for allowing all three spatial attention parameters (s, d and g)
to vary.
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The data from this experiment, and all of the experiments de-
scribed here, are normalized by the maximum response in the ori-
ginal figure to allow for comparison of parameter values across
studies.

Results in Fig. 2A show the response to attended (black sym-
bols) and unattended (empty symbols) stimuli across six contrasts
(including 0%), averaged across the 39 neurons that showed a sig-
nificant effect of attention.

The model fitting procedure for this experiment and the rest of
the experiments described here was similar to the simulation de-
scribed above. First, the results were fit by the model allowing only
the three stimulus-dependent model parameters r, c and d to vary.
Fits were obtained using a multidimensional unconstrained non-
linear minimization algorithm (Mathworks, Natick, MA) that found
the parameters that minimized the sum of squared errors, normal-
ized by each data point’s standard error of the mean.

In this case, the ‘no attention model’ accounted for 89% of the
variance in the data. Best-fitting parameters from the ‘no attention
model’ were used as starting parameters for subsequent fits in
which each of the three spatial attention parameters, d, s and g
were allowed to vary. A nested model F-test was applied to deter-
mine if the decrease in sums of squared error was justified by each
additional free parameter.

The results of these F-tests are shown in Table 2. Allowing for a
multiplicative gain alone accounts for 97.7% of the variance. Add-
ing this parameter significantly improves the fit (F(1,8) = 19.90,
p < 0.01, see the first row in Table 2 which shows the results of
the nested model F-test for adding the parameter s to the ‘No
Attention model’). Adding a baseline shift with attention accounts
for 94.7% of variance and is also a significant improvement
(F(1,8) = 6.51, p < 0.05). Allowing for a multiplicative gain accounts
for 93.45% of the variance, which is not a significant improvement
(F(1,8) = 4.12, p > 0.05). Contrast gain is therefore the best descrip-
tion for the effects of spatial attention on the neurons recorded by
Reynolds et al. (2000) that showed significant effects of attention.
The dashed lines in Fig. 2A show this best-fitting model.

For comparison, the model was fit to the data allowing for all
three spatial attention parameters to vary (s, d and g). The best-fit-
ting 3-attention parameter model is shown as solid lines in Fig. 2A.
Table 2 shows nested model F-test results for adding each addi-
tional free parameter to the model. Allowing additional parameters
to the model did not significantly improve the fit. This can be seen
by the similarity between the dashed and solid curves in Fig. 2A.
The best-fitting contrast gain parameter was s = 1.93, which means
that spatial attention effectively doubled the contrast of the at-
tended stimulus. The best-fitting baseline shift was d = 0.03 and
the best-fitting multiplicative gain parameter was g = 1.0. (All
best-fitting parameter values for this experiment, and all experi-
ments described here, are provided in Table 1). This analysis sup-
ports the conclusion by Reynolds et al. that contrast gain is a
good description of the attentional effect for these neurons. Inter-
estingly, although contrast gain should have no effect with no



Table 2
Model fits and the results of nested model F-tests for the analysis of the V4 neurons showing significant attentional effects from Reynolds et al. (2000). The combination of
attention parameters allowed to vary are shown in the first column, along with the sums of squared errors and percentage of variance accounted for. Additional columns show
nested model F-tests for fits when parameters are added to each model.

Reynolds et al., 2000 Fig. 5A (Fig. 2A in text)

Model SSE Pct var Add parameter

s d g

No attention 2.2666 88.89 F(1,8) = 19.90 p = 0.0021 F(1,8) = 6.51 p = 0.0341 F(1,8) = 4.12 p = 0.0767
s 0.6499 97.74 F(1,7) = 1.91 p = 0.2094 F(1,7) = 0.19 p = 0.6788
d 1.2493 94.67 F(1,7) = 10.13 p = 0.0154 F(1,7) = 0.68 p = 0.4363
g 1.4955 93.45 F(1,7) = 9.54 p = 0.0176 F(1,7) = 2.20 p = 0.1820
s, d 0.5106 97.96 F(1,6) = 0.00 p = 0.9716
s, g 0.633 97.85 F(1,6) = 1.44 p = 0.2752
d, g 1.1384 94.94 F(1,6) = 7.38 p = 0.0348
s, d, g 0.5104 97.96

Values in bold font for this table and all others indicate statistical significance below the level of 0.05.
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stimulus present, the authors report that attention did significantly
increase the response to an attended stimulus at 0% contrast
(p < 0.05).

Fig. 2B shows the averaged response across the remaining neu-
rons (n = 45) that did not show a significant effect of attention indi-
vidually (their Fig. 5B). Allowing the three stimulus-dependent
model parameters r, c and d to vary while keeping the attention
parameters fixed accounts for 96.7% of the variance in the data.
Adding just an attentional baseline shift had the greatest influence
on the quality of the fit, increasing the percentage of variance ac-
counted for to 98.7%. Allowing for contrast gain alone accounts
for 98.0% of the variance, and allowing for multiplicative gain ac-
counts for 98.5% of the variance. Nested model F-tests (see Table
3) show that both baseline shift and multiplicative gain provide
similar and significant improvements in the fit (p < 0.05), while
contrast gain did not. This analysis shows that attentional effects
for these neurons are best explained by either a baseline shift or
by a multiplicative gain factor. Best-fitting parameter values for
the model with all three attentional parameters are shown in Table
1. The best-fitting contrast gain parameter was close to unity with
s = 1.03, while the best-fitting baseline shift was d = 0.07 and the
multiplicative gain factor was g = 1.5.

The dashed lines in Fig. 2B show the best fits of the model
allowing for a baseline shift alone, and the solid lines are for allow-
ing all three spatial attention parameters to vary. The curves are
similar, indicating that a baseline shift sufficiently explains the
attentional effect (but a multiplicative gain is essentially just as
good).

In another careful study of spatial attention, Williford and
Maunsell (2006) measured firing rates of 131 macaque V4 neurons
while monkeys detected an orientation change in Gabor stimuli at
a cued location either inside or outside the RF (within the same vi-
Table 3
Model fits and the results of nested model F-tests for the analysis of the V4 neurons that did
of attention parameters allowed to vary are shown in the first column, along with the sums
nested model F-tests for fits when parameters are added to each model.

Reynolds et al., 2000 Fig. 5B (Fig. 2B in text)

Model SSE Pct var Add parameter

s

No attention 1.3481 96.74 F(1,8) = 4.25 p =
s 0.6131 98.58
d 0.6089 98.66 F(1,7) = 0.05 p =
g 0.6131 98.58 F(1,7) = 0.07 p =
s, d 0.6044 98.66
s, g 0.6071 98.63
d, g 0.4979 98.84 F(1,6) = 0.07 p =
s, d, g 0.4919 98.82
sual field). A full range of contrasts were used, yielding contrast-re-
sponse functions for both attended and unattended stimuli.

Williford and Maunsell (2006) fit two models of multiplicative
gain (with and without subtracting baseline responses) and a mod-
el of contrast gain to data from each individual neuron. These mod-
els did not include a simple change in baseline with attention.
Across the cell population, each of the three models accounted
for about the same amount of variance in the data.

Fig. 3 shows their results averaged across all neurons for the
preferred orientation (Fig. 3A, their Fig. 6B) and the orthogonal ori-
entation (Fig. 3B, their Fig. 6C). For stimuli at the preferred orien-
tation (Fig. 3A), allowing the three stimulus-dependent model
parameters r, c and d to vary while keeping attention parameters
fixed accounted for 97.2% of the variance in the data. Allowing con-
trast gain increased the percentage to 98%, a baseline shift to 98.4%
and multiplicative gain to 98.1%. The nested model F-test (Table 4)
shows that none of the spatial attention parameters alone signifi-
cantly improves the fit, but the baseline shift just misses statistical
significance at the 0.05 criterion (F(1,7) = 5.58, p = 0.0503). Dashed
lines in Fig. 4A show best fits of the model allowing for this base-
line shift with attention and solid lines again show the best fit for
all three spatial attention parameters allowed to vary. The solid
lines are nearly identical to the dashed lines, indicating that the
baseline shift describes the vast majority of the attentional effect.
The best-fitting contrast gain parameter was unity with s = 1.00,
the best-fitting baseline shift was d = 0.04 normalized units, and
the best-fitting multiplicative gain parameter was near unity with
g = 1.03.

