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Reconstructing Tone Sequences
from Functional Magnetic
Resonance Imaging Blood-Oxygen
Level Dependent Responses within
Human Primary Auditory Cortex
Kelly H. Chang* , Jessica M. Thomas, Geoffrey M. Boynton and Ione Fine

Department of Psychology, University of Washington, Seattle, WA, United States

Here we show that, using functional magnetic resonance imaging (fMRI) blood-oxygen
level dependent (BOLD) responses in human primary auditory cortex, it is possible to
reconstruct the sequence of tones that a person has been listening to over time. First, we
characterized the tonotopic organization of each subject’s auditory cortex by measuring
auditory responses to randomized pure tone stimuli and modeling the frequency tuning
of each fMRI voxel as a Gaussian in log frequency space. Then, we tested our model
by examining its ability to work in reverse. Auditory responses were re-collected in
the same subjects, except this time they listened to sequences of frequencies taken
from simple songs (e.g., “Somewhere Over the Rainbow”). By finding the frequency that
minimized the difference between the model’s prediction of BOLD responses and actual
BOLD responses, we were able to reconstruct tone sequences, with mean frequency
estimation errors of half an octave or less, and little evidence of systematic biases.

Keywords: auditory, decoding, population receptive field, tonotopy, primary auditory cortex

INTRODUCTION

A variety of blood-oxygen level dependent (BOLD) imaging studies have identified a pair of mirror-
symmetric tonotopic gradients centered on Heschl’s gyrus on the cortical surface, thought to be
the human homologs of primary areas A1 and R (Formisano et al., 2003; Woods et al., 2009;
Humphries et al., 2010; Da Costa et al., 2011; Moerel et al., 2012; Saenz and Langers, 2014). These
maps have been replicated across diverse imaging paradigms (Langers et al., 2014b; Da Costa
et al., 2015; Thomas et al., 2015; Moerel et al., 2017) and a range of stimulus types including
orderly frequency progressions (Talavage et al., 2004; Da Costa et al., 2011; Striem-Amit et al.,
2011; Langers et al., 2014a), random tone sequences (Thomas et al., 2015), and complex natural
stimuli (Moerel et al., 2012).

However, while the overall pattern of frequency gradients is highly replicable, the accuracy
with which these maps have modeled the actual frequency preferences of individual voxels is
unclear. For example, several groups (Formisano et al., 2003; Woods et al., 2009; Humphries
et al., 2010; Langers et al., 2014a) have obtained robust tonotopic maps by evaluating
BOLD responses to only a few discrete frequencies using a general linear model (GLM).
However, these models fail to capture the explicit representation of frequency selectivity in
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the auditory cortex, which is thought to represent a wide
range of auditory frequencies. Stimulus-specific biases can
also alter the frequency preference assigned to a given fMRI
voxel. Frequency “sweep” stimuli have been shown to induce
a “traveling wave” of BOLD activity across the cortex (Engel
et al., 1994) that is susceptible to biases induced by habituation
and/or expectation effects as well as spatio-temporal BOLD non-
linearities (Binda et al., 2013; Thomas et al., 2015). The complex
morphology and small size of auditory cortical areas makes them
highly susceptible to these biases (Saenz and Langers, 2014).
Consequently, while the general topographic organization of PAC
seems to be robust to the stimulus that was used, the frequency
assigned to a given voxel can vary dramatically depending on the
stimulus, for example the direction of the frequency sweep that is
used (Da Costa et al., 2011; Thomas et al., 2015).

More recently, somewhat more complex modeling approaches
have been applied to characterizing the response selectivities
of auditory areas. One influential class of models has utilized
an approach whereby natural scene stimuli are parameterized
into a feature space and regularized linear regression is used to
characterize each voxels response preference across this feature
space (Kay et al., 2008; Naselaris et al., 2011; Nishimoto et al.,
2011). The advantage of this approach is that it attempts to
capture the complexity of cortical processing without explicitly
imposing a preselected model (e.g., Gaussian tuning) upon
the response selectivity profile for a given voxel (although the
parameterization of the stimulus space must be appropriate).
Voxel selectivity can be estimated as a weighted sum of the
features to which the voxel responds. Recent papers using this
approach have shown selectivity for, and interactions between,
frequency, time, and spectro-temporal modulation (Santoro
et al., 2014; Moerel et al., 2017).

