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Many forms of artificial sight recovery, such as electronic
implants and optogenetic proteins, generally cause
simultaneous, rather than complementary firing of on-
and off-center retinal cells. Here, using virtual
patients—sighted individuals viewing distorted
input—we examine whether plasticity might
compensate for abnormal neuronal population
responses. Five participants were dichoptically
presented with a combination of original and
contrast-reversed images. Each image (I) and its
contrast-reverse (Iʹ) was filtered using a radial
checkerboard (F) in Fourier space and its inverse (Fʹ).
[I * F′] + [Iʹ * F] was presented to one eye, and [I * F] +
[Iʹ * F′] was presented to the other, such that regions of
the image that produced on-center responses in one eye
produced off-center responses in the other eye, and vice
versa. Participants continuously improved in a
naturalistic object discrimination task over 20 one-hour
sessions. Pre-training and post-training tests suggest
that performance improvements were due to two
learning processes: learning to recognize objects with
reduced visual information and learning to suppress
contrast-reversed image information in a
non–eye-selective manner. These results suggest that,
with training, it may be possible to adapt to the
unnatural on- and off-cell population responses
produced by electronic and optogenetic sight recovery
technologies.

Introduction

Dramatic progress has been made in sight restoration
technologies over the last decade. Four types of retinal
electronic devices have been implanted in patients, two
of which are commercially approved (da Cruz et al.,
2016; Rizzo et al., 2014; Stingl et al., 2015), with several
others in active development (Ayton, Blamey, Guymer,
& Luu, 2014; Ferlauto et al., 2018; Fujikado et al., 2016;
Genovesi-Ebert et al., 2014; Hornig, 2017; Lorach et
al., 2015; Palanker, Le Mer, Mohand-Said, Muqit, &
Sahel, 2020; Saunders et al., 2014). Other groups are
actively implanting (Beauchamp et al., 2020; Bosking,
Beauchamp, & Yoshor, 2017; Bosking, Sun, et al., 2017;
Morillas et al., 2007; Murphey, Maunsell, Beauchamp,
& Yoshor, 2009) or developing implants for cortical
stimulation (Chen, Wang, Fernandez, & Roelfsema,
2020; Troyk, 2017). Gene therapy has been approved for
Leber congenital amaurosis, a photoreceptor disorder,
and more than a dozen human gene therapy trials
for sight restoration are underway (Cho, Bolo, Park,
Sengillo, & Tsang, 2019). The first optogenetic clinical
trials have begun (Sahel et al., 2021) and others will
likely launch within the next 2 years (Liu, Fattah, &
Degenaar, 2020). Multiple other technologies such
as stem cell transplantation are also in development
(Cuevas, Parmar, & Sowden, 2019; Garita-Hernandez
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et al., 2019; Gasparini, Llonch, Borsch, & Ader, 2019).
Within a decade, many blind individuals are likely to
have a wide range of options for sight restoration (Fine
& Boynton, 2015; Ghezzi, 2015; Roska & Sahel, 2018;
Scholl et al., 2016). Here, we focus on the neural signals
elicited by retinal electronic and optogenetic/small
molecule photoswitch technologies.

Retinal implants such as the Argus II (Second Sight)
and Alpha-IMS (Retina Implant AG) and cortical
implants such as CortiVis and the Orion (Second
Sight) convert visual input from a camera into electrical
impulses that trigger an array of microelectrodes that
stimulate retinal or visual cortical cells (Mills, Jalil, &
Stanga, 2017; Schmidt et al., 1996; Weiland, Walston, &
Humayun, 2016). Current retinal and cortical electronic
implants seem to be capable of providing useful
(Erickson-davis & Korzybska, 2020) though relatively
poor vision (Stingl et al., 2017). Limiting factors of
these devices include a relatively small number of
electrodes, degenerative and/or surgical damage to
the retina, retinal axonal stimulation, and difficulties
maintaining close proximity between the electrodes and
the retinal or cortical surface (Ahuja et al., 2013; de
Balthasar et al., 2008; Rizzo et al., 2014; Stingl et al.,
2015, 2017).

Optogenetic proteins create light-sensitive ion
channels that make cells responsive to light (Bamann,
Nagel, & Bamberg, 2010). In the context of sight
recovery, these optogenetic proteins are delivered to
remaining retinal cells (such as ganglion, amacrine,
or bipolar cells) to create artificial photoreceptors
(Busskamp, Picaud, Sahel, & Roska, 2012).
Optopharmacological tools such as photoswitch
compounds (Kramer, Mourot, & Adesnik, 2013)
elicit light sensitivity by dynamically activating and
deactivating ion channels within remaining retinal
cells via exposure to particular wavelengths of light
(Polosukhina et al., 2012; Tochitsky et al., 2014).

Critically, the vision provided by all of these
technologies differs substantially from normal sight,
even if implants are extremely high resolution.
In biologically natural vision, stimuli that excite
on-center retinal cells always inhibit off-center
cells in the same retinal location, and vice versa.
It will be extremely challenging for electronic,
optogenetic, and optopharmacological approaches to
selectively stimulate on- and off-cells in a naturalistic
complementary manner, in which activity in on-cells is
accompanied by the suppression of off-cells. For current
electronic prostheses, this simultaneous stimulation of
on- and off-cells likely plays a negligible role in limiting
resolution (Zrenner, 2002) and a minor role in limiting
sensitivity (Ni & Maunsell, 2010). However, as these
technologies improve, the unselective stimulation of
populations of neurons whose natural firing patterns
are anti-correlated is likely to become more of a
concern.

Engineering solutions to address the problem of
simultaneous on- and off-cell stimulation are being
attempted within the context of both electrical implants
and optogenetic technologies (for a recent review see
Tong, Meffin, Garrett, & Ibbotson, 2020).

Visual cortical prostheses implanted in later regions
of the visual pathway would entirely bypass the
problem of unselective on- and off-cell stimulation.
However, the selectivity of single neurons in areas
beyond V2 is highly complex, making the consequences
of unselective stimulation unpredictable. Thus, current
electronic prostheses, such as the Orion (NCT02983370;
Beauchamp et al., 2020) and CortiVis (NCT02747589;
Chen et al., 2020) are located as close to the V1 foveal
pole as possible.