A similar result was found for the orthogonal orientation
(Fig. 3B). Allowing the three stimulus-dependent model parame-
ters r, c and d to vary while keeping attention parameters fixed ac-
counts for 94.5% of the variance in the data. Allowing for a baseline
not show significant attentional effects from Reynolds et al. (2000). The combination
of squared errors and percentage of variance accounted for. Additional columns show

d g

0.0731 F(1,8) = 9.71 p = 0.0143 F(1,8) = 9.59 p = 0.0147
F(1,7) = 3.19 p = 0.1171 F(1,7) = 0.07 p = 0.7995

0.8259 F(1,7) = 1.56 p = 0.2518
0.7995 F(1,7) = 1.62 p = 0.2438

F(1,6) = 1.37 p = 0.2857
F(1,6) = 1.41 p = 0.2806

0.7948



0 6

0.8

1

R
es

po
ns

e

0 6

0.8

1

R
es

po
ns

e

A B

0 3 6 16 40 1000

0.2

0.4

0.6

Contrast (%)

N
or

m
al

iz
ed

 R

0 3 6 16 40 1000

0.2

0.4

0.6

Contrast (%)

N
or

m
al

iz
ed

 R

Fig. 3. Results from Williford and Maunsell (2006), Fig. 6B and C) with best-fitting model predictions (smooth curves) allowing for both a contrast gain and a baseline shift
with spatial attention. Filled symbols and lines represent the normalized response to the attended stimulus, open symbols and gray lines for the unattended stimulus. Best-
fitting parameters are shown in Table 1. Panel A Average response across the 131 neurons for stimuli at the preferred orientation. Dashed lines are best fits of the model
allowing only for a baseline change with spatial attention. Solid lines are for allowing all three spatial attention parameters (s, d and g) to vary. Panel B Average response
across the same 131 neurons for stimuli at the null orientation. Dashed lines are best fits of the model allowing only for a baseline change with spatial attention. Solid lines are
for allowing all three spatial attention parameters (s, d and g) to vary.

Table 4
Model fits and the results of nested model F-tests for the analysis of the V4 neurons showing significant attentional effects from Williford and Maunsell (2006). The combination
of attention parameters allowed to vary are shown in the first column, along with the sums of squared errors and percentage of variance accounted for. Additional columns show
nested model F-tests for fits when parameters are added to each model.

Williford and Maunsell (2006) Fig. 6B (Fig. 3A in text)

Model SSE Pct var Add parameter

s d g

No attention 0.0036 97.17 F(1,7) = 2.59 p = 0.1515 F(1,7) = 5.58 p = 0.0503 F(1,7) = 3.26 p = 0.1137
s 0.0026 97.94 F(1,6) = 1.87 p = 0.2208 F(1,6) = 0.86 p = 0.3899
d 0.0020 98.43 F(1,6) = 0.00 p = 0.9982 F(1,6) = 0.06 p = 0.8090
g 0.0025 98.07 F(1,6) = 0.41 p = 0.5466 F(1,6) = 1.43 p = 0.2771
s, d 0.0020 98.43 F(1,5) = 0.05 p = 0.8263
s, g 0.0023 98.19 F(1,5) = 0.80 p = 0.4129
d, g 0.0020 98.44 F(1,5) = 0.00 p = 0.9872
s, d, g 0.0020 98.44
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Fig. 4. Results from Buracas and Boynton (2007) showing contrast-response functions as measured with fMRI in humans in area V1 (Panel A) and V2 (Panel B) with best-
fitting model predictions (smooth curves). Filled symbols and dark lines represent the response to the attended stimulus vs. an unattended blank field, and open symbols with
gray lines for the estimated response to the unattended stimulus vs. an unattended blank field. Best-fitting parameters are shown in Table 1. Dashed lines are best fits of the
model allowing only for a baseline change with spatial attention. Solid lines are for allowing all three spatial attention parameters (s, d and g) to vary.
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shift was most effective at improving the fit (see Table 5;
F(1,7) = 15.68, p < 0.01) while contrast gain also significantly im-
proved the fit, but less than the baseline shift (F(1,7) = 8.07,
p = < 0.05). Allowing for a multiplicative gain did not significantly
improve the fit at the 0.05 criterion level (F(1,7) = 4.7,1 p = 0.0666).
Dashed lines in Fig. 3B shows the best fits allowing for a baseline
shift and solid lines are for all three spatial attention parameters
varying. Best-fitting spatial attention parameters (see Table 1)
are s = 1.18, d = 0.05, and g = 0.99. It can be seen that the baseline
shift accounts for the vast majority of the attentional effect in
the averaged responses for stimuli orthogonal to the preferred
orientation.

It is evident from this analysis of the results from Williford and
Maunsell (2006) that the main effect of spatial attention on the
population response is a baseline shift that increases the response
to a stimulus by an equal amount across all contrasts. Interestingly,
the baseline shift is roughly the same for both preferred and
orthogonal stimuli, indicating that spatial attention may increase
all neurons with RFs at the attended location by the same amount
(around 1 spike/s).



Table 5
Model fits and the results of nested model F-tests for the analysis of the V4 neurons that did not show significant attentional effects from Williford and Maunsell (2006). The
combination of attention parameters allowed to vary are shown in the first column, along with the sums of squared errors and percentage of variance accounted for. Additional
columns show nested model F-tests for fits when parameters are added to each model.

Williford and Maunsell (2006) Fig. 6C (Fig. 3B in text)

Model SSE Pct var Add parameter

s d g

No attention 0.0022 94.54 F(1,7) = 8.07 p = 0.0250 F(1,7) = 15.68 p = 0.0055 F(1,7) = 4.71 p = 0.0666
s 0.0010 97.46 F(1,6) = 3.62 p = 0.1058 F(1,6) = 0.69 p = 0.4365
d 0.0007 98.31 F(1,6) = 0.39 p = 0.5543 F(1,6) = 0.01 p = 0.9410
g 0.0013 96.73 F(1,6) = 2.62 p = 0.1569 F(1,6) = 5.63 p = 0.0553
s, d 0.0006 98.42 F(1,5) = 0.01 p = 0.9114
s, g 0.0009 97.73 F(1,5) = 2.20 p = 0.1977
d, g 0.0007 98.32 F(1,5) = 0.34 p = 0.5873
s, d, g 0.0006 98.42
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2.6. Effects of spatial attention on fMRI responses

Over the past several years, a variety of functional MRI studies
have shown that spatial attention increases fMRI responses in all
retinotopically organized visual areas, including primary visual
cortex, (V1) (Gandhi, Heeger, & Boynton, 1999; Martinez et al.,
1999; Somers, Dale, Seiffert, & Tootell, 1999) in a retinotopic fash-
ion (Brefczynski & DeYoe, 1999), even without the presence of a
stimulus (Kastner et al., 1999; Ress et al., 2000). These fMRI
responses presumably reflect some sort of spatial and temporal
averaging of an underlying neuronal response (Boynton, Engel,
Glover, & Heeger, 1996). The spatial averaging blurs responses
across sub-millimeter structures within visual areas, such as
direction-selective columns. FMRI responses therefore presumably
reflect a combined response across a population of neurons selec-
tive to a variety of stimulus features, such as direction of motion
and orientation.

A recent study measured fMRI responses for attended and unat-
tended grating stimuli across a range of contrasts (Buracas & Boyn-
ton, 2007). A blocked-design was used in which subjects
alternated between attending to gratings on the left and the right
side of the visual field. Attention was monitored by measuring per-
formance on either a speed or a contrast discrimination task (results
did not depend on the task). In one condition, the unattended hemi-
field was blank so the fMRI response in the region of interest was the
difference in response between an attended stimulus and unat-
tended blank field. In the second condition, a grating was always pre-
sented in both the sides, so the response in the region of interest was
the difference in response to attended and unattended stimuli. The
response to an unattended stimulus could thereby be calculated as
the difference between the first and second condition.

Fig. 4A and B show the results of this experiment from areas V1
and V2, respectively, averaged across four subjects. For area V1, a
Table 6
Model fits and the results of nested model F-tests for the analysis of the fMRI responses in
allowed to vary are shown in the first column, along with the sums of squared errors and pe
fits when parameters are added to each model.