The second class of models – the population receptive
field (pRF) approach – has been equally influential. For this
class, the response of the voxel is assumed to have a specific
parameterized form (e.g., Gaussian tuning with log frequency)
rather than allowing the stimulus to determine the selectivity
profile. This provides an explicit function of voxel selectivity
along the dimension(s) of interest (Dumoulin and Wandell, 2008;
Zuiderbaan et al., 2012). Models of this class have tended to rely
on relatively minimalist parameterizations (e.g., two parameters
for a Gaussian in frequency space). Indeed, the popularity of
this approach has rested in large part on its simplicity. One
advantage is that it provides a clear test of how well a specific
parameterized model of individual voxel tuning properties can
predict BOLD responses within a given area. As a result,
estimated parameter values can easily be compared across a
wide range of stimulus paradigms, cortical areas, and subject
groups.

Previously, we applied the pRF approach to auditory cortex to
measure the frequency selectivity for individual voxels (Thomas
et al., 2015). Here, we present a method for examining whether
our simple model of frequency tuning can predict responses to
more natural, familiar, and predictable stimuli. Specifically, we
examined whether tonotopic maps generated using randomized
tones could be used to decode and reconstruct a sequence of
tones on the basis of an individual subjects’ BOLD responses

over time. First, we characterized the tonotopic organization of
each subject’s auditory cortex by measuring auditory responses
to randomized pure tone stimuli and modeling the frequency
tuning of each fMRI voxel as a Gaussian in log frequency
space. Next, we measured cortical responses in the same subjects
to novel stimuli containing a sequence of tones based on
the melodies “When You Wish Upon a Star” (Harline et al.,
1940) and “Over the Rainbow” (Arlen and Harburg, 1939).
These ‘song-like’ sequences were chosen because they include
complex temporal dependencies as well as expectation effects,
albeit over a very slow time scale. Then, using a parametric
decoding method, we reconstructed the tones from these songs by
determining what frequency would best maximize the correlation
between predicted (based on our pRF models) and obtained
BOLD activity patterns for each point in the stimulus time
course.

MATERIALS AND METHODS

Three right-handed subjects (2 male, 1 female, ages 27–46)
participated in two fMRI sessions. Subjects reported normal
hearing and no history of neurological or psychiatric illness.
Written informed consent was obtained from all subjects and
procedures, including recruitment and testing, followed the
guidelines of the University of Washington Human Subjects
Division and were reviewed and approved by the Institutional
Review Board.

MRI Data Acquisition and Analysis
Blood-oxygen level dependent imaging was performed using
a 3 Tesla Philips Achieva scanner (Philips, Eindhoven, The
Netherlands) at the University of Washington Diagnostic
Imaging Sciences Center (DISC). Subjects were instructed to keep
their eyes closed throughout all scans and foam padding was
used to minimize head motion. fMRI data were acquired using
a 32-channel head coil and a continuous EPI pulse sequence
(2.8 mm × 2.8 mm × 2.8mm, TR/TE = 2000/25 ms, flip
angle= 60◦, EPI-factor= 35, no slice gap). We used a continuous
sequence designed with Philips SofTone software (SofTone factor
of 4.0) to generate less acoustic scanner noise (Thomas et al.,
2015).

Standard pre-processing of fMRI data was carried out using
BrainVoyager QX software (version 2.3.1, Brain Innovation B.V.,
Maastricht, The Netherlands), including 3D motion correction,
slice scan time correction, and temporal high-pass filtering. 3D
motion correction was performed by aligning to all volumes
to the first volume within a session on 9 parameters for
translation, rotation, and scale. Slice scan time correction was
performed using cubic spline interpolation with an ascending and
interleaved order of the slice scan acquisition. Temporal high-
pass filtering was performed at a cutoff of 2 cycles per scan.
Functional data were aligned to a T1-weighted anatomical image
acquired in the same session (MPRAGE, 1 mm× 1 mm× 1mm).
The anatomical images acquired in the two sessions were
aligned to each other and to each subject’s 3D Talairach-
normalized functional dataset. The BrainVoyager QX automatic
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segmentation routine was used to reconstruct the cortical
surface and the resulting smooth 3D surface was partially
inflated. For each subject, large anatomical regions of interest
(ROIs) were selected from both hemispheres of the auditory
cortical surface using drawing tools within BrainVoyager QX.
Preprocessed time-course data for each 3D anatomical voxel
within the volume ROI were then exported to MATLAB for
further analysis.