Another engineering approach is to develop devices
that mimic naturalistic stimulation patterns. This
goal is technically challenging because it requires not
only selectively stimulating on- and off-cells, but also
requires identifying these cells in vivo. Recently, Shah
et al. (2019) electrically recorded the response patterns
of monkey on- and off- retinal ganglion cells (RGCs) to
a white noise stimulus and used the data to construct
a dictionary of RGC activity patterns and their
corresponding visual percepts. Dictionary patterns were
then combined linearly to selectively stimulate on- and
off- RGCs, to generate a firing pattern whose predicted
percept closely resembled the original white noise
image. Although promising, this approach requires
generating cell-specific RGC dictionaries, maintaining
stable cell-specific stimulation over time, and possibly
developing a more sophisticated nonlinear model
(Demb, Haarsma, Freed, & Sterling, 1999; Hochstein
& Shapley, 1976) to adequately replicate population
responses for complex naturalistic images with widely
varying visual properties.

In optogenetic therapy, compounds are being
designed to make on- and off- RGCs differentially
responsive to specific wavelengths of light and/or
selectively produce excitatory (on) and inhibitory (off)
responses with the goal of creating distinct firing
patterns in each cell type (Barrett, Panesar, Scally, &
Pacey, 2012; Berry et al., 2017). Creating naturalistic
patterns will further require selective transfection of on-
and off-cells, optogenetic proteins with narrow spectral
sensitivity, and fast temporal dynamics that are within
safe light levels.

Thus, for the foreseeable future, optogenetic, small
molecule photoswitches, and electronic prostheses will
not be able to selectively stimulate on- versus off- retinal
or cortical cells. Will individuals be able to adapt to
these abnormal population responses (Beyeler, Rokem,
Boynton, & Fine, 2017; Fine, Cepko, & Landy, 2015)?

When on-cell pathways are compromised at birth, the
impact seems to be relatively minor. Individuals with
complete Schubert–Bornschein congenital stationary
night blindness type 1 genetic deficits have severely
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compromised on-bipolar pathways (Bijveld et al.,
2013; Cibis & Fitzgerald, 2001). Yet these patients
show surprisingly good visual performance under
photopic conditions, with an average visual acuity of
0.3 logarithm of the minimum angle of resolution
(logMAR) (Snellen 20/40) (Zeitz, Robson, & Audo,
2015) and report no perceptual difficulties beyond their
acuity loss. Thus, off-pathways alone carry enough
visual information to produce near-normal vision.
However, individuals with congenital stationary night
blindness type 1 have experienced stimulation of just
one bipolar cell pathway input since birth. The ability
to learn to decode simultaneous on- and off- pathway
stimulation in adulthood is less clear.

To date, only one study has directly compared the
perceptual decoding of light with electrical stimulation.
Ni and Maunsell (2010) trained macaques to detect
a phosphene induced by microstimulation within V1
over the course of several months. Training resulted
in a significant decrease of detection thresholds, a
roughly 10-fold decrease in the threshold current. This
improvement in the ability to detect microstimulation
at specific V1 sites resulted in a decrease in the
ability to detect visual stimuli presented at the same
retinotopic location (threshold currents increased by
a factor of 1.7–7.0). Retraining with a visual stimulus
then interfered with detecting electrical stimulation,
suggesting that the optimal detection of electrical
stimulation required a long-term reconfiguration of the
decoding of neuronal responses within V1. Adaptation
to electrical stimulation was slow (>10,000 trials),
and both training and learning were retinotopically
specific; it, therefore, remains an open question whether
patients can learn to decode abnormal on- and off-cell
population responses under more naturalistic learning
conditions.

Patients with cochlear implants learn to make use of
their distorted input with remarkable speed, even when
implanted in adulthood (Fallon, Irvine, & Shepherd,
2008). This plasticity is rapid and persistent and requires
mere hours of training (Fritz, Shamma, Elhilali, &
Klein, 2003). However, plasticity may be very different
for visual implants. Primary areas of the visual hierarchy
in cortex (V1) show far less plasticity in adulthood
than primary auditory (A1) or somatosensory (S1)
cortical areas (Beyeler, Boynton, Fine, & Rokem,
2017; Ghose, Yang, & Maunsell, 2002). The reason
for this difference remains unclear, but a possible
explanation is that, compared with visual pathways,
there is significantly more subcortical processing within
somatosensory and auditory pathways. Thus, primary
cortical areas A1 and S1 can be considered as higher
in their respective processing pathways than V1 within
the visual processing hierarchy and may, as a result, be
more plastic (Haak & Beckmann, 2019).

The aim of the current study was to produce
abnormal population responses within V1 that serve as

a rough proxy for the abnormal population responses
elicited by electronic sight restoration technologies. Five
participants were trained in an object discrimination
task using a dichoptic (a different image to each eye)
presentation. Images were convolved with filters via
multiplication in the Fourier domain. Our filter, F
(Figure 2A), was defined as a radial checkerboard in
Fourier space such that, when convolved with an image,
I, only one-half of the total combination of spatial
frequencies and orientations in I were passed through.
Convolving with the filter’s inverse (Fʹ) passed the
other half of the spatial frequencies and orientations
in I. Images and filters were combined such that
[I * F′] + [Iʹ * F] was presented to one eye, and [I * F] +
[Iʹ * F′] to the other (where * denotes two-dimensional
convolution). Thus, regions of the resulting image that
produced on-cell responses in one eye produced off-cell
responses in the other eye at the corresponding visual
location, and vice versa.

Although it is impossible to recreate the effects of
electronic retinal or cortical stimulation in sighted
individuals, the dichoptic stimuli described here
create a visual stimulus that similarly scrambles the
cortical input. Figure 1 shows simulated cortical
responses (see Methods) for three example stimuli:
a natural binocular image (Figure 1A), monocular
electronic retinal stimulation (Figure 1B), and the
filtered dichoptic images used in our experiment
(Figure 1C). The upper images of Figures 1A–C show
the predicted retinal input into cortex (in visual space).
For natural cortical stimulation, the input from retina
to cortex is a slightly blurred version of the original
image. Most of this represents receptive field sizes in
the retina (however, to limit computational time, the
retinal filter bank was slightly low pass, which may
have also contributed to blurring; see Methods). The
lower images of Figures 1A–C show cortical responses
for approximately 32,500 typical V1 cells, distributed
evenly over the cortex. For all types of stimulation,
responses are relatively sparse over the cortical surface,
due to the orientation and spatial frequency selectivity
of individual cells. Figures 1D–F show selected
pair-wise correlations between cortical responses (in
arbitrary response units) across these three stimulation
protocols. The population responses produced by
natural binocular stimulation are uncorrelated with the
population responses elicited by monocular electrical
stimulation (Figures 1A, B, and D). Similarly, the
population responses produced by our filtered dichoptic
stimuli are also only weakly correlated with naturalistic
population responses (Figures 1A, C, and E).