Buracas and Boynton, Area V1 (Fig. 4A in text)

Model SSE Pct var Add parameter

s

No attention 0.6806 82.66 F(1,6) = 18.91 p = 0
s 0.1639 95.68
d 0.0735 98.14 F(1,5) = 0.10 p = 0.7
g 0.2404 93.75 F(1,5) = 2.91 p = 0.1
s, d 0.0720 98.17
s, g 0.1519 96.03
d, g 0.0734 98.14 F(1,4) = 0.09 p = 0.7
s, d, g 0.0718 98.18
baseline shift with attention was by far the most effective mecha-
nism, significantly improving the percentage of variance accounted
for from 82.6% to 98.1% (Table 6, F(1,6) = 49.6, p < 0.001), although
the other two attention parameters alone also significantly im-
proved the fit. The dashed lines in Fig. 4A show the best-fitting
model allowing for a baseline shift alone. The solid lines are for
the model allowing for all three spatial attention parameters to
vary. Adding additional attention parameters to the baseline shift
model did not improve the fit significantly, as can be seen by the
similarity of the dashed and solid lines. The best-fitting baseline
shift parameter was d = 0.16 (see Table 1). The best-fitting contrast
gain parameter was s = 0.88, which indicates a slight rightward
shift in the contrast-response function with spatial attention. The
best-fitting multiplicative gain factor was near unity (g = 1.01).

An analysis of the results in area V2 shows a similar result.
Allowing the three stimulus-dependent model parameters r, c
and d to vary while keeping the attention parameters fixed ac-
counts for only 47% of the variance in the data (see Table 7). Adding
a baseline shift with attention significantly increases the percent-
age to 99.3% (F(1,6) = 471.6, p < 0.0001). Allowing all three spatial
attention parameters to vary increases the percentage only slightly
(and not significantly) to 99.5%. The dashed lines in Fig. 4B show
the model prediction allowing for a baseline shift alone, while
the solid lines are for all three spatial attention variables varying.
Best-fitting parameter values (see Table 1) are s = 1.00, d = 0.21
and g = 1.12. Just as for area V1, it is clear that a baseline shift de-
scribes the entire effect of attention on these fMRI responses. Sim-
ilar results, showing a large baseline shift with spatial attention
with little evidence of contrast or multiplicative gain were found
in areas V3 and MT+ (data not shown).

A more recent publication also reports fMRI responses to at-
tended and unattended stimuli across contrasts in human visual
cortex (Li et al., 2008). In this study, subjects either performed an
area V1 from Buracas and Boynton (2007). The combination of attention parameters
rcentage of variance accounted for. Additional columns show nested model F-tests for

d g

.0048 F(1,6) = 49.57 p = 0.0004 F(1,6) = 10.99 p = 0.0161
F(1,5) = 6.38 p = 0.0527 F(1,5) = 0.40 p = 0.5568

608 F(1,5) = 0.00 p = 0.9512
486 F(1,5) = 11.37 p = 0.0198

F(1,4) = 0.01 p = 0.9274
F(1,4) = 4.46 p = 0.1023

804



Table 7
Model fits and the results of nested model F-tests for the analysis of the fMRI responses in area V2 from Buracas & Boynton (2006). The combination of attention parameters
allowed to vary are shown in the first column, along with the sums of squared errors and percentage of variance accounted for. Additional columns show nested model F-tests for
fits when parameters are added to each model.

Buracas & Boynton, Area V2 (Fig. 4B in text)

Model SSE Pct var Add parameter

s d g

No attention 0.8343 47.03 F(1,6) = 51.93 p = 0.0004 F(1,6) = 471.6 p < 0.0001 F(1,6) = 27.08 p = 0.0020
s 0.0864 94.86 F(1,5) = 36.25 p = 0.0018 F(1,5) = 1.45 p = 0.2830
d 0.0105 99.33 F(1,5) = 0.00 p = 0.9603 F(1,5) = 1.53 p = 0.2704
g 0.1513 90.46 F(1,5) = 6.29 p = 0.0540 F(1,5) = 89.37 p = 0.0002
s, d 0.0105 99.33 F(1,4) = 1.22 p = 0.3305
s, g 0.067 95.87 F(1,4) = 29.44 p = 0.0056
d, g 0.008 99.47 F(1,4) = 0.00 p = 0.9931
s, d, g 0.008 99.47
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Fig. 5. Results from (Li et al. (2008), Fig. 3B) showing contrast-response functions as measured with fMRI in humans with best-fitting model predictions (smooth curves).
Filled symbols and lines represent the response to the attended stimulus vs. an unattended blank field, and open symbols with gray lines for the estimated response to the
unattended stimulus vs. an unattended blank field. Best-fitting parameters are shown in Table 1. Panel A: fMRI responses from area V1. Dashed lines are best fits of the model
allowing only for a contrast gain change with spatial attention. Solid lines are for allowing all three spatial attention parameters (s, d and g) to vary. Panel B: Area V2. Dashed
lines are best fits of the model allowing only for a baseline change with spatial attention. Solid lines are for allowing all three spatial attention parameters (s, d and g) to vary.
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orientation judgment on an annular grating stimulus, or attended
away from the annulus by performing a letter judgment task at fix-
ation, so the attended feature (and task difficulty) differed when
the stimulus was attended vs. unattended.

Their results are replotted in Fig. 5A and B (from their Fig. 4) for
visual areas V1 and V2, respectively. Unlike the results from Bura-
cas and Boynton (2007), Li et al.’s results show evidence of contrast
gain with spatial attention in area V1. Allowing for contrast gain
significantly improved the percent of variance accounted for by
the model from 77.7% to 91.2% (Table 8, F(1,8) = 18.74, p < 0.005).
A baseline shift alone also significantly improved the fit
(F(1,8) = 7.25, p < 0.05), but by a smaller amount (to 87.9%). The
contrast gain parameter could not significantly explain the atten-
Table 8
Model fits and the results of nested model F-tests for the analysis of the fMRI responses in
are shown in the first column, along with the sums of squared errors and percentage of
parameters are added to each model.

Li et al., Area V1 (Fig. 5A in text)

Model SSE Pct var Add parameter

s

No attention 3.5099 77.65 F(1,8) = 18.74 p =
s 1.0502 91.18
d 1.8416 87.89 F(1,7) = 5.28 p = 0
g 2.562 80.96 F(1,7) = 10.73 p =
s, d 1.0496 91.03
s, g 1.0115 91.14
d, g 1.5382 87.2 F(1,6) = 3.66 p = 0
s, d, g 0.955 92.72
tional effects (F(1,8) = 2.96, p = 0.12). The dashed lines are the
best-fitting model allowing for a contrast gain parameter alone.
The solid lines are for all three spatial attention parameters vary-
ing. There is a slight deviation between the curves at lower con-
trasts, but adding these additional parameters did not
significantly improve the fit. Best-fitting parameter values (Table
1) are s = 4.42, d = 0.07 and g = 0.77.

For area V2, allowing the three stimulus-dependent model
parameters r, c and d to vary while keeping the attention param-
eters fixed accounts for 65% of the variance in the data. Unlike the
results from V1, a baseline shift with attention had the greatest
influence on the fit, increasing the percentage significantly to
93.1% (Table 9, F(1,8) = 20.6, p < 0.005). The other two parameters
area V1 from Li et al. (2008). The combination of attention parameters allowed to vary
variance accounted for. Additional columns show nested model F-tests for fits when

d g

0.0025 F(1,8) = 7.25 p = 0.0274 F(1,8) = 2.96 p = 0.1237
F(1,7) = 0.00 p = 0.9476 F(1,7) = 0.27 p = 0.6205

.0551 F(1,7) = 1.38 p = 0.2784
0.0136 F(1,7) = 4.66 p = 0.0678

F(1,6) = 0.59 p = 0.4701
F(1,6) = 0.36 p = 0.5730

.1041



Table 9
Model fits and the results of nested model F-tests for the analysis of the fMRI responses in area V2 from Li et al. (2008). The combination of attention parameters allowed to vary
are shown in the first column, along with the sums of squared errors and percentage of variance accounted for. Additional columns show nested model F-tests for fits when
parameters are added to each model.