Auditory Stimulus Presentation
Sound stimuli were generated in MATLAB using the
Psychophysics Toolbox1. Stimuli were delivered via MRI
compatible insert earphones (S14, Sensimetrics), at a sampling
rate of 44.1 kHz, with intensities calibrated to ensure flat
frequency transmission from 100 to 8 kHz. After sound
system calibration, stimulus sound intensities were adjusted
according to a standard equal-loudness curve created for insert
earphones (ISO 226: 2003) to approximate equal perceived
loudness across all frequencies. Acoustic noise from the
scanner was attenuated by expanding-foam ear tips as well as
protective ear muffs placed over the ear following earphone
insertion. Subjects reported hearing all stimuli at a clear and
comfortable audible level, with roughly equal loudness across all
tones.

pRF Estimation
To reduce the influence of spatiotemporal non-linearities on
pRF estimates, we measured fMRI responses to randomized pure
tone sequences consisting of 240 frequency blocks. As shown
in Figure 1A, each block lasted 2 s and consisted 8 pure tone
bursts of a single frequency. Each burst lasted either 50 or
200 ms in duration (inter-stimulus interval = 50 ms) and was
presented in a pseudo-randomized order, resulting in a “Morse
code” like pattern of tones. This served to increase the perceptual
salience of the tone bursts over the background scanner noise.
The frequencies presented in the blocks were equally spaced on a
logarithmic scale, ranging from 88 to 8000 Hz. Each frequency
block was presented only once per scan and block order was
randomly shuffled for each scan. Following every 60 blocks was
a 12 s silent pause. This silent period allows the pRF algorithm to
better estimate the baseline fMRI response to scanner noise. Each
subject participated in a single pRF estimation scanning session,
consisting of 6 scans, each containing a different randomized
sequence of the same 240 frequency blocks.

Following previously described methods, we used customized
MATLAB software to estimate the frequency tuning curves
for individual voxels based on a linear temporal model of the
fMRI BOLD response time course (Thomas et al., 2015). Briefly,
analysis began by defining a stimulus time course, which indicates
the presence or absence of a particular frequency over time.
This stimulus time course was convolved with each subject’s
estimated hemodynamic response function (HDR) modeled as a
gamma probability density function (Boynton et al., 1996). Each
voxel’s response was modeled using a 1-dimensional Gaussian
function g(f), defined over frequency (in log space). The center

1www.psychtoolbox.org

(f0) of each Gaussian corresponds to the frequency of the
voxel’s maximum sensitivity, and the standard deviation (σ)
corresponds to the range of frequencies that the voxel is sensitive
to. Standard deviations are reported as bandwidth values by
calculating the full width half maximum (FWHM) in terms of
octaves. A predicted fMRI time course was then generated for
each voxel by calculating the linear sum of the overlap between
the hemodynamically blurred stimulus time course and the pRF
model. Finally, model fits for each voxel were obtained using a
non-linear search algorithm that found the model parameters
that maximized the correlation value (goodness-of-fit) between
the voxel’s pRF predicted time course and the acquired fMRI
BOLD response time course (using Matlab’s “fmincon” function).

The procedure described above included a few modifications
from our original pRF analysis (Thomas et al., 2015). First, we
included a static power-law non-linearity within the Gaussian
model by including a free exponent parameter (n) to account for
non-linear summation of the BOLD response according to the
compressive spatial summation (CSS) model (Kay et al., 2013).
The incorporation of this static non-linearity, which is applied
after the initial fitting of the linear model, has been shown to more
accurately explain BOLD activity and improve overall receptive
field fits. This parameter was constrained to fall between 0 and
1. Second, we constrained the Gaussian standard deviation (σ) to
values greater than 0.015 (chosen based on the resolution of the
presented frequencies).

The drawing of the PAC region of interest was performed
using both the functional data and following anatomical
landmarks. A second independent observer verified the selection
of the ROI.