These low correlation values should not be
interpreted as implying that there was no relationship
between the population responses elicited by these
unnatural stimulation methods and natural stimulation.
Rather, some cells were correlated, whereas others were
anticorrelated. Nonetheless, these simulations show that
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Figure 1. (A–C) Examples of simulated cortical responses for three stimuli: the original binocular image, monocular electrical retinal
stimulation, and the dichoptic filtered images used in our experiment. The cortical input image for each panel is shown as an inset.
For all types of stimulation, responses are relatively sparse over the cortical surface, due to the selectivity of individual cells.
(D–F) Cross-correlations between cortical responses (in arbitrary response units) across these three stimulation protocols. LE, left eye;
RE, right eye.

learning to interpret either electrical stimulation or the
stimuli used in the current study, requires remarkable
flexibility in decoding cortical population responses.

The population responses for our dichoptic stimuli
are also dissimilar from the population responses for
monocular electrical stimulation, which is typical of
current sight restoration methods (Figure 1B, C, and
E). Thus, our paradigm should only be considered a
proxy for electrical sight restoration methods, in that
our manipulation effectively disrupts early population
responses—not because the population responses
elicited by dichoptic stimulation directly resemble the
population responses elicited by electrical stimulation.

For comparison, cortical responses to monocular
and binocular natural input are strongly correlated
(r = ∼0.8, data not shown). Interestingly, even
heavy blurring of the input to cortex also produces
simulated neuronal population responses that are highly
correlated (r > ∼0.9) with the responses to unblurred
stimuli (this general result holds for all neurally realistic
parameters, because most V1 cells are tuned for

relatively low spatial frequencies). This finding may
explain why recognition is robust to substantial blurring
and suggests that pixelation and/or blurring do not fully
capture the difficulty of interpreting the neural signals
generated by electrical or optogenetic stimulation.

Participants in our study showed significant
improvement in object discrimination over 14,
one-hour training sessions. The transfer of learning
in pre-training and post-training tests were used to
examine the mechanisms underlying performance
improvements. Collectively, our results suggest that
it may be possible to adapt to the unnatural on- and
off-cell population responses likely to be produced by
electronic and optogenetic sight recovery technologies.

Methods

This study was approved by the University of
Washington’s Institutional Review Board (Study
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#3868), and carried out in accordance with the Code
of Ethics of the Declaration of Helsinki. Informed
consent was obtained before the start of the first
experimental session.

Participants

Five naïve observers (4 males) aged 25 to 32 years
(M = 27) were recruited through word of mouth at the
University of Washington. Binocular and monocular
visual acuity was assessed using FrACT (Bach, 1996,
2007), and stereoacuity was assessed using the Randot
Stereotest (Stereo Optical Co. Inc.). All observers had
normal or corrected to normal visual acuity (defined as
≥0.2 logMAR or 20/30 Snellen), no interocular acuity
differences greater than 0.1 logMAR, and normal
stereoacuity. The suppression check of the Randot
Stereotest was also used to confirm that no participant
experienced abnormal suppression.

Stimulus and procedure

Stimuli were presented dichoptically using a
custom-built stereoscope that consisted of two cold
mirrors mounted on posts, rotated at a 45° angle to
capture input from a monitor and reflect it separately
into each eye. A 32” LED monitor at a viewing distance
of 136 cm with 2560 × 1440 pixel resolution projected
to each cold mirror. Each monitor spanned 28.9°, and
these monitors were the only light source in the room.
Each stimulus spanned 768 × 768 pixels (8.84°). Stimuli
had a mean luminance of 132 cd/m2 and were presented
on a mid-grey background with luminance 80 cd/m2.

At the beginning of each session, participants used
a nonius task to align the screens to account for any
fixation disparities. Because our goal was to isolate
the ability to learn to decode abnormal on- and off-
population responses (rather than to simulate a specific
sight restoration technology), all stimuli were presented
at high resolution.

Figure 2. Example of filtering for dichoptic presentation. (A) The two upper left panels show an example scene (I), and the
contrast-reversed version of that scene (Iʹ). The upper right panel shows the noise mask 1/f noise. The leftmost panels show two
filters: F and F′. Filters images represent amplitudes in the Fourier domain, with spatial frequency increasing with distance from the
center of the image and orientation changing with polar angle. The filters are paired complements, so the full spatial frequency and
orientation content of the scenes is divided equally across the two filters. The lower middle panels show the convolution of the
original (I), contrast reversed (Iʹ), and 1/f NOISE images with Fourier filters F and Fʹ. (B) Examples of filtered images presented to left
and right eyes for the training condition and 1/f noise condition. Although these images do not resemble the perceptual experience
of simultaneous on- and off-cell stimulation, interpretation of these images requires an analogous process of interpreting a garbled
population response.
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Figure 3. (A) Unfiltered image with a pot (upper right corner) overlaid as part of the object discrimination task. (B) The Fourier artifact.
(C, D) Example of the resulting dichoptic stimuli after the filter was applied to the top image (see Filtering section of the main text).

Stimuli were created by manipulating the spatial
frequency and orientation information of naturalistic
scenes in the Fourier domain, see Figures 2 and 3.

Stimulus set
Seventeen scenes of different household settings

(e.g., kitchen, living room, bathroom, bedroom) from
the SCEGRAM Database (Öhlschläger & Võ, 2017)
were used as backgrounds. A separate set of 45 various
household objects (e.g., clock, rolling pin, dish soap)
were overlaid onto each scene (Figure 4B). To minimize
image-specific learning, objects could take on one of
six possible logarithmically spaced sizes ranging from
22.2% (1.96°) to 66.7% (5.90°) of the original object
(768 × 768 pixels or 8.84°). Each object was located

randomly within the scene and was rotated by up to 30°
in either direction. Thus, there were more than 13,000
unique images in the training set.

Filtering
Binarized radial checkerboard filters in Fourier

space were used to present separate spatial frequency
and orientation information to each eye (Figure 2).
In the Fourier domain, increasing spatial frequency is
represented by distance from the center of the image,
and orientation is represented along the polar angle
dimension.