Table 9. Li et al., Area V2 (Fig. 5B in text)

Model SSE Pct var Add parameter

s d g

No attention 10.2511 65.27 F(1,8) = 17.54 p = 0.0030 F(1,8) = 20.60 p = 0.0019 F(1,8) = 7.06 p = 0.0289
s 3.2108 87 F(1,7) = 3.66 p = 0.0974 F(1,7) = 0.38 p = 0.5574
d 2.8676 93.07 F(1,7) = 2.52 p = 0.1565 F(1,7) = 1.20 p = 0.3094
g 5.4443 78.3 F(1,7) = 5.51 p = 0.0512 F(1,7) = 8.57 p = 0.0221
s, d 2.1086 94.93 F(1,6) = 0.47 p = 0.5167
s, g 3.0457 88.43 F(1,6) = 3.35 p = 0.1169
d, g 2.4477 93.97 F(1,6) = 1.52 p = 0.2643
s, d, g 1.9541 95.88
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also significantly improved the fit (contrast gain; 87%,
F(1,8) = 17.54, p < 0.005, multiplicative gain; 78.3, F(1,8) = 7.06,
p < 0.05). Dashed curves in Fig. 5B show the best-fitting model
allowing for baseline shift with attention, and solid curves are for
all three spatial attention parameters varying. There is a clear devi-
ation between the curves, indicating that allowing for these addi-
tional parameters alters the predictions of the best-fitting model.
However, statistically, these additional parameters do not signifi-
cantly improve the quality of the fit.

An even more recent study also reported the effects of spatial
attention on human fMRI responses in early retinotopically orga-
nized visual areas (Murray, 2008). An advantage of the experimen-
tal design used by Murray (2008) is that it allowed for a
measurement at zero contrast. This is an important measurement
because an attentional effect at zero contrast can only be explained
by a baseline shift, and not by contrast gain or multiplicative gain.
Murray concluded that the effects of spatial attention at zero con-
trast are very similar to the effects at all other contrasts and con-
cludes that spatial attention effects are therefore independent on
the strength of the stimulus. In the paper, the results of this exper-
iment were analyzed in a manner similar to those described here
where a model of contrast gain, multiplicative gain and a baseline
shift were each fit to the data. A baseline shift with attention was
found to best describe the results in areas V1, V2 and V3.

The results from this experiment in are shown in Fig. 6 along
with fits of the model to the data. Fig. 6A shows the results from
area V1, averaged across four subjects. Filled symbols and dark
lines indicate responses to attended stimuli, and open symbols
and gray lines are for unattended stimuli. For area V1, a baseline
shift with attention was the most effective mechanism, signifi-
cantly improving the percentage of variance accounted for from
73.2% to 87.1% (Table 10, F(1,10) = 10.98, p = 0.0078). The multipli-
cative gain parameter improved the fit significantly also, but not as
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Fig. 6. Results from Murray (2008) showing contrast-response functions as measured w
predictions (smooth curves). Filled symbols and dark lines represent the response to the a
the estimated response to the unattended stimulus vs. an unattended blank field. Best-fitt
only for a baseline change with spatial attention. Solid lines are for allowing all three sp
much as the baseline shift (84.6%, F(1,10) = 7.63, p = 0.0201). The
contrast gain parameter alone failed to improve the fit over the
no attention model (77.7%, F(1,10) = 2.01, p = 0.1868). The dashed
lines in Fig. 6A show the best-fitting model allowing for a baseline
shift alone. The solid lines are predictions of the model allowing for
all three spatial attention parameters to vary. Including the two
additional attention parameters to the baseline shift model did
not improve the fit significantly, as can be seen by the similarity
of the dashed and solid lines. The best-fitting baseline shift param-
eter was d = 0.12 (see Table 1). The best-fitting contrast gain
parameter was s = 0.85, which, like the results from Buracas and
Boynton (2007) indicates a slight rightward shift in the contrast-re-
sponse function with spatial attention. The best-fitting multiplica-
tive gain factor was near unity (g = 0.97).

An analysis of the results in area V2 are very similar to the re-
sults from Buracas and Boynton (2007). Allowing the three stimu-
lus-dependent model parameters r, c and d to vary while keeping
the attention parameters fixed accounts for 71.7% of the variance in
the data (see Table 11). Adding a baseline shift with attention sig-
nificantly increased the percentage to 93.2% (F(1,10) = 31.46,
p = 0.0002). Allowing all three spatial attention parameters to vary
had essentially no further improvement on the quality of fit. The
dashed lines in Fig. 6B show the model prediction allowing for a
baseline shift alone, while the solid lines are for all three spatial
attention variables varying. Best-fitting parameter values (see Ta-
ble 1) are s = 0.94, d = 0.15 and g = 1.00. Just as for area V1, it is
clear that a baseline shift describes the entire effect of attention
on these fMRI responses.

2.7. Feature-based attention

Feature-based attention has been clearly demonstrated in ma-
caque area MT in a pair of studies that show how responses to
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ith fMRI in humans in area V1 (Panel A) and V2 (Panel B) with best-fitting model
ttended stimulus vs. an unattended blank field, and open symbols with gray lines for
ing parameters are shown in Table 1. Dashed lines are best fits of the model allowing
atial attention parameters (s, d and g) to vary.



Table 10
Model fits and the results of nested model F-tests for the analysis of the fMRI responses in area V1 from Murray (2008). The combination of attention parameters allowed to vary
are shown in the first column, along with the sums of squared errors and percentage of variance accounted for. Additional columns show nested model F-tests for fits when
parameters are added to each model.

Murray et al., Area V1 (Fig. 6A in text)

Model SSE Pct var Add parameter

s d g

No attention 2.3075 73.21 F(1,10) = 2.01 p = 0.1868 F(1,10) = 10.98 p = 0.0078 F(1,10) = 7.63 p = 0.0201
s 1.9215 77.72 F(1,9) = 6.43 p = 0.0320 F(1,9) = 4.23 p = 0.0699
d 1.1000 87.05 F(1,9) = 0.17 p = 1.0000 F(1,9) = 0.01 p = 0.9179
g 1.309 84.61 F(1,9) = 0.01 p = 0.9145 F(1,9) = 1.72 p = 0.2217
s, d 1.1209 86.97 F(1,8) = 0.19 p = 0.6729
s, g 1.3073 84.64 F(1,8) = 1.55 p = 0.2478
d, g 1.0987 87.07 F(1,8) = 0.03 p = 0.8680
s, d, g 1.0946 87.11

Table 11
Model fits and the results of nested model F-tests for the analysis of the fMRI responses in area V2 from Murray (2008). The combination of attention parameters allowed to vary
are shown in the first column, along with the sums of squared errors and percentage of variance accounted for. Additional columns show nested model F-tests for fits when
parameters are added to each model.

Murray et al., Area V2 (Fig. 6B in text)

Model SSE Pct var Add parameter

s d g

No attention 4.1362 71.71 F(1,10) = 9.54 p = 0.0115 F(1,10) = 31.46 p = 0.0002 F(1,10) = 15.95 p = 0.0025
s 2.1172 85.49 F(1,9) = 10.12 p = 0.0112 F(1,9) = 4.64 p = 0.0596
d 0.9978 93.24 F(1,9) = 0.01 p = 0.9131 F(1,9) = 0.00 p = 0.9722
g 1.594 89.15 F(1,9) = 1.27 p = 0.2888 F(1,9) = 5.38 p = 0.0455
s, d 0.9964 93.24 F(1,8) = 0.00 p = 0.9969
s, g 1.3967 90.59 F(1,8) = 3.21 p = 0.1107
d, g 0.9976 93.24 F(1,8) = 0.01 p = 0.9226
s, d, g 0.9964 93.24
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unattended stimuli are dependent on whether or not they shared a
feature with an attended stimulus presented outside the RF. In the
first study, MT responses to an unattended field of dots that moved
in the neurons’ preferred direction were larger when attention was
directed outside the RF to a remote field of dots moving in the
same direction, compared to when the attended dots were moving
in the opposite direction (Treue & Martinez Trujillo, 1999), even
though the unattended stimulus inside the RF did not change.

The second study was a quantitative manipulation of this re-
mote effect of feature-based attention (Martinez-Trujillo & Treue,
2004) in which responses were measured in area MT to moving
fields of dots spanning the entire range of directions. Two atten-
tional conditions were used. In both the conditions, the monkey at-
tended outside the RF. In the first condition the monkey responded
to a luminance change of a small color square at fixation. This con-
dition measured the effect of changing the direction of motion in-
side the RF while keeping spatial and feature-based attention
constant. In the second condition, attention was directed to a stim-
ulus outside the RF that moved in the same direction as the stim-
ulus inside the RF. This measured the effects of feature-based
attention, when both the attended feature and the stimulus had
the same direction of motion.