After fitting, only voxels within PAC, with a pRF correlation
value (goodness-of-fit) above 0.15 were retained for song
decoding and reconstruction (533, 530, 244 voxels for subjects
S1–S3, respectively). Results were robust to a wide range of
correlation values. Critically, all voxels with pRF fits above this
threshold within PAC were included in all further analyses,
there was no further selection based on the ability to predict
the song-like stimuli. Thus, there was no selection of voxels
on the basis of their ability to generalize to a novel stimulus.
As demonstrated in Figure 1B, pRF center (f0) values formed
two mirror-symmetric tonotopic gradients corresponding to the
primary auditory fields A1 and R in both hemispheres of all
subjects. No clear topographical organization within PAC was
observed for either pRF bandwidth values (average bandwidth
in octaves ± SD, S1 = 3.385 ± 2.807, S2 = 3.732 ± 1.634,
S3 = 2.219 ± 1.201), or exponent parameters (average value
of n ± SD; S1 = 0.587 ± 0.310, S2 = 0.611 ± 0.228, and
S3= 0.726± 0.318).

Frequency Decoding
During a separate scanning session, we collected fMRI responses
to two pure tone song-like sequences based on two familiar
melodies: “When You Wish Upon a Star” (Wish) and
“Somewhere Over the Rainbow” (Rainbow). Each song-like
sequence was generated using 2 s frequency blocks with
frequencies ranging from 880 to 2349 Hz (corresponding to
the notes A5-D7 on the western music scale). Each 2 s
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FIGURE 1 | Population receptive field (pRF) estimation. (A) The first 60 s of an example random sequence stimulus used during pRF estimation. Each block lasted
2 s and consisted of 8 pure tone bursts of a single frequency. Bursts lasted either 50 or 200 ms in duration (inter-stimulus interval = 50 ms) and were presented in a
pseudo-randomized order. (B) Tonotopic and bandwidth maps for the left hemisphere of example Subject 1. As indicated by the black arrows, pRF frequency center
(Hz) values formed two mirror-symmetric tonotopic gradients corresponding to the primary auditory fields A1 and R, outlined here by solid black lines. No clear
organization was observed for pRF bandwidth (octaves) values (not shown).

block contained 13 tone bursts of the same frequency, each
lasting 75 ms in duration (inter-stimulus interval = 75 ms).
This created a vibrato-like effect which served to increase the
perceptual salience of each block, without interrupting the
melodic feel of the song-like sequence. A single presentation
of each song-like sequence contained either 25 (Wish) or 23
(Rainbow) frequency blocks followed by 8 s of silence, and the
entire presentation was repeated 8 times per scan. Averaged
fMRI BOLD time courses were then generated for each song-
like sequence by averaging data responses across the eight
presentations within each scan, and across two scans of the same
sequence type.

We decoded both song-like sequences by reconstructing each
sequence one block at a time. To do this, we used the pRF
models previously generated with the randomized tone sequences
to generate predicted voxel activity patterns elicited for a set of
14 frequencies sampled from 88 to 8000 Hz in half-octave steps.
The best fitting frequency from this set is then used as the initial
parameter for a non-linear optimization fitting procedure (again,
Matlab’s “fmincon” function) that determined what frequency
produced the predicted voxel activity pattern best correlated with
the measured voxel activity pattern for each 2 s block. This
process was then repeated for each block in the sequence, until
all frequency blocks had been reconstructed. Finally, to account
for the delayed hemodynamic blurring of BOLD signal a fixed
temporal lag of 6 s was applied to the reconstructed sequence
(Kay et al., 2008).

It is important to note that our method only depends on
the frequency selectivity of individual voxels, not their physical
locations within auditory cortex. This method is therefore not
dependent upon any particular model (Saenz and Langers, 2014;
Moerel et al., 2015) of frequency selectivity organization.

The quality of the reconstructed sequences was quantified in
three ways: Identification performance, reconstruction accuracy,
and model reliability.