The spatial frequency content of the filters, Ff , was
defined as: Ff = sin(2πn f0. f

1
n ), where f is the spatial

frequency of the Fourier image, f0 = 13 and controls
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Figure 4. (A) The object discrimination task. During each trial, the participant reported whether or not the cued object was present
within the scene. (B) Examples of unfiltered scenes and objects from the SCEGRAM database.

the overall frequency of the radial rings, and n describes
the increase in ring width as a function of spatial
frequency. The orientation content of the filter, Fϑ, was
defined as: Fϑ = α0.α, where α is the orientation of
the Fourier image and α0 defines the number of radial
spokes.

The radial checkerboard filter was built with sharp
edges in the Fourier domain, which leads to image
artifacts—often seen as ringing in the spatial domain
(see Figure 3). Our choice of a binary filter (rather
than a filter with smooth edges in the Fourier domain)
was motivated by the desire to minimize shared spatial
frequency and orientation information within the
images presented to each eye. These Fourier artifacts
were relatively subtle, with a root mean square contrast
of approximately one-third that of the original images
(Figure 3B) and was unlikely to be the primary cause of
masking. Pilot data (not shown) from three participants
using a Fourier filter with smooth edges in the Fourier
domain that almost entirely eliminated these artifacts,
resulted in a very similar level of performance, and a
similar or faster rate of learning.

Strong contours in our images, depending on
their alignment with the orientation (Fϑ) and spatial
frequency (n), and radial spokes (α0) of our filters,
resulted in strong striping (horizontal striping can be
seen in [I * F] and [I * Fʹ] in Figure 2). These stripes
are due to missing alternating frequency bands, and it
can be seen that the striping occurs at complementary
frequencies in [I * F] and [I * Fʹ]. The orientation,
frequency, and strength of the striping depends on
the orientation of the strong contours of the image in
relationship to the filter bands.

It is unlikely that participants learned to make
use of these Fourier artifacts to perform the task

(e.g., by recognizing objects based on a characteristic
ringing or striping structure) because the object
images in the task were always presented at random
locations, orientations, and sizes, and the overall
scaling of the background also varied over each
trial.

The final filters were the product of Ff and Fϑ, with
one being the negative of the other: F = Ff × Fϑ, and Fʹ
= −Ff × Fϑ, Finally, these filters were scaled F = (F +
1)/2, and binarized to values 0 and 1. Each filter was the
complement of the other, so the full spatial frequency
and orientation content of both the original and the
contrast-reversed scene were divided equally across the
two filters and thus the two eyes.

The two upper left panels of Figure 2 show an
example scene (I), and the contrast-reversed version
of that scene (Iʹ). The leftmost panels show the two
radial checkerboard Fourier filters F and Fʹ. The
original (I) and the contrast-reversed scene Iʹ (Iʹ =
1 – I) were each converted into the Fourier domain,
multiplied with one of the two Fourier filters, and
then converted back to image space using the inverse
Fourier transform. The top panels in Figure 2A show
original (left), contrast-reversed (middle) and 1/f
images (right). The bottom two panels (Figure 2A)
show the four examples of possible filtering: I * F, I *
F′, Iʹ * F, and Iʹ * F′ (where * denotes two-dimensional
convolution) for both the training and 1/f noise
stimuli.

In the training paradigm, we presented the left eye
(Figure 2B, Figure 3) the sum of two filtered images,
[I * F′] + [Iʹ * F], such that one-half of the spatial
frequency and orientation content was based on the
original image and the other half was based on the
contrast reversed image. In the right eye, we presented
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the sum of the complementary filtered images, [I * F] +
[Iʹ * F′].

Thus, the monocular input contains half the
information from the original image, and one-half of
the information from a contrast-reversed image, so in
theory, all the information from the original image is
retained; however, the normal pattern of population
responses (wherein on- and off-cells with similar
spatial frequencies and orientations tend to be highly
correlated in their firing) is disrupted. In the binocular
input, all the information from both the original image
and the contrast-reversed image is retained. In the
absence of suppression, on- and off-cells with identical
tuning profiles would be simultaneously stimulated by
the combination of input from the left and the right
eye, in a close analogue of the effects of electrical
stimulation.

Note that the sum, [I * F] + [I * F′], equals the
original image I, and [Iʹ * F] + [Iʹ * F′], equals the
original contrast reversed image Iʹ; thus, all the spatial
frequency and orientation information of both the
original and contrast reversed image is preserved. Thus,
with optimal decoding, stimuli are lossless. The sum
of the distorted images in each eye results in a blank
image.

Task
A brief fixation cue (0.5 second) began each trial

(Figure 4A). After a 0.5-second pause, a word cue told
the participants what the target object was (e.g., cup,
clock). After the word cue, a scene with an overlaid
object was displayed for up to 2 seconds, or until the
participant responded with a key press. To create a
dynamic scene that more closely resembled naturalistic
retinal input, and to encourage generalizable learning
by creating more variation in the retinal image, there
was a simulated panning action within each 2-second
trial. The field of view drifted to the right or left, at a
rate that was uniformly distributed between 0.21 and
0.52°/s. The image also expanded or contracted at a
maximum rate of 0.35°/s.

Participants performed a two-alternative forced-
choice object discrimination task, judging whether
or not the scene contained the cued object. In each
trial, there was a 50% chance that the scene contained
the prompted object, or a different distractor object.
Auditory feedback was provided after each trial to
indicate whether the answer was correct or incorrect.
Participants were not given specific instructions on
where to look within the scene.

Learning protocol

Each experimental session consisted of 400 trials.
Participants were offered a break every 40 trials to

mitigate fatigue, and only performed one session per
day. Participants carried out 20 approximately 1-hour
sessions in total. The first and last three sessions
contained 100 trials of the training stimulus set and 100
trials of each of the three (monocular, filter-switched,
1/f noise) pre-test and post-test conditions, for a total
of 400 trials. The remaining 14 sessions consisted of
400 trials of the training set.

Pre-test and post-test conditions

Monocular presentation
Participants were shown the filtered image to the left

or right eye only (randomly interleaved across trials).
A blank gray screen matched in mean luminance was
presented to the other eye.

Filter switched
Left and right eye filters were switched across the two

eyes, such that the eye trained to view [I * F′] + [Iʹ * F]
received [I * F] + [Iʹ * F′], and vice versa.