Our model incorporates these authors’ concept of feature-simi-
larity gain as a multiplicative gain factor, G, on the response, H from
Eq. (1). Given a stimulus with features, xi, and contrasts, ci, atten-
tion to the feature y results in the response modeled in Eq. (4).

Rðx; y; cÞ ¼ GðyÞHðx; cÞ ð4Þ

In their figure 4B, Martinez-Trujillo and Treue (2004) plot the
ratio of responses to the ‘attend-same’ and the ‘attend-fixation’
condition. This plot of ratios reveals the shape of the feature-based
gain change because feature-based attention only varied in the ‘at-
tend-same’ condition. The ratio is greater than 1 when the stimulus
in the RF moved in the preferred direction of the neuron and drops
off monotonically to a value less than 1 for the anti-preferred
direction. Martinez-Trujillo and Treue (2004) fit this function of ra-
tios with a linear model. However, a close inspection of their re-
sults shows that the modulation ratio drops off more like a
Gaussian. In fact, the Gaussian appears to have a similar width as
the Gaussian-shaped tuning function of the stimulus-driven
response.

Here, G(y) is therefore assumed to be a Gaussian with the same
width and peak location as the sensitivity function F, but is scaled
to range between a maximum of Gmax > 1 and a minimum of
Gmin 6 1. Specifically:

GðyÞ ¼ ðGmax � GminÞe�ðy�xpÞ2=w2 þ Gmin ð5Þ

where xp is the neuron’s preferred feature value.
Importantly, with this description of feature-based attention

the attended feature, y does not need to be present in the stimulus
within the neuron’s RF. Instead, the attended feature can be part of
a stimulus that is attended outside the RF of the neuron. That is,
G(y) is a purely feature-based effect, and is independent of spatial
attention.

Fig. 7 shows the results from Martinez-Trujillo and Treue
(2004), showing the averaged response across 135 MT neurons
(their Fig. 4A), with filled symbols and black lines for the ‘attend
same’ condition and open symbols and gray lines representing
the ‘attend fixation’ condition. Responses were normalized by the
authors along the direction axis so that the preferred direction
was always 0 degrees. The ‘attend fixation’ condition shows the ex-
pected direction-selective tuning of an MT neuron. The ‘attend
same’ condition shows a similar shaped function, but with a great-
er overall amplitude of modulation. When the attention was in the
preferred direction, responses were greater than the ‘attend fixa-
tion’ condition, implying an expansive gain factor. However, when
attention was in the anti-preferred direction, responses were
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Fig. 7. Results from Martinez-Trujillo and Treue (2004), Fig. 4A) of the average
response to 135 MT neurons and model predictions for the ‘attend same’ (filled
symbols, black lines) and ‘attend fixation’ (open symbols, gray lines) conditions. The
model assumes a 100% contrast stimulus. The parameter r was fixed at 15% because
the contrast of the stimulus was constant. Spatial attention parameters s, d and g�
were not allowed to vary as spatial attention was kept constant in this experiment.
Best-fitting parameters are shown in Table 1. Dashed lines are best fits of the model
allowing only for the feature attention gain parameters Gmax and Gmin to vary. Solid
lines are for allowing all three spatial attention parameters (Gmax, Gmin, d and w) to
vary.
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weaker than the ‘attend fixation’ condition, showing a suppressive
gain change with feature-based attention.

The model was fit to the data with three sets of attention
parameters: a baseline parameter d, the pair of feature-based
attention gain parameters Gmax and Gmin, and a parameter, w, is a
scale factor that allows the width of the tuning to vary between
the ‘attend same’ and ‘attend fixation’ conditions. Fits of the model
to the data shows that Gmax and Gmin are the only parameters that
provide an improvement in the fit (Table 12, from 89 to 93.8%,
F(2,19) = 7.23, p < 0.005). Adding the additional parameters pro-
vided no additional improvement in the fit.

The dashed lines show the best-fitting model with Gmax and
Gmin allowed to vary. The solid lines are for all attentional param-
eters varying. The curves overlap nearly completely, showing how
the additional attention parameters d and w do not help to de-
scribe the effects of feature-based attention on these averaged neu-
ronal responses. Best-fitting attention parameter values are
Gmax = 1.3, Gmin = 0.76, d = �0.01 and w = 0.97.
2.8. The effects of attention on tuning width

The analysis of the results from Martinez-Trujillo and Treue
(2004) shows that the tuning width of direction selectivity of neu-
rons in area MT is not affected by feature-based attention. Instead,
Table 12
Model fits and the results of nested model F-tests for the analysis of the MT neurons from M
vary are shown in the first column, along with the sums of squared errors and percentage o
parameters are added to each model.

Martinez-Trujillo and Treue 2004) Fig. 4A (Fig. 6 in text)

Model SSE Pct var Add parameters

Gmax, Gmin

No attention 1.4746 88.95 F(2,19) = 7.23 p =
Gmax, Gmin 0.8373 93.79
d 1.4746 88.95 F(2,18) = 6.85 p =
w 1.4365 88.52 F(2,18) = 6.48 p =
Gmax, Gmin, d 0.8373 93.79
Gmax, Gmin, w 0.8354 93.7
d, w 1.4365 88.52 F(2,17) = 6.12 p =
Gmax, Gmin, d, w 0.8354 93.7
fits of the model show that feature-based attention acts to enhance
or suppress the stimulus-driven responses with a gain factor that
has the same tuning width as the stimulus-driven response.

The invariance of tuning width with attention was more di-
rectly investigated for orientation selectivity in area V4 (McAdams
& Maunsell, 1999). In this study, responses in macaque area V4
were measured while monkeys attended either to an oriented Ga-
bor stimulus inside the RF (ranging across orientations), or to a col-
ored Gaussian patch outside the RF. Responses to attended and
unattended stimuli were closely fit by the authors with a single
Gaussian function that varied only by scaling amplitude and add-
ing a vertical offset.

One caveat about this experimental design is that both feature-
based attention and spatial attention were manipulated due to the
difference between the tasks and stimuli inside and outside the RF.
The model here could predict these results either as a manipula-
tion of feature-based attention or by spatial attention. For fea-
ture-based attention, Gmax and Gmin would be allowed to vary,
keeping the spatial attention parameters constant. For spatial
attention, Gmax and Gmin would be set to 1, while allowing the
parameters s and d to vary. An equivalent model for spatial
attention would to be to allow for a multiplicative gain change
through the parameter g instead of a contrast gain factor. This is
because for a fixed contrast, it is not possible to distinguish be-
tween contrast and response gain models of attention (Reynolds
& Chelazzi, 2004).

It turns out that for this particular experiment, feature-based
attention and spatial attention parameters make identical predic-
tions because both sets of parameters impose a shift and scaling
of the tuning function with attention. In either case, the invariance
of tuning width with attention can be tested by allowing the tuning
width scale factor w to vary with attention.

Without loss of generality, the feature-based attention version
of the model was fit to the results. Fig. 8 shows the average of re-
sponses across the 262 V4 neurons reported by McAdams and
Maunsell (1999), their Fig. 7). The results from each of the individ-
ual neurons were adjusted by the authors before averaging so their
peak responses were at zero orientation. Solid symbols are re-
sponses to attended stimuli and open symbols are for unattended
stimuli.

Three specific effects of attention on the population response
were quantified through fits of the model to the data. The relevant
feature-based attention parameters were Gmin and Gmax. For a less
constrained model, a version allowing a baseline change (d) and
the parameter that allows the width of the tuning to vary with spa-
tial attention (w) was also fit to the data.