Identification performance was assessed as the ability
to correctly identify the actual song over other song-like
sequences that contained similar statistical properties. For
each reconstructed sequence, we applied an algorithm based
on first-order Markov chains to randomly generate 1000
simulated (new sequences were generated for each subject)
song-like sequences that reflected the frequency content and
note-to-note probabilities of the Rainbow and Wish sequences.
Other more advanced methods for generating simulated
sequences exist, including probabilistic models of melodic
intervals (Temperley, 2008, 2014). However, our model was
generated using unpredictable stimuli, and did not incorporate
any information about interval dependencies. Consequently,
identification performance was unlikely to be significantly altered
by the use of more realistic foil sequences. We then calculated the
correlation (Pearson’s r) between the reconstructed sequence and
the actual sequence of tones, as well as for each of the simulated
foils. Identification performance was defined as the number of
times in which the actual sequence was correctly selected, on
the basis of having a higher correlation with the reconstructed
sequence than any of the 1000 simulated sequences.

Reconstruction accuracy was assessed as the ability to recreate
each note in the actual sequence. This was calculated as the
residual difference in cents (1200 cents per octave) between each
note in the reconstructed and actual sequences. To determine
if any systematic over or underestimation was present in the
reconstructed sequences, we performed a two-tailed t-test on the
means of the residual errors. Any mean that was significantly
different from zero reflected an overall bias in reconstruction
accuracy.

Model reliability was assessed using the metric of relative root
mean square error (rRMSE, Rokem et al., 2015). For both song-
sequences we normalized the root mean square error (RMSE)
value describing the difference between predicted and measured
time series by the RMSE describing the difference between the
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time series of each of the two scans collected for that song-
sequence. Thus, for each song:

rRMSE =

(
RMSE

(
TCpred, TCscan 1

)
+RMSE

(
TCpred, TCscan 2

))
2RMSE (TCscan 1, TCscan 2)

Where TCscan 1, and TCscan 2 are the measured time course for
the song-like sequence obtained in individual scans. TCpred is
the predicted time course for the song-like sequence, based on
our pRF model (generated using random tones). This measure
provides us with an index of the goodness-of-fit of our model,
relative to measurement reliability. As described by Rokem et al.
(2015), if the model has higher accuracy than test–retest accuracy
then rRMSE < 1. For simple cases of IID signals with zero-mean
Gaussian noise, if the model perfectly captured the data then
rRMSE = 1

√
2
= 0.707.

RESULTS

We began by determining the correlation between reconstructed
and actual frequencies for each subject for both Rainbow and
Wish (Figures 2A,B and Table 1) sequences. For all subjects,
reconstructed sequences were well correlated with the actual
sequences that were presented, indicating good reconstruction
accuracy.

Figures 2C,D illustrate identification performance. Histo-
grams containing the correlation between the reconstructed
Rainbow (Figure 2C) and Wish (Figure 2D) sequences and
1000 simulated foils. The correlation value between the predicted
and the actual sequence is represented by a black line in
each histogram, indicating the correlation value for the actual
sequence. Identification performance for both Rainbow and Wish
was at near perfect levels for all three subjects, demonstrating that
the identity of a tone sequence can be readily be decoded based
on the similarity between the predicted BOLD response to that
sequence of tones and the measured BOLD response.

Figure 3 displays the notes of the actual and reconstructed
sequences of each subject on the five-line staff according to
modern musical notation. Purely for illustration purposes, the
reconstructed frequencies in Figure 3 were rounded to the
nearest semitone (12 semitones per octave), or “note.” We also
lowered all notes (actual and reconstructed) one octave for
better representation on the treble clef. One way of assessing
the precision of our pRF decoding method is by examining
how accurately each song-like sequence was reconstructed in
terms of musical intervals or cents. The standard deviations of
the residual errors are reported in Table 1. Standard deviations
ranged between 434 and 512 cents across subjects and songs
(around three to four notes, or a third of an octave).

We also examined whether the mean of the residual errors
differed significantly from zero, which would reflect a systematic
bias in reconstruction accuracy (Table 1). Of the six means,
only one reached statistical significance with a two-tailed
t-test [Subject 2, Wish, t(24) = −215.54 cents, p = 0.0173],
non-significant after either Bonferroni or Bonferroni-Holm
correction (Holm, 1979, 3). Thus, there does not appear to be a

systematic over or underestimation of reconstructed frequencies,
at least as far as the power of our experimental design can provide.

Figure 4 shows that our model fits the novel song-
sequences extremely accurately. The blue line shows rRMSE= 1,
representing performance equal to test–retest reliability. For all
subjects and song-sequences most of the voxels had rRMSE
values < 1. Indeed, for 2 of the 3 subjects fewer than 1%
of voxels had rRMSE values greater than 1. The red line
shows rRMSE = 0.707: the expected performance value if
the model was perfect (assuming zero-mean IID noise). The
median rRMSE values for all three subjects were close to the
expected value of a perfect model, with only small room for
improvement.