1/f noise
The contrast-reversed image Iʹ was replaced by a 1/f

noise pattern, such that the eye trained to view [I * F′] +
[Iʹ * F] received [I * F′] + [1/f * F], and the eye trained
to view [I * F] + [Iʹ * F′] received [I * F] + [1/f * Fʹ].

Statistical analyses

Hits, misses, correct rejections, and false alarms
from conditions within each session of two-alternative
forced-choice trials were converted into d-prime (dʹ)
units (Green & Swets, 1966). Linear mixed models were
fit to the data using the lme4 package in R (R Core
Team, 2018).

Learning over time for the trained stimulus set
Two separate linear mixed effects regression analyses

were carried out to examine performance (in dʹ) on
the trained stimulus set as a function of experimental
session. Participants were treated as a random factor
and the session number was treated as a fixed factor in
both models. The first model included all 20 sessions,
including the first three and last three sessions, which
only included 100 trials each of the trained stimuli.
The second model was restricted to the middle 14
sessions that all contained 400 trials each of the trained
stimuli. We also calculated a learning index for each
participant, which represents the proportion increase
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in dʹ normalized to the average dʹ of the three pre-test
sessions (Fine & Jacobs, 2002).

Performance in pre-test and post-test conditions
A full model assessing differences in condition, time,

and the interaction of condition by time was carried
out. Fixed effects were treated as two different factors:
(1) the ‘condition’ factor contained four levels consisting
of all types of pre-tests and post-tests, and (2) time,
which assessed the progression of learning between the
pre-test and the post-test. Each analysis was conducted
as a linear mixed effects model with participant as a
random effect factor. Three planned comparisons were
used to assess performance differences in each of the
three pre-test and post-test conditions, compared with
the trained stimulus.

Modeling

For illustrative purposes, we provide the results
of some simple simulations of expected population
responses in V1 for a variety of stimulation paradigms
(Figure 1).

We modeled retinal receptive fields as a bank of
circular center-surround difference of Gaussian filters
(with 4 sizes), with centers fixed at twice the size of the
surround, with the overall size scaling as a function
of eccentricity (Watson, 2014). Both on-center and
off-center difference of Gaussian filters were modeled.

For natural vision (including our dichoptic stimuli),
we assumed the response strength of each retinal cell
could be described as the rectified sum of the dot
product of each retinal receptive field with the image
projected onto the retina.

In the case of electrical stimulation, we assumed tiny
electrodes flush to the retinal surface, so current spread
was not modeled. We further assumed unselective
stimulation of on- and off-cells, without axonal
stimulation (Beyeler et al., 2019), with the response
strength of each retinal cell being linearly related to the
electrical stimulation current, which was in turn linearly
related to the luminance of the stimulus.

Transformation from the retinal to the cortical
surface was carried out using a template derived
from a conformal map developed by Schwartz et
al. (Polimeni, Balasubramanian, & Schwartz, 2006;
Schwartz, 1980, 1994), in which two-dimensional visual
space is projected onto the two-dimensional flattened
cortex as follows: w = k × log(z + a), where z is a
complex number representing a point in visual space,
w represents the corresponding point on the flattened
cortex, a = 0.5 reflects the proportion of V1 devoted
to the foveal representation, and k = 15 is an overall
scaling factor (Hinds et al., 2008).

Within the cortex, ocular dominance columns and
orientation pinwheels were simulated based on work
by Rojer and Schwartz (1990). Orientation columns
were modeled by bandpass filtering white noise in
the complex domain, with the angle representing
orientation preference. We then extended the model to
include ocular dominance columns as the gradient of
the same filtered white noise along a single direction,
thereby generating orthogonal ocular dominance and
orientation columns.

Individual V1 receptive fields were modeled based
on Mata and Ringach (2005), in which ON and OFF
maps are simulated as the linear combination of two
subregions of opposite sign, distance d apart (sampled
from a distribution that declined logarithmically as
a function of cortical distance), with each subregion
organized with an antagonistic (push–pull manner).
The size of the subregions linearly increased with
eccentricity (Freeman & Simoncelli, 2011; Keliris, Li,
Papanikolaou, Logothetis, & Smirnakis, 2019).

For both natural and electrical stimulation we
approximated the retinal contribution to cortex as a
cortical input image created as the linear sum of each
retinal cells’ receptive field, weighted by its response
strength. In the case of natural stimulation, this cortical
input image was very similar to that produced by
projecting the image directly onto the cortical surface.

For each cortical cell, the response was calculated
as the rectified sum of the dot product of each cortical
receptive field with the cortical input image.

When modeling cortical neuronal responses
(Figure 1), we projected the entire scene onto the
retina, assumed participants were fixating centrally, and
assumed no neural noise.

When modeling monocular versus binocular
performance on the task (Figure 7) we first calculated
noise-free cortical response to the filtered target (POT)
as a 1 x n vector (where n is the number of cortical cells).
This could be considered a target perceptual template.

We then calculated noisy cortical responses to
both the filtered target object and a distractor object,
where Gaussian noise was added to each cell with
a standard deviation proportional to the square
root of that cells’ response strength. The standard
deviation of the Gaussian noise was titrated to produce
a dʹ value of approximately 1.5 in the binocular
condition.

We defined the Euclidian norm of the difference
between the perceptual template and the noisy cortical
response to the filtered target as the signal. We defined
the Euclidian norm of the difference between the
perceptual template and the noisy cortical response to
the filtered distractor object as the noise. Note that,
unlike most signal and noise representations, a small
Euclidian norm represents good performance, where
the cortical response was similar to the perceptual
template. We created signal and noise distributions
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(Figure 7) by simulating 1000 independent trials.
This was done separately for both binocular and
monocular presentations, and these distributions were
used to calculate dʹ. Although this value of dʹ is not
directly comparable to the dʹ measured in our study
(where participants discriminated the target from a
wide variety of distractors), it nonetheless provides
an estimate of the relative signal to noise available to
observers in binocular versus monocular presentations.

We limited these calculations to a subregion of the
scene (4.42°) containing the object, and assumed that
because the task was performed using free viewing,
that the participant was foveating that region when
performing the task.