The two parameters Gmax and Gmin that allow for a feature-
based gain of attention increased the percent of variance ac-
counted for from 92.5% to a remarkable 99.83% (Table 13,
artinez-Trujillo and Treue (2004). The combination of attention parameters allowed to
f variance accounted for. Additional columns show nested model F-tests for fits when

d w

0.0046 F(1,20) = 0.00 p = 1.0000 F(1,20) = 0.53 p = 0.4748
F(1,18) = 0.00 p = 1.0000 F(1,18) = 0.04 p = 0.8406

0.0061 F(1,19) = 0.50 p = 0.4863
0.0076 F(1,19) = 0.00 p = 1.0000

F(1,17) = 0.04 p = 0.8452
F(1,17) = 0.00 p = 1.0000

0.0100
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Fig. 8. Results reproduced from McAdams and Maunsell (1999), Fig. 7A and B) of
the average response from 262 V4 neurons with best-fitting model predictions
(smooth curves) allowing for both a contrast gain and a baseline shift with spatial
attention. Filled symbols and lines represent the response to the attended stimulus,
and open circles and gray lines for the unattended stimulus. The model assumes a
100% contrast stimulus. Best-fitting parameters are shown in Table 1. Dashed lines
are best fits of the model allowing only for a contrast gain change with spatial
attention. Solid lines are for allowing all three spatial attention parameters (s, d and
w) to vary.
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F(2,21) = 583.51 p < 0.00001). Once these parameter were allowed
to vary, adding a baseline parameter d failed to significantly im-
prove the fit (99.83%, F(1,20) = 0.33 p = 0.5746). This was due to
redundancy in the effects of the baseline shift and the feature-
based gain parameters for this particular implementation of the
model. Allowing the tuning width parameter, w, to vary also failed
to further improve the fit (99.84%, F(1,20) = 1.37 p = 0.2548).

Dashed lines show the model fits with only the feature-based
attention gain parameter allowed to vary, and solid lines are for
all attention parameters varying (Gmax, Gmin, d and w). The curves
overlap completely, showing how the feature-based attention
parameters are sufficient for explaining the results.

A later study by McAdams and Maunsell supports the notion
that the gain changes seen in the results shown in Fig. 7 are at
least in part due to a feature-based manipulation. In a second
study, monkeys were trained to attend to an oriented Gabor
stimulus that was identical to the stimulus in the RF (McAdams
& Maunsell, 2000). This experiment was therefore a pure mani-
pulation of spatial attention. They found that the difference in
V4 responses between attending inside and outside the RF was
greater for the Gabor outside the RF than for the colored Gauss-
ian outside the RF (their original study). This is analogous to the
feature-based attention measured by Martinez-Trujillo and Treue
(2004)) in area MT at the neuron’s preferred direction of motion
(Fig. 7).
Table 13
Model fits and the results of nested model F-tests for the analysis of the V4 neurons from
vary are shown in the first column, along with the sums of squared errors and percentage o
parameters are added to each model.

McAdams and Maunsell (1999) Fig. 7A) (Fig. 7 in text)

Model SSE Pct var Add parameter

Gmax, Gmin

No attention 11.4679 92.49 F(2,21) = 583.51 p < 0.
Gmax, Gmin 0.2027 99.83
d 2.6995 97.96 F(2,20) = 125.34 p < 0.
w 6.3355 96.31 F(2,20) = 324.01 p < 0.
Gmax, Gmin, d 0.1995 99.83
Gmax, Gmin, w 0.1897 99.84
d, w 2.6758 97.93 F(2,19) = 124.50 p < 0.
Gmax, Gmin, d, w 0.1897 99.84
2.9. Effects of feature-based attention on fMRI responses

The feature-similarity gain model predicts that a neuron’s re-
sponse to an unattended stimulus is modulated by the feature that
is attended, even if attention is directed outside that neuron’s
receptive field. Attention to a given feature will enhance the re-
sponse of neurons tuned to the attended feature, and reduce the
response of neurons tuned away from the attended feature. The
population-based fMRI response is therefore unlikely to show
modulation with feature-based attention, unless a particular sub-
population of feature-selective neurons is emphasized or selected
in some way.

Saenz, Buracas, and Boynton (2002) biased the population-
based fMRI response toward neurons that respond to a particular
feature (direction of motion) by placing a single field of moving
dots in the unattended side of the visual field while subjects per-
formed a speed discrimination task on one of two fields of overlap-
ping dots on the attended side. When the unattended stimulus was
moving in the same direction as the attended field the fMRI re-
sponse to the unattended stimulus increased in areas V1, V2, V3,
V3A and MT+, as compared to when attention was directed to mo-
tion in the opposite direction.

More recently, it has been shown that feature-based attention
can produce predictable changes in the pattern of responses across
voxels. Pattern classification methods that analyze patterns of re-
sponses across voxels have demonstrated that it is indeed possible
to predict which orientation (Kamitani & Tong, 2005) or direction a
subject is either viewing or attending (Kamitani & Tong, 2006; Ser-
ences & Boynton, 2007). Successful pattern classification for mo-
tion occurs in all early human visual areas including V1, V2, V3V,
V4 and MT+. Thus feature-based attention leads to increases and
decreases in individual neuronal responses which have a measur-
able influence on the pattern of fMRI responses across voxels. It
has also recently been shown, as predicted by our model and the
results of Saenz et al. (2002) that the pattern of fMRI responses
to an unattended stimulus is also affected in a systematic manner
as a function of feature-based attention (Serences & Boynton,
2007).

One interesting prediction of the implementation of the fea-
ture-similarity gain model here is that baseline firing rates, when
no stimulus is present, should be affected by feature-based atten-
tion. This is because the gain factor G is multiplied after the addi-
tive baseline parameter d. As a result, feature-based attention
should affect the responses of neurons at all locations even in the
absence of a stimulus. This prediction is supported by the recent
finding that pattern classification methods can reliably predict
the attended direction of motion from fMRI responses in an unat-
tended hemifield that contains no stimulus (Serences & Boynton,
2007). Indeed, classification accuracy with no stimulus present
McAdams and Maunsell (1999). The combination of attention parameters allowed to
f variance accounted for. Additional columns show nested model F-tests for fits when

d w

00001 F(1,22) = 71.46 p < 0.00001 F(1,22) = 17.82 p = 0.0004
F(1,20) = 0.33 p = 0.5746 F(1,20) = 1.37 p = 0.2548

00001 F(1,21) = 0.19 p = 0.6712
00001 F(1,21) = 28.72 p < 0.00001

F(1,19) = 0.98 p = 0.3354
F(1,19) = 0.00 p = 1.0000

00001
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was nearly the same as accuracy when either an attended or unat-
tended stimulus was present. Further support for the effects of fea-
ture-based attention on baseline responses come from a recent
behavioral study showing that the motion aftereffect can be elic-
ited in an unattended visual hemifield, even when no stimulus is
present, via adaptation caused by attending to a moving stimulus
in the opposite hemifield (Boynton, Ciaramitaro, & Arman, 2006).

3. Discussion

The model described here can accurately predict a wide variety
of experimental results on how spatial and feature-based attention
influence responses in visually-driven neurons. The model has four
stimulus-dependent parameters (r, c, d and x), and six attentional
parameters (s, g, d, w, Gmax and Gmin). Each of these studies manip-
ulated only certain stimulus and attentional properties, so that
each of the fits to the data required only three stimulus-dependent
parameters and up to three attentional parameters.

3.1. Spatial attention

Placing these experiments in the common context of a single
model allows for a direct comparison of how attention affects
averaged neuronal responses in the visual cortex of humans and
monkeys. For the effects of spatial attention on monkey V4 neu-
rons across stimulus contrast, different subpopulations of neurons
appear to require different parameter values. This can be seen in
the results from Reynolds et al. (2000) (Fig. 1) where the neurons
that were most affected by attention primarily required a contrast
gain parameter (Fig. 1A), but the neurons that were not signifi-
cantly affected by attention (Fig. 1B) required only a baseline gain
parameter. Assuming a maximum spike rate of 40 spikes/s, these
baseline shifts correspond to about 1.5 spikes/second. It is not
known why the individual neurons for Fig. 1B did not show
significant attentional effects, but it is clear that their overall re-
sponses were about half of that of the neurons that do show an
attentional effect. One possible explanation for this difference in
overall response level is that the stimuli for the neurons in
Fig. 1B were less optimally matched to the tuning properties of
the neuron.

The parameters from the fits to the results from Reynolds et al.
(2000) can be directly compared to the best-fitting parameters
Williford and Maunsell (2006). It can be seen visually from the re-
sults in Fig. 2A that the effects of attention in the study by Williford
and Maunsell (2006) are most clearly described by a baseline shift.
Interestingly, for the non-preferred stimulus (Fig. 2B), a similar
baseline shift was found even though, as expected, the overall re-
sponses were much weaker than for the preferred stimulus.
Assuming from their data a maximum firing rate of 45 spikes/s,
the best-fitting baseline shift parameters translate to an increase
of about 2–3 spikes/s with spatial attention.