DISCUSSION

Using a combined auditory pRF encoding/decoding approach,
we found that we could accurately identify and reconstruct tone
sequences over time on the basis of BOLD responses, thereby
demonstrating the predictive accuracy of our model of frequency
selectivity of PAC.

Encoding/Decoding Models of Sensory
Cortex
A few previous studies have used linear classifier algorithms,
trained to discriminate between stimulus categories based on
patterns of activity across fMRI voxels, to classify speech content
and speaker identity (Formisano et al., 2008) as well as the
emotional content of speech (Ethofer et al., 2009). One limitation
of such classification approaches is that they are limited to
candidate stimulus sets and cannot be generalized to substantially
novel stimuli (Naselaris et al., 2011). Moreover, linear classifiers
do not provide insight into the feature space of functional
organization within auditory cortex (see, Naselaris and Kay, 2015,
for discussion).

Another fundamental difference between our study and
the linear classification studies described above, is that
linear classifiers select the components in the response
state with the greatest predictive value. Critically, for both
identification and reconstruction we used all voxels within
PAC whose responses could be fit by the pRF model.
Thus, identification performance did not assess whether
any voxels in PAC could successfully identify the tone
sequence that was presented, but rather assessed whether
the collective responses of voxels within PAC as a whole
carries reliable and generalizable information about the tone
sequence.

As described in the Section “Introduction,” there currently
exist two classes of models that are designed to carry out
encoding/decoding that is generalizable to novel stimuli. The
first relies on a parameterization of the stimulus space through
single-voxel encoding (Kay et al., 2008; Naselaris et al., 2009;
Nishimoto et al., 2011; Moerel et al., 2014; Santoro et al.,
2014) and multivariable model-based approaches (Miyawaki
et al., 2008; Santoro et al., 2017). Two previous studies (Moerel
et al., 2017; Santoro et al., 2017) have used this approach
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FIGURE 2 | Identification performance. (A,B) Scatter plots showing the correlation between reconstructed and actual frequencies for each subject for both the
Rainbow (A) and Wish (B) sequences, also shown Table 1. (C,D) Using a method based on a first order Markov chain algorithm, we simulated 1000 song-like
sequences reflecting the frequency content and note-to-note probabilities of the Rainbow (C) and Wish (D) sequences. Histograms show the distribution of
correlation values (Pearson’s r) between each of the simulated sequences and either reconstructed sequence. The line in black designates the correlation value
between the actual song-like sequences and the reconstructed sequences, indicating the degree to which the correct sequence had been successfully identified.
The number of correct identifications (out of 1000) is reported for each reconstructed sequence. Colors correspond to individual subjects.

TABLE 1 | Model performance: Reconstruction accuracy.

Subject Stimulus Pearson’s r Residual Errors (cents) Mean ± SD

S1 Rainbow 0.587 25.98 ± 465.44

Wish 0.615 −30.71 ± 448.05

S2 Rainbow 0.562 −210.12 ± 512.17

Wish 0.699 −215.54 ± 421.35

S3 Rainbow 0.550 14.6 ± 456.24

Wish 0.642 −155.78 ± 434.02

Correlation values (Pearson’s r, also shown Figure 2) between reconstructed and
actual frequency values, mean and standard deviations of residual errors in cents
between the reconstructed and actual frequencies.

to examine decoding and reconstruction performance for 1 s
natural auditory scenes. In both studies responses to a training
set were used to estimate each voxel’s sensitivity to a range
of spectrotemporal features. Sensitivity was described on the
basis of models of varying degrees of complexity, ranging from
simple frequency to a 4D model that included frequency, spectral
modulation, temporal modulation and time. In the Moerel
et al. (2017) study the model was assessed by computing the
correlation between the models predicted time course to a given
sound and the measured time courses to the remainder of the
test sounds. In the Santoro et al. (2017) study, voxel responses
to a test set, in conjunction with the voxel weightings across the
feature space, were used to reconstruct the features of each test
stimulus.