Results

Performance improvements over time for the
trained stimulus set

Figure 5 shows the dʹ values for each session, for each
individual participant. Figure 5A shows linear mixed

effects regression fits when both pre-test, post-test,
and training sessions were included in the data (all
20 sessions). Participant intercepts, which reflect dʹ at
session 1, ranged between 1.014 and 1.965 with a mean
value of M = 1.275, SD = 0.400. The slope estimate
of the model, an indicator of learning rate, was m =
0.063, 95% confidence interval (CI) 0.049–0.075, t(94)
= 9.524, P < .0001, SE = 0.007, Cohen’s d = 0.570,
showing that dʹ improved significantly over time. Over
the course of 20 sessions, the predicted dʹ increased
from 1.07 in session 1 to 2.26 in session 20, a percentage
increase of 210%. When data were restricted to the 14
training sessions only, the slope estimate of the model
was smaller but still significant, m = 0.043 per session,
95% CI = 0.028–0.058, (t(64) = 5.827, P < .0001, SE =
0.007, Cohen’s d = 0.37.

The decrease in slope when the pre-test and
post-test sessions were excluded is a function of rapid
learning during the pre-test phase. The largest average
session-to-session increase in dʹ was found between
pre-test sessions 1 and 2 (M = 0.768, SD= 0.104).

Figure 5B shows individual differences in the rate
of learning. For each participant the x-axis represents
the testing session and the y-axis (Learning Index)

Figure 5. (A) dʹ scores for participants in the trained stimulus set. The regression line for data pooled across participants (black) is
overlaid on individual participant scores. (B) The rate of learning for all subjects, normalized to the average dʹ of the three pre-test
sessions. A learning index of greater than 1 shows better performance than the average dʹ of the participant’s three pre-test sessions,
a learning index of less than 1 shows worse performance than the average dʹ of the three pre-test sessions.
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Figure 6. (A) dʹ scores for each pre-test/post-test condition. Each pre-test and post-test dʹ is calculated as the average of each
participant’s three runs in each test. Large black data points represent the average dʹ (across subjects) for that condition. Error bars
represent standard error of the mean for each condition. (B) The change in dʹ scores with training, calculated as the average of each
participant’s three post-tests subtracted by the average of each participant’s three pre-tests. Large black data points represent the
average difference in dʹ (across subjects) for that condition. A larger difference indicates improved performance in the post-test
compared with the pre-test. Error bars represent standard error of the mean for each condition. The asterisk* represents the finding
that there was a significant difference in the amount of learning in the training condition compared with the 1/f noise condition.

represents dʹ on that session normalized to the average
dʹ on the first three sessions. The slope of the average
learning rate was significant, m = 0.048 per session
95% CI = 0.038–0.058, (t(94) = 9.520, P < .001, SE
= 0.005, Cohen’s d = 0.610. Individual learning rates
(slopes) varied across participants, ranging from 0.020
to 0.088, but all five participants had learning rates that
were statistically significant, mmin = 0.020, 95% CI =
0.001–0.037, P < 0.033, SE = 0.008, Cohen’s d = 0.480;
mmax = 0.088, 95% CI = 0.064–0.111, P < 0.001, SE =
0.011, Cohen’s d = 0.880.

Pre-tests and post-tests
The purpose of the pre-test and post-tests was to

examine the underlying learning mechanisms used by
participants over the course of training.

The results of a full model assessing the four stimulus
conditions (trained, monocular, filter-switched, and 1/f
noise) in the pre-testing and post-testing phases revealed
significant main effects. An analysis of variance with
Satterthwaite’s method on each fixed effect revealed a
main effect of condition, F(3,108) = 18.544, P < .001,
ηp

2 = 0.340, and time (pre-test vs post-test) F(1,1) =
127.884, P < .001, ηp

2 = 0.540. There was a marginally
significant interaction effect of condition by time,
F(3,108) = 2.371, P = .075, ηp

2 = 0.060.
To understand how performance on the three pre-test

and post-test conditions compared with performance

on the trained stimulus set, three additional planned
tests were conducted as separate models, one for each
condition. Each transfer of learning condition was
compared with performance in the training condition
during the pre-test (MTraining = 1.292, SDTraining =
0.500) and post-test (MTraining = 2.510, SDTraining =
0.848) (Figure 6).

Monocular presentation
Comparisons of performance between the trained

and monocular stimulus sets showed a significant main
effect of time, participants improved in performance
from pre-test to post-test, F(1,52) = 82.134, P < .001,
ηp

2 = 0.61, but no main effect of condition, F(1,52) =
1.455, P = .232, ηp

2 = 0.030 or interaction between
condition and time, F(1,52) = 0.004, P = .951, ηp

2

< 0.001. Thus, performance was very similar for the
monocular and training condition, in both pre-tests
(Mmonoc = 1.139, SDmonoc = 0.447) and post-tests
(Mmonoc = 2.341, SDmonoc = 0.664).

Filter switched
As with the monocular condition, performance was

similar for filter-switched and trained conditions, in
both the pre-test (MFilter-switched = 1.356, SDFilter-switched
= 0.426) and post-test (MFilter-switched = 2.434,
SDFilter-switched = 0.512). Comparisons of performance
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between the trained stimulus and the filter-switched
conditions showed a main effect of time, with
performance significantly improving from pre-test to
post-test, F(1,52) = 73.821, P < .001, ηp

2 = 0.590.
There was no significant main effect of condition,
F(1,52) = 0.002, P = .963, ηp

2 < 0.001, or interaction
between condition and time, F(1,52) = 0.275, P = .602,
ηp

2 < 0.001.

1/f noise
The 1/f noise was a less effective mask than

contrast-reversed filtered information; participants
had relatively high dʹ for both pre-tests (M1/f Noise Pre
= 2.305, SD1/f Noise Pre = 0.740), and post-tests (M1/f
Noise Post = 2.925, SD1/f Noise Post = 0.656) in the 1/f
noise condition. We did observe some transfer of
learning (Figure 6), with a significant improvement in
performance between pre-tests and post-tests, F(1,25)
= 10.118, P = 0.004, , ηp

2 = 0.290.
Comparisons of performance between the trained

stimulus and the 1/f noise condition revealed a
significant difference between the two conditions,
F(1,55) = 25.386, P < .001, ηp

2 = 0.32, and a significant
difference in performance from pre-test to post-test,
F(1,55) = 42.051, P < .001, ηp

2 = 0.43. There was also
a significant interaction between condition and time:
the 1/f and trained stimulus conditions showed different
amounts of learning from pre-test to post-test, F(1,55)
= 4.463, P = .039, ηp

2 = 0.08.
The increase in dʹ scores, from pre-test to post-test,

was significantly larger for the trained (MTraining
= 1.218, SETraining = 0.214) than for the 1/f noise
condition (M1/f Noise = 0.620, SE1/f Noise = 0.121). The
post-test performance in the training condition was
only slightly worse than performance in the 1/f noise
condition by the end of training (MTraining = 2.510,
M1/f Noise Post = 2.925).