A hypothesis that can be generated from the combined analysis
of these two studies is that all neurons show both a contrast gain
and a baseline shift with spatial attention. The contrast gain effect
will be most prominent for stimuli that strongly drive the neuron,
but the baseline shift will occur for any neuron with its RF at the
attended location. When the stimulus in the RF is not optimal for
the neuron, then the effects of spatial attention will be dominated
by the baseline component.

This could explain why the effects of spatial attention on the
fMRI response across stimulus contrast as measured by Buracas
and Boynton (2007) and by Murray (2008) are dominated by a
baseline shift. It is well-known that the properties of a visual
scene are coded sparsely across neurons in the visual system
(Olshausen & Field, 2004). This means that any given stimulus
will only excite a small proportion of visual neurons, especially
if the stimulus is a simple grating stimulus like those used in
the experiments discussed here. If the fMRI signal reflects an
aggregate response across the entire population of neurons,
and spatial attention has an effect on the baseline response of
every neuron in a given fMRI voxel, then it is easy to see how
the fMRI response could be dominated by this small, but ubiqui-
tous increase in baseline firing rates in individual neurons, com-
pared to a contrast gain change in a small subset of neurons
excited by the stimulus.

One fMRI study described here (Li et al., 2008) did not show a
strong baseline shift with spatial attention in V1 (but a baseline
shift was best at describing the effects in V2). While this result
may be consistent with some of the electrophysiology results in
monkey area V4, (Reynolds et al., 2000), it is not in agreement with
the other two fMRI studies in area V1 described here (Buracas &
Boynton, 2007; Murray, 2008). Li et al. found little or no effect of
spatial attention at zero contrast, which is surprising because it
does not agree with three published fMRI studies showing strong
effects of attention in the absence of visual stimulation (Kastner
et al., 1999; Murray, 2008; Ress et al., 2000).

One possible explanation for the discrepancy between Li et al.
(2008) and Buracas and Boynton (2007) is that the contrast-re-
sponse functions measured by Li et al. (2008) show greater re-
sponse saturation than those in the study by Buracas and
Boynton (2007). The nearly constant slope in the results by
Buracas and Boynton (2007) makes it difficult to distinguish be-
tween a contrast gain model and a baseline shift. Li et al. (2008)
also measured responses across a broader range of contrasts.
Their contrast-response functions show more variability in slope,
which perhaps allowed for better discrimination between the
two attentional mechanisms. However, the results shown here
from Murray (2008) do show response saturation and variability
in slope, yet are also dominated by a baseline shift with spatial
attention.

3.2. Feature-based attention

For feature-based attention, the model incorporates the fea-
ture-similarity gain hypothesis which predicts that feature-based
attention acts as a multiplicative gain (after the baseline firing
rate is added). Feature-based attention can either enhance or
suppress the firing rate of the neuron, depending on the rela-
tionship between the attended feature and the preferred feature
of the neuron. The model adequately describes the results from
the parametric study by Martinez-Trujillo and Treue (2004) by
letting the effects of feature-based attention range from an excit-
atory multiplicative gain factor of 1.3 to an inhibitory gain factor
of 0.76.

As described above, the study by McAdams and Maunsell
(1999) (our Fig. 5) showing the effects of attention on the orienta-
tion tuning of V4 neurons manipulated both spatial and feature-
based attention. For this experiment, parameters allowing for fea-
ture-based attention and spatial attention make equal predictions.
We know that there is an effect of feature-based attention because
a subsequent study (McAdams & Maunsell, 2000) showed that the
effects of attention were smaller when only spatial attention was
manipulated. When their results, shown in Fig. 8, are considered
to be associated with feature-based attention, they can be closely
fit with a multiplicative feature-based gain change with attention.
The actual results are likely to be a combination of the two types of
attention, but since this study was conducted with stimuli of a
fixed contrast, there is not enough information in the results to
be able to separately measure the effects of spatial and feature-
based attention.
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3.3. Baseline effects

Perhaps the most surprising finding across the analyzes de-
scribed here is the strong role of baseline firing rates in both spatial
and feature-based attention. For both the electrophysiological and
the fMRI studies of spatial attention, a baseline shift with attention
was often sufficient to describe the results. Model fits presented
here suggest that the estimated increase in baseline firing rates
with spatial attention is only a few spikes per second. This modest
increase is unlikely to have a significant influence on the signal-to-
noise of the firing properties of a responsive neuron. However, for
the majority of neurons that do not respond to a given stimulus,
this increase is relatively large; an increase of 2 spikes/s with
attention corresponds to a 20% increase for a typical baseline firing
rate of 10 spikes/s.

Nevertheless, the baseline shifts for fMRI responses with spatial
attention still appear remarkably large, especially in light of a re-
cent electrophysiology study in humans that showed little influ-
ence by attention on local field potentials in V1 (Yoshor, Ghose,
Bosking, Sun, & Maunsell, 2007). The relationship between the
BOLD signal and the underlying neurophysiological response is still
not well understood, and it is likely that the fMRI response is more
complicated than a simple linear transform of spiking activity.
Simultaneous recordings of electrophysiological and fMRI re-
sponses in monkeys suggest that coherent gamma-band activity
correlates particularly well with the BOLD signal (Logothetis,
2002; Shmuel & Leopold, 2008). It has been shown that attention
increases gamma-band synchronization between LFPs and spike
trains (Fries, Reynolds, Rorie, & Desimone, 2001). Thus, it could
be that the large effects of spatial attention on fMRI responses in
V1 are not directly due to increases in spiking activity, but instead
to increased gamma-band activity.

One can only speculate about the functional significance of a
baseline shift with attention. Increasing the baseline firing rate of
neurons that are not tuned to the behaviorally relevant stimulus
could have either beneficial or detrimental effects on performance,
depending on the pooling rule used in the decision process. For an
ideal observer pooling across all neurons, performance in a dis-
crimination or detection task depends on the ratio of the mean
and the standard deviation of the firing rate (Geisler & Albrecht,
1997). An increase in the baseline firing rate with attention would
only be beneficial to an ideal observer if the standard deviation in-
creases more slowly than the mean. This is generally true for stim-
ulus-driven responses in individual neurons (where the variance of
the firing rate is roughly proportional to the mean) (Geisler &
Albrecht, 1997). However, less is known about the influence of
attention on the variability of neuronal responses.

3.4. Physiological mechanisms of attention

The purpose of this exercise is to compare a wide range of
experiments with the same model to determine the similarities
and differences across results. The model is purely a descriptive
model and makes no claims for how the attentional effects could
be implemented physiologically. There some modeling efforts do
employ physiologically-based mechanisms to describe attentional
effects. For example, (Carandini & Heeger, 1994) show that the pro-
cess of contrast gain could be implement through a process of
shunting inhibition (but see (Holt & Koch, 1997). In another
example, (Buia & Tiesinga, 2008) implicated different classes of
interneurons for different types of attention and propose that fea-
ture-based attention is mediated by a projection of top-down
interneurons to the feed-forward interneurons, while spatial atten-
tion may be the result of modulation of feed-forward inputs alone.
In another modeling effort, Ardid, Wang, and Compte (2007) show
how a network model of spiking neurons can mimic the feature-
similarity gain model of feature-based attention. Often these phys-
iologically oriented models are designed to fit results from a spe-
cific published experiment. It is hoped that the analysis
presented here will provide a description of typical attention ef-
fects found across the literature in order to restrict the set of effects
needed to be explained through more physiologically-based
models.

Acknowledgments

The author acknowledges Drs. Ione Fine and Scott Murray for
her helpful suggestions and comments.

References

Albrecht, D. G., & Hamilton, D. B. (1982). Striate cortex of monkey and cat: Contrast
response function. Journal of Neurophysiology, 48(1), 217–237.

Ardid, S., Wang, X. J., & Compte, A. (2007). An integrated microcircuit model of
attentional processing in the neocortex. Journal of Neuroscience, 27(32),
8486–8495.

Bisley, J. W., Zaksas, D., Droll, J. A., & Pasternak, T. (2004). Activity of neurons in
cortical area MT during a memory for motion task. Journal of Neurophysiology,
91(1), 286–300.

Boynton, G. M. (2005). Attention and visual perception. Current Opinion in
Neurobiology, 15(4), 465–469.