Our model belongs to the second class of models – our goal
was to specifically model the response selectivity of the voxel
with an assumed Gaussian selectivity profile. Our stimuli and

model only varied along the dimension of frequency, because we
wanted to examine the pRF approach using a dimension whose
representation within PAC is reasonably well characterized.
Having shown that our model can identify what song-like
sequence a person had been listening to with high reliability, we
also demonstrate that a pRF model of tonotopic organization
in the human primary auditory cortex can also reconstruct the
sequence of tones played over time. Our encoding pRF model
was used to describe the frequency selectivity of individual voxels
in each subject’s primary auditory cortex (Thomas et al., 2015).
Then we applied a parametric decoding method on our pRF
model to identify and reconstruct tone sequences. We examined
the reliability and validity of our tonotopic encoding model
in a variety of quantitative ways. Identification performance
was virtually perfect. Reconstruction accuracy of single tones
was also excellent, we were able to reconstruct the tones of
the song-like stimuli for all three subjects within a half of
an octave or less, with little evidence of systematic biases
in frequency estimation. Finally, and importantly, our rRMSE
estimate of model accuracy suggests that our model, despite
being much simpler than these other models, is nearly perfect:
the model (generated using random tones) predicted the time
course of song-sequences far better than test–retest reliability.
Indeed, rRMSE estimates of model performance suggested that
our model performed close to optimally, despite these novel
stimuli containing a more restricted range of frequencies, greater
temporal dependencies, and (presumably) expectation effects.
This suggests that, for the stimuli used here, these factors did
not radically alter the tonotopic information carried by individual
voxels.
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FIGURE 3 | Sequence Reconstruction. For easier visualization on a treble clef, all frequencies (Hz) were rounded the nearest semitone and lowered one octave.
Actual notes from each song-like sequence are in black, while the color of notes in the reconstructed sequences corresponds to individual subjects.

FIGURE 4 | Histograms of voxel rRMSE values for 2 song-like sequences and 3 subjects. The population receptive field model predicts the data better than
test–retest reliability (blue line, rRMSE = 1) in almost all voxels. Median rRMSE values are close to the expected performance of a perfect model (red line,
rRMSE = 0.707). Inset text show median rRMSE and the percentage of voxels > 1.

As described above, other studies have shown that neurons in
auditory cortex respond selectively to other stimulus dimensions,
including spectral and temporal modulation, time and loudness
(Langner et al., 1997, 2009; Sadagopan and Wang, 2009;

Schonwiesner and Zatorre, 2009; Baumann et al., 2011; Barton
et al., 2012; Moerel et al., 2012, 2013, 2015, 2017; Santoro et al.,
2014, 2017; Uppenkamp and Röhl, 2014). However, while recent
studies (Moerel et al., 2017; Santoro et al., 2017) make it clear that
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voxels vary in their responsivity across these various dimensions,
there is still much to be learned about how topographical
selectivity for these other dimensions vary within primary and
secondary auditory areas, and whether there are systematic
differences in selectivity across these various dimensions across
different cortical areas. Discovering parameterizations that can
simplify this multidimensional space by summarizing voxel
selectivity across multiple dimensions would be a natural
extension of our approach. At some point it is likely that our
approach (building up from simple stimuli and simple models)
and that of other groups using more complex stimuli and models
(Moerel et al., 2017; Santoro et al., 2017) will converge at an
optimal level of model complexity.

One promising future direction will be inclusion of the
effects of temporal regularities. The stimuli used to develop
our pRF model did not contain any first or second order
statistical regularities, and thus our model does not capture
the effects of attention, expectation, or longer-term habituation
(our model did include response compression) on the BOLD
response, despite these factors being known to strongly modulate
auditory cortex responses (Da Costa et al., 2013; Thomas
et al., 2015). However, as described above, we were able
to use pRFs based on responses to unpredictable stimuli to
reconstruct the fMRI time courses to predictable song-like

stimuli with nearly equal accuracy as for the unpredictable
stimuli.

Other promising future directions include using a large
number of subjects to examine variability in the population,
using these methods to link cortical responses to perceptual
experience for ambiguous auditory stimuli, examining whether
cortical representations can predict behavioral performance in
both typical and atypical populations, and examining the effects
of frequency-selective attention (Woods et al., 2009; Da Costa
et al., 2013).
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