Discussion

Our goal was to examine whether and how sighted
participants might learn to use visual input that roughly
mimics the distortions caused by simultaneous on-
and off-cell stimulation elicited by electronic and
optogenetic sight restoration technologies.

It is impossible to replicate simultaneous stimulation
of both on- and off-cell pathways; there is no real-world
visual stimulus that elicits such a response, because in
natural vision responses to visual stimuli in on-cells are
always accompanied by the suppression of off-cells.
However, the methods described here represent an
analogous disruption of population responses. By
combining conflicting spatial frequency and orientation
information across the two eyes, we likely produced
unnatural on- and off-cell input to cortex.

Our goal was to examine the ability of the visual
system to learn to compensate for abnormal neuronal
population responses, rather than simulate prosthetic
vision per se. We therefore used high-resolution
stimuli, as opposed to using the pixelated images in
many studies of prosthetic vision (Chen, Suaning,
Morley, & Lovell, 2009; van Rheede, Kennard, &
Hicks, 2010; Wang, Marek, Steffen, & Pollmann,
2021; Wang, Sharifian, Napp, Nath, & Pollmann,
2018). Previous studies of prosthetic performance have
focused on distorting the input through blurring or
pixelation, in which a great deal of image information
is lost. One limitation/difference in this study is
that, in contrast with these other methods, our
filtering procedure, despite initially making the stimuli
perceptually incomprehensible to a naïve observer, was
mathematically lossless.

Our filtering method was surprisingly effective at
disrupting how perceptually recognizable our stimuli
were before training. In a variety of other studies,
visual performance has been shown to be robust to
adding noise or removing information through low-
or high-pass filtering or pixelation (Dagnelie et al.,
2007; Kwon & Legge, 2011; Norman, Beers, Holmin, &
Boswell, 2009). Indeed, 1/f noise was much less effective
as a mask as compared with the contrast reversed image,
despite containing similar contrast as a function of
spatial frequency, and no image content. It seems likely
that the surprising effectiveness of our filtering is due to
two related factors. First, our filters produce population
responses that are very unlike the natural population
code. Second, these population responses no longer
have the statistical properties of responses to natural
scenes, which typically vary relatively smoothly as a
function of spatial, orientation and spatial frequency
tuning, except at the borders of objects (Field, Hayes,
& Hess, 1993; Geisler, Perry, Super, & Gallogly, 2001).

Sighted participants versus patients with a
prothesis

One limitation of this study is that there are, of
course, major differences between our training protocol
in sighted participants and the experience of patients
with a prothesis. One major difference is that patients
with a prothesis have access to distorted information
for much more than 1 h/day. However, it is worth
noting that current Argus II retinal implant patients,
by choice, report using their implant for only a couple
of hours per day (Erickson-davis & Korzybska, 2020).
The reason for this is unclear, but it seems plausible that
the cognitive effort of decoding distorted and pixelated
input is a factor.

A second difference is that for patients with a
prothesis the alternative to distorted input is no input,
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whereas our virtual patients spend most of their day
with normal vision. This factor is likely to have limited
plasticity in our study in two ways. First, deprivation
(in the case of a prosthesis user) has been shown to
have dramatic effects on neurotransmitters associated
with both in both responsiveness and plasticity (Park
& Fine, 2020). Second, daily alternation with normal
visual input may impair adaptation to distorted input
(in the case of our sighted participants). In macaques,
training to detect electrical stimulation of the cortex
causes a large, reversible, retinotopically localized
impairment of thresholds for detecting visual stimuli.
Retraining on visual detection restores normal light
thresholds, but at the cost of increased thresholds for
detecting microstimulation. These results naturally raise
the concern that optimized decoding for electrical and
light stimulation cannot simultaneously coexist within
a local cortical region (Ni & Maunsell, 2010). However,
the macaques were not trained under conditions that
would be designed to promote generalization across
the two types of input, and macaques are frustratingly
notorious for failing to show generalization of learning
under conditions where humans generalize effortlessly.
Work done with prisms (Panico, Rossetti, & Trojano,
2020), colored lenses (Engel, Wilkins, Mand, Helwig,
& Allen, 2016), and selective attenuation of certain
orientations (Bao, Fast, Mesik, & Engel, 2013; Haak,
Fast, Bao, Lee, & Engel, 2014) suggests that humans
are very capable of switching between perceptual
modes, and of course any wearer of corrective lenses is
similarly used to rapidly switching between modes of
perceptual distortion.

Fast versus slow learning

Over the 20 sessions that included the trained
stimulus, dʹ increased by more than 200%. The most
rapid learning occurred early, with slower learning after
the first session. Many other studies of visual (Fahle,
Edelman, & Poggio, 1995) and auditory (Hawkey,
Amitay, & Moore, 2004; Wright & Fitzgerald, 2001)
perceptual learning similarly show an initial rapid phase
of learning, followed by slower improvement (Karni &
Sagi, 1993). The performance in the first session likely
represents learning specific task demands.

The performance of our participants during the
slower phase of learning was very comparable with
the learning rates for low-level properties, such as
perceptual judgments of spatial frequency or direction
of motion (for a review see Fine & Jacobs, 2002)
and is thought to be characteristic of learning that
occurs relatively early in the visual pathway (Karni &
Sagi, 1993). It is possible that a more engaging task
(gamification) would result in faster learning during
this slower phase of improvement (Achtman, Green, &
Bavelier, 2008; Green & Bavelier, 2010, 2012).

Monocular versus binocular performance

One limitation of our study was that we generated
abnormal population responses using conflicting
binocular input, whereas prosthetic vision is (currently)
monocular. Thus, for our stimuli, binocular rivalry
and/or suppression may have affected learning.

Participants performed very similarly in the
monocular and binocular conditions, both before
and after training, suggesting that most of the
improvement in performance with training was not due
to participants learning to suppress information from
one eye. The fact that there was no discernable decrease
in performance when the filters were switched across
eyes shows that the majority of the learning that we
observed was not eye specific.