Boynton, G. M., Ciaramitaro, V. M., & Arman, A. C. (2006). Effects of feature-based
attention on the motion aftereffect at remote locations. Vision Research, 46(18),
2968–2976.

Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems
analysis of functional magnetic resonance imaging in human V1. Journal of
Neuroscience, 16(13), 4207–4221.

Brefczynski, J. A., & DeYoe, E. A. (1999). A physiological correlate of the ‘spotlight’ of
visual attention. Nature Neuroscience, 2(4), 370–374.

Buia, C. I., & Tiesinga, P. H. (2008). Role of interneuron diversity in the cortical
microcircuit for attention. Journal of Neurophysiology, 99(5), 2158–2182.

Buracas, G. T., & Boynton, G. M. (2007). The effect of spatial attention on contrast
response functions in human visual cortex. Journal of Neuroscience, 27(1),
93–97.

Carandini, M., & Heeger, D. J. (1994). Summation and division by neurons in primate
visual cortex. Science, 264(5163), 1333–1336.

Carandini, M., Heeger, D. J., & Movshon, J. A. (1997). Linearity and normalization in
simple cells of the macaque primary visual cortex. Journal of Neuroscience,
17(21), 8621–8644.

Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993). A neural basis for visual
search in inferior temporal cortex. Nature, 363(6427), 345–347.

Dean, A. F. (1981). The variability of discharge of simple cells in the cat striate
cortex. Experimental Brain Research, 44(4), 437–440.

Ferrera, V. P., Rudolph, K. K., & Maunsell, J. H. (1994). Responses of neurons in the
parietal and temporal visual pathways during a motion task. Journal of
Neuroscience, 14(10), 6171–6186.

Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory
neuronal synchronization by selective visual attention. Science, 291(5508),
1560–1563.

Gandhi, S. P., Heeger, D. J., & Boynton, G. M. (1999). Spatial attention affects brain
activity in human primary visual cortex. Proceedings of the National Academy of
Sciences of the United States of America, 96(6), 3314–3319.

Geisler, W. S., & Albrecht, D. G. (1997). Visual cortex neurons in monkeys and cats:
Detection, discrimination, and identification. Visual Neuroscience, 14(5),
897–919.

Heeger, D. J. (1993). Modeling simple-cell direction selectivity with
normalized, half-squared, linear operators. Journal of Neurophysiology,
70(5), 1885–1898.

Heeger, D. J., Huk, A. C., Geisler, W. S., & Albrecht, D. G. (2000). Spikes versus BOLD:
What does neuroimaging tell us about neuronal activity? Nature Neuroscience,
3(7), 631–633.

Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (1996). Computational models of
cortical visual processing. Proceedings of the National Academy of Sciences of the
United States of America, 93(2), 623–627.

Holt, G. R., & Koch, C. (1997). Shunting inhibition does not have a divisive effect on
firing rates. Neural Computation, 9(5), 1001–1013.

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the
human brain. Nature Neuroscience, 8(5), 679–685.

Kamitani, Y., & Tong, F. (2006). Decoding seen and attended motion directions
from activity in the human visual cortex. Current Biology, 16(11),
1096–1102.

Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999).
Increased activity in human visual cortex during directed attention in the
absence of visual stimulation. Neuron, 22(4), 751–761.

Li, X., Lu, Z. L., Tjan, B. S., Dosher, B. A., & Chu, W. (2008). Blood oxygenation level-
dependent contrast response functions identify mechanisms of covert attention
in early visual areas. Proceedings of the National Academy of Sciences of the United
States of America, 105(16), 6202–6207.



G.M. Boynton / Vision Research 49 (2009) 1129–1143 1143
Logothetis, N. K. (2002). The neural basis of the blood-oxygen-level-dependent
functional magnetic resonance imaging signal. Philosophical Transactions of the
Royal Society of London. Series B, Biological Sciences., 357(1424), 1003–1037.

Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of
spatial selective attention in areas V1, V2, and V4 of macaque visual cortex.
Journal of Neurophysiology, 77(1), 24–42.

Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J.,
et al. (1999). Involvement of striate and extrastriate visual cortical areas in
spatial attention. Nature Neuroscience, 2(4), 364–369.

Martinez-Trujillo, J., & Treue, S. (2002). Attentional modulation strength in cortical
area MT depends on stimulus contrast. Neuron, 35(2), 365–370.

Martinez-Trujillo, J. C., & Treue, S. (2004). Feature-based attention increases the
selectivity of population responses in primate visual cortex. Current Biology,
14(9), 744–751.

McAdams, C. J., & Maunsell, J. H. R. (1999). Effects of attention on orientation-tuning
functions of single neurons in macaque cortical area V4. Journal of Neuroscience,
19(1), 431–441.

McAdams, C. J., & Maunsell, J. H. (2000). Attention to both space and feature
modulates neuronal responses in macaque area V4. Journal of Neurophysiology,
83(3), 1751–1755.

Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the
extrastriate cortex. Science, 229(4715), 782–784.

Murray, S. O. (2008). The effects of spatial attention in early human visual cortex are
stimulus independent. Journal of Vision, 8(10), 1–11.

Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current
Opinion in Neurobiology, 14(4), 481–487.

Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory
systems. Nature Reviews of Neuroscience, 6(2), 97–107.

Rees, G., Friston, K., & Koch, C. (2000). A direct quantitative relationship between the
functional properties of human and macaque V5. Nature Neuroscience, 3(7),
716–723.

Ress, D., Backus, B. T., & Heeger, D. J. (2000). Activity in primary visual cortex
predicts performance in a visual detection task. Nature Neuroscience, 3(9),
940–945.
Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing.
Annual Review of Neuroscience, 27, 611–647.

Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms
subserve attention in macaque areas V2 and V4. Journal of Neuroscience, 19(5),
1736–1753.

Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity
of V4 neurons. Neuron, 26(3), 703–714.

Saenz, M., Buracas, G. T., & Boynton, G. M. (2002). Global effects of feature-based
attention in human visual cortex. Nature Neuroscience, 5(7), 631–632.

Sclar, G., & Freeman, R. D. (1982). Orientation selectivity in the cat’s striate
cortex is invariant with stimulus contrast. Experimental Brain Research, 46(3),
457–461.

Serences, J. T., & Boynton, G. M. (2007). Feature-based attentional modulations in
the absence of direct visual stimulation. Neuron, 55(2), 301–312.

Shmuel, A., & Leopold, D. A. (2008). Neuronal correlates of spontaneous fluctuations
in fMRI signals in monkey visual cortex: Implications for functional
connectivity at rest. Human Brain Mapping, 29(7), 751–761.

Somers, D. C., Dale, A. M., Seiffert, A. E., & Tootell, R. B. (1999). Functional MRI
reveals spatially specific attentional modulation in human primary visual
cortex. Proceedings of the National Academy of Sciences of the United States of
America, 96(4), 1663–1668.

Tolhurst, D. (1973). Separate channels for the analysis of the shape and the
movement of a moving visual stimulus. Journal of Physiology (London), 231,
385–402.

Treue, S., & Martinez Trujillo, J. C. (1999). Feature-based attention influences motion
processing gain in macaque visual cortex. Nature, 399(6736), 575–579.

Treue, S., & Maunsell, J. H. (1996). Attentional modulation of visual motion
processing in cortical areas MT and MST. Nature, 382(6591), 539–541.

Williford, T., & Maunsell, J. H. (2006). Effects of spatial attention on contrast
response functions in macaque area V4. Journal of Neurophysiology, 96(1),
40–54.

Yoshor, D., Ghose, G. M., Bosking, W. H., Sun, P., & Maunsell, J. H. (2007). Spatial
attention does not strongly modulate neuronal responses in early human visual
cortex. Journal of Neuroscience, 27(48), 13205–13209.


	A framework for describing the effects of attention on visual responses
	Introduction
	The model
	Defining stimuli
	Response to a stimulus
	Three possible influences of spatial attention
	Contrast gain
	Baseline shift
	Multiplicative gain

	Single unit vs. population averages
	Predicting electrophysiological studies of spatial attention
	Effects of spatial attention on fMRI responses
	Feature-based attention
	The effects of attention on tuning width
	Effects of feature-based attention on fMRI responses

	Discussion
	Spatial attention
	Feature-based attention
	Baseline effects
	Physiological mechanisms of attention

	Acknowledgments
	References


