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Comparing perceptual learning across tasks: A review 
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We compared perceptual learning in 16 psychophysical studies, ranging from low-level spatial frequency and orientation 
discrimination tasks to high-level object and face-recognition tasks. All studies examined learning over at least four sessions 
and were carried out foveally or using free fixation. Comparison of learning effects across this wide range of tasks 
demonstrates that the amount of learning varies widely between different tasks. A variety of factors seems to affect learning, 
including the number of perceptual dimensions relevant to the task, external noise, familiarity, and task complexity. 
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 Introduction 
Psychophysical and neurophysiological evidence has 

made it increasingly obvious that the adult visual system is 
plastic at almost all stages of processing, from the 
photoreceptors (Smallman, MacLeod, & Doyle, 2001) to 
extrastriate areas concerned with object recognition 
(Kobatake, Wang, & Tanaka, 1998; Zohary, Celebrini, 
Britten, & Newsome, 1994). Here we examine the effect 
of task complexity in 16 tasks, ranging from studies of 
simple orientation judgments to studies of object 
recognition. We chose studies that were homogenous in 
as many methodological details as possible, and therefore 
only included a restricted subset of the growing number 
of studies on perceptual learning. We used seven main 
criteria for including studies. First, we limited our review 
to studies that examined relatively long-term learning 
processes by requiring that training was carried out for at 
least four sessions, with training sessions lasting at least 
30 minutes, and only one session carried out each day. 
Although remarkably specific (and long lasting) learning 
effects have been found to take place within an hour or 
two of training (e.g., Fiorentini & Berardi, 1980, 1981; 
Shiu & Pashler, 1992; Fahle, Edelman, & Poggio, 1995; 
Liu & Vaina, 1998), we chose to focus on slow learning 
processes that take place over a number of sessions. 
Because of possible fatigue effects (e.g., Beard, Levi, & 
Reich, 1995) and the role of sleep in consolidating 
learning (Karni, Tanne, Rubenstein, Askenasy, & Sagi, 
1994), we excluded studies where significantly more than 
an hour of training was carried out per day (e.g., Vogels 
& Orban, 1985). Second, tasks were carried out foveally 
or with free fixation. Data allowing comparisons between 
learning in the periphery and the fovea have been 
obtained only for low-level tasks (e.g., Johnson & 
Leibowitz, 1979; Fendick & Westheimer, 1983; Bennett 
& Westheimer, 1991; Westheimer, 2001). Because the 
current state of the literature did not provide enough data 

to determine how learning interacts with task and 
eccentricity, we excluded studies carried out using stimuli 
that extended into the periphery (e.g., Beard et al., 1995; 
Westheimer, 2001; Ahissar & Hochstein, 1996). Third, 
we only included studies where improvements did not 
seem to be limited by ceiling effects (i.e., performance did 
not exceed 95% correct by the end of training). Fourth, 
we excluded studies where observers were given any 
significant pretraining. Fifth, we only included studies 
where error feedback was given after each trial because 
some studies show stronger learning effects when 
feedback is given after every trial than when no feedback 
is given (Herzog & Fahle, 1997; Shiu & Pashler, 1992). 
Sixth, tasks had to be purely perceptual. For example, in 
the Gauthier, Williams, Tarr, and Tanaka (1998) study 
on object recognition, the task involved learning arbitrary 
names (e.g., “vali” and “pimo”) for “greebles” and parts of 
“greebles” (e.g., “boges” and “dunth”), and, therefore, 
involved a substantial semantic memory component. 
Finally, we only included studies where percent correct, 
d’, or thresholds were used as a performance measure. 
Studies using reaction time (e.g., Vidyasadar & Stuart, 
1993) were excluded, as were studies using a combination 
of percent correct and reaction time (e.g., Gauthier et al., 
1998), because encouraging subjects to respond as quickly 
as possible might result in a speed-accuracy trade-off.  

In addition, where possible, we chose studies that 
used at least three observers because the size of training 
effects is notoriously subject to individual differences.  In 
a few cases, we have included studies with very similar 
stimuli and training procedures that were carried out in 
different laboratories. Repetitions of training procedures 
that were carried out within the same laboratory have 
been excluded.  

Despite these restrictions, the studies we included still 
varied significantly in their methodology. Training sessions 
could last anywhere between 30 and 60 minutes. In some 
studies, subjects were trained till asymptote, whereas in 
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other studies, they were trained for a fixed number of 
sessions. Some studies used fixed stimuli that did not vary 
across training sessions, whereas in other studies, stimulus 
intensity depended on the performance of the observer. 
Some studies used only naïve observers, whereas others 
included experienced psychophysical observers 
(occasionally the authors). A wide variety of tasks were 
used, including same-different, yes-no, 2-alternative forced 
choice (AltFC), 4AltFC, and match to sample. 

In all studies, we converted performance into 
measures of d’ before and after learning (see the attached 
source code for further details). Signal detection theory 
(SDT) has been used to interpret subjects' performances 
in a wide variety of perceptual and cognitive tasks, and d’ 
can be calculated for a variety of measurement techniques 
(e.g., percent correct and threshold) and psychophysical 
procedures (e.g., yes-no or forced choice) as described in 
Green and Swets (1966) and Macmillan and Creelman 
(1991). Moreover, d’ tends to be robust to violations of its 
assumptions (in some circumstances this may be due to 
the central limit theorem and SDTs frequent use of 
normal distributions).  For these reasons, we chose d' as a 
reasonable candidate for a common metric that could be 
used to compare learning across studies. We used a 
learning index, L, as our measure of improvements in 
performance with practice, s =′ ′= 1s sL d d , where s is the 
session number. Similar indices have been used to 
measure attentional effects in neurophysiology and fMRI 
studies (Treue & Maunsell, 1996; Gandhi, Heeger, & 
Boynton, 1999). The larger the learning index, the greater 
the amount of learning: a learning index remaining near 
1 implies that observers showed no improvement in 
performance with practice. Learning is generally modeled 
with an exponential function, because at some point 
performance necessarily asymptotes. However, in many 
studies, performance never approached asymptote, and 
over the first four sessions, we found that learning, 
measured using d’ was better fit by a linear rather than by 
an exponential function. We estimated the slope of 
learning (slopeL), by fitting a line to the learning indices Ls 
for s={1, 2, 3, 4}.  No learning would result in a slope of 0, 
whereas d’ doubling across each session would result in a 
slope of 1. We based our estimation of the slope on data 
from the first four sessions for two reasons. First, all of 
the studies included took place over at least 4 days, and 
second, in a few studies, observers’ behavior seemed to 
begin to be asymptote by the fifth session. Unfortunately, 
the data available to us made it impossible to reliably 
compare asymptotes between studies (see Figure 3).  

Though some of the studies in this paper may not 
have strictly complied with the assumptions made by 
signal detection theory, our estimates of learning were 
remarkably robust to deviations in the assumptions that 
we made. For example, simulations showed that our 
estimates of learning were very robust to variation in our 
estimates of the relative standard deviations of signal and 
noise. Simulations also showed that, within reasonable 

limits, our estimates of learning were reasonably robust to 
deviations from the assumption that observers always 
used the best possible criterion. When calculating 
changes in d’ with practice, we chose stimulus intensities 
well within the mid range of the psychometric curves 
describing performance before and after practice. When 
converting threshold measures to d’, we chose a stimulus 
intensity where d’ was between 0.5 and 1 at the beginning 
of training (corresponding to a stimulus intensity 
resulting in performance between 59.9%-68.7% correct in 
a yes-no task). Figure 1A and 1B show hypothetical curves 
for percent correct and d’ as a function of stimulus 
intensity before (solid line) and after (dashed line) 
training in a yes-no task. The red arrows indicate changes 
in percent correct and d’ for a stimulus intensity 
corresponding to d’=0.5 at the beginning of training; at 
the end of training, d’ was 2.3, corresponding to L=4.7. 
The blue arrows indicate changes in percent correct and 
d’ for a stimulus intensity corresponding to d’=1 at the 
beginning of training; by the end of training, d’ was 4.1, 
corresponding to L=4.1. Conveniently, simulations 
showed that provided thresholds and slopes fell within 
reasonable limits, our estimation of the learning index 
was fairly robust to the choice of the intensity value for 
which we calculated changes in d’, especially for smaller 
values of L, for example, when L≈1 estimates vary by 
0.5% to 1% depending on whether d’=0.5 or d’=1 was 
chosen as a starting point. For L≈2, estimates vary by 
about 3% to 6%, for L≈4, estimates vary by about 15%, 
and for L≈6, estimates vary by about 20%. 
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Figure 1A. Hypothetical curves showing percent correct as a 
function of stimulus intensity before (solid line) and after 
(dashed line) training for a yes-no task. B. d’  as a function of 
stimulus intensity (arbitrary units) before and after training. Red 
arrows indicate changes in percent correct and d’ for a 
stimulus intensity corresponding to d’=0.5 at the beginning of 
training, and the blue arrows indicate changes in percent 
correct and d’ for a stimulus intensity corresponding to d’=1 at 
the beginning of training. 
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(5) Fine & Jacobs, 2000 (6) Furmanski & Engel, 2000(4a) Matthews & Welch, 1997
(4b) Matthews, Liu, Geesaman
& Qian, 1999

(15) Sigman and Gilbert, 2000

TARGET

(16) Gold, Bennett
& Sekuler, 1999

(14) Gold, Bennett
& Sekuler, 1999

(3a) Ball & Sekuler, 1987
(3b) Matthews and Welch, 1997

(2) Johnson and Leibowitz (1979)

(9) Fine & Jacobs, 2000(7a) Ball & Sekuler, 1987
(7b) Matthews and Welch, 1997

(8a) Matthews & Welch, 1997
(8b) Matthews, Liu, Geesaman
& Qian, 1999

(1) Matthews, Liu, Geesaman &
Qian, 1999

(11) Herzog & Fahle, 1997 (13) Gold, Bennett &
Sekuler, 1999

(12) Gold, Bennett &
Sekuler, 1999

(10) Matthews & Welch, 1997

 

Figure 2. Examples of the stimuli used in the 16 tasks described above. 
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(2) Johnson 
(1) Matthews & Welch, 1997

& Leibowitz, 1979
(3a) Ball & Sekuler, 1987
(3b) Matthews & Welch, 1997
(4a) Matthews & Welch, 1997
(4b) Matthews et al, 1999;
(5) Fine  & Jacobs, 2000
(6) Furmanski & Engel, 2000
(7a) Ball & Sekuler, 1987
(7b) Matthews & Welch, 1997

(16) Gold et al, 1999

(8a) Matthews & Welch, 1997
(8b) Matthews et al, 1999
(9) Fine  & Jacobs, 2000
(10) Matthews & Welch, 1997
(11) Herzog & Fahle, 1997
(12) Gold et al, 1999
(13) Gold et al, 1999
(14) Gold et al, 1999
(15) Sigman and Gilbert, 2000
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Figure 3. Learning (L) as a function of session for each of the 16 tasks. 

List of Studies 
Tasks are listed below and in Figure 2, in ascending 

order, according to the estimated slope of learning 
(slopeL). Subjects showed the least learning in the tasks 
described in the beginning of this section, and the most 
learning in the tasks described at the end of this section. 
Figure 3 shows learning as a function of session for each 
study. Where we included more then one study using very 
similar stimuli and procedures, we have listed them 
according to the mean slope of learning averaged across 
the different studies. 

1. Cardinal direction of motion discrimination 
for a single dot  

Matthews and Welch (1997) trained observers to 
discriminate differences in the direction of motion for a 
single moving dot moving within a 10-degree aperture. 
The direction of motion was 0° or 90° and the dot 
traveled at 2, 10, or 16 degrees/s. Observers were 
presented with a moving dot stimulus in each of two 
temporal intervals, and were asked to indicate whether 
the direction of motion in the second interval was rotated 
clockwise or counterclockwise compared to the first. 

Performance is averaged across five observers. Observers 
showed almost no learning; slopeL was 0.001. 

2. Resolution limit for gratings 
Johnson and Leibowitz (1979) measured observers’ 

resolution limits for sinusoidal gratings windowed within 
a 2-degree circular aperture using a yes-no forced choice 
procedure. Performance is averaged across four observers. 
Observers showed almost no learning; slopeL was 0.002. 

3. Cardinal direction of motion discrimination 
for a field of dots 

(a) Ball and Sekuler (1982, 1987) trained observers to 
discriminate small changes in the direction of motion of a 
field of spatially random dots moving with 100% motion 
coherence. Observers were presented with stimuli in two 
temporal intervals, and had to report whether the 
direction of motion in the two intervals was the same or 
different. The dots moved in one of four cardinal 
directions  (centered on 0°, 90°, 270°, and 180°). The 
direction of motion difference between the two intervals 
was 3°, and was randomly selected to be either clockwise 
or counterclockwise. Performance is averaged across 8 
observers; slopeL = 0.183.  
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(b) Matthews and Welch (1997) carried out a very 
similar study in which observers were trained to 
discriminate differences in the direction of motion for a 
field of random dots moving within a 10-degree aperture. 
The direction of motion was 0° or 90° and the dot 
traveled at 2, 10, or 16 degrees/s (the data presented here 
are averaged over all three speeds). Observers were 
presented with a moving field of dots in each of two 
temporal intervals, and were asked to indicate whether 
the direction of motion in the second interval was rotated 
clockwise or counterclockwise compared to the first. 
Performance is averaged across six observers. Observers 
showed only a small amount of learning; the slope of 
learning, slopeL, was 0.0261. SlopeL, averaged across both 
studies (3a, 3b), was 0.1046. 

4. Oblique orientation discrimination 
(a) Matthews and Welch (1997) trained observers to 

discriminate orientation differences between two single-
line stimuli. Each line stimulus was 1, 5, or 8 degrees long 
and 5 min wide, and had an orientation of 45° or 135°. 
Observers were presented with a line stimulus in each of 
two temporal intervals, and were asked to indicate 
whether the second stimulus was rotated clockwise or 
counterclockwise compared to the first. Performance is 
averaged across five observers; slopeL= 0.0903. 

(b) Similarly, Matthews, Liu, Geesaman, and Qian 
(1999) trained observers to discriminate orientation 
differences between two single-line stimuli. Each line 
stimulus was 2 degrees long and 5 min wide, and had an 
orientation of 45° or 135°. Observers were presented 
with a line stimulus in each of two temporal intervals, 
and were asked to indicate whether the second stimulus 
was rotated clockwise or counterclockwise compared to 
the first. Performance is averaged across five observers; 
slopeL= 0.1994. SlopeL averaged across both studies (4a, 
4b), was 0.1449. 

5. Spatial frequency discrimination for a simple 
plaid 

Fine and Jacobs (2000) asked observers to 
discriminate changes in spatial frequency within a simple 
plaid pattern using a 4AltFC task. The plaid contained 
two orthogonal gratings with spatial frequencies near 3 
and 9 cycles/degree (cpd) and respective contrasts of 
3.2% and 11%. Observers were asked to discriminate 
which of four temporal intervals contained a slight shift 
in spatial frequency within both gratings in the plaid. 
Phases were randomized in each interval. Performance, 
averaged across three observers, showed a small amount 
of learning; slopeL = 0.1631,  

6. Familiar object identification 
Furmanski and Engel