There are at least two explanations for these results.
One possibility was that the signal to noise available
to the observer was identical across binocular and
monocular conditions. We used our simple model
to estimate the relative signal to noise available in
the cortical response to binocular versus monocular
presentations. We defined the Euclidian norm of the
difference between the perceptual template and the
noisy cortical response to the filtered target as the
signal. We defined the Euclidian norm of the difference
between the perceptual template and the noisy
cortical response to the filtered distractor object as the
noise. Figure 7 shows simulated histograms representing
these distributions for both binocular and monocular
simulations. The dʹ values were consistently, but only
very slightly (<1%) larger for the binocular condition.
Thus, for all practical purposes, the signal-to-noise
ratio can be considered identical across binocular and
monocular conditions.

One possible explanation for similar monocular
and binocular performance is that participants were
equally efficient at performing the task under both
conditions, and all binocular training transferred
to the monocular task. A second possibility is that
participants suppressed information from one of the
two eyes. This suppression may have been global and
consistent (e.g., always the right eye) or suppression
may have alternated across eyes (either across trials or
even within a single trial), and/or have been piecemeal
across space. Participants generally perceived a single,
coherent image, with no reports of shimmer or luster
as would be expected if suppression was partial and/or
alternating temporally across eyes. However, these
characteristic qualia of incomplete or alternating
suppression may not have been particularly noticeable
to our participants given our very peculiar stimuli.

1/f noise

Performance was initially much better in the 1/f noise
condition. As described in Figure 2, in the training
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Figure 7. Example histograms showing the Euclidian norm of the difference between the noise-free cortical response to a target
object (POT) and noisy cortical responses to the target or a distractor (CLOCK). There were 1,000 trials simulated for each condition.
Note that, unlike most signal and noise representations, a small Euclidian norm represents good performance, where the cortical
response is similar to the perceptual template.

Figure 8. Schematic of possible sources of learning.

condition, in a single eye, participants received [I * F′]
+ [Iʹ * F], whereas in the 1/f noise condition Iʹ was
replaced with 1/f noise, such that the monocular input
was [I * F′] + [1/f * F]. The simplest explanation for
the better performance in the 1/f noise condition is
that [Iʹ * F] served as a mask rather than as additional
information, and that [1/f * F] was less effective as a
mask, resulting in better performance.

We saw significant (but not complete) transfer of
learning to the 1/f noise condition. As schematized,

there are two possible sources of this transfer
of learning. One possibility is that the learned
ability to suppress [Iʹ * F] masking information in
the training condition, transferred to suppressing
the [1/f * F] in the 1/f noise condition (model
1, Figure 8). A second possibility is that this transfer
of learning represented an improved ability to
recognize objects that had been passed through
our Fourier filters - [I * F′] (models 2 and 3)
(Figure 8).
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We did not see a full transfer of learning to the 1/f
noise condition. One possibility is that this difference
represents a lack of (or partial) transfer between
learning to suppress [Iʹ* F] and [1/f* F] masking.
However, it is also very possible that performance in the
1/f noise condition during the post-test (and therefore
the amount of learning transfer) was limited by a
ceiling effect (M1/f Noise Post = 2.925) (Figure 6). We
might well have seen greater transfer of learning with
a more effective 1/f mask that produced similar initial
performance as our training condition.

Models of learning

Three possible learning models are schematized
in Figure 8. These models assume three possible sources
of learning: (1) improvement in the ability to interpret
[I * Fʹ] (empty bars), (2) learning to discount masking
by [1/f * F] (blue bars), and (3) learning to discount
masking by [Iʹ * F] (red bars). All models can predict
pre-training and post-training performance across
all conditions. For simplicity we only show predicted
performance in the training condition (black symbols
and lines) and the 1/f noise condition (gray symbols
and lines).

In model 1, learning is entirely due to the participants
learning to discount within-eye masking information.
The [1/f * F] mask results in a small amount of masking,
which disappears after training. The [Iʹ * F] mask has
a larger impact on performance before training, but
effects are considerably decreased with training. In
model 2, 1/f noise is an entirely ineffective mask. Some
improvement in performance comes from participants
getting better at interpreting the [I * Fʹ] stimulus,
and the rest comes from learning to discount [Iʹ * F]
masking. Models 1 and 2 assume that performance
improvements in the training condition were primarily
the result of learning to discount within-eye masking
information. Model 3 assumes that the limited amount
of learning in the 1/f noise condition was due to
a response ceiling (participants were performing at
approximately 95% accuracy by the end of training,
which is close to a response ceiling, but was unlikely
to be the actual ceiling, given that, by the end of the
study, these were highly trained observers who would
be expected to have a response ceiling of 97%–98%).
According to this model, performance improvements
could be entirely driven by improvement in the ability to
interpret [I * Fʹ]. Of course, an intermediate model that
falls between these three learning scenarios is equally
plausible.

Although distinguishing between these models is
obviously an important next step, it is important to note
that learning to decode the input provided by prosthetic
vision will require both learning to rely more heavily

on neurons that provide interpretable information, and
learning to discount neurons that do not.

Conclusions

These results suggest that it may be possible
for patients to adapt to the unnatural on- and
off-cell population responses produced by electronic
and optogenetic sight recovery technologies.
Participants were able to gradually improve in their
ability to interpret the cortical input produced
by unnatural early on- and off-cell population
responses.

The previous literature on perceptual learning and
plasticity has mainly focused on two frameworks. The
first examines how individuals learn to refine existing
perceptual templates by identifying or discriminating
a particular set of stimuli or tasks (e.g., the direction
of a field of moving dots, or identifying an object
in noise; Dosher & Lu, 1998; Fine & Jacobs, 2002).
The second examines experiential (i.e., naturalistic
viewing conditions) adaptation to sensory loss, for
example, within a region of the visual field (Augath et
al., 2005; Baseler et al., 2002, 2011; Darian-Smith &
Gilbert, 1994; Hiroshi et al., 2015; Masuda, Dumoulin,
Nakadomari, &Wandell, 2008), within one eye (Lunghi,
Berchicci, Morrone, & Di Russo, 2015; Lunghi, Burr,
& Morrone, 2011), or by removing orientation or
spatial frequency information (Georgeson & Sullivan,
1975; Haak et al., 2014; Webster, Georgeson, &
Webster, 2002; Zhang, Bao, Kwon, He, & Engel, 2009).
This study frames the role of plasticity in a novel
way: is it possible to reconfigure the fundamental
building blocks of visual perception in adults? This
is a central question both because of its translational
importance, and because it examines the adult-analogue
of processes that are fundamental to early visual
development.

Keywords: vision restoration, perceptual learning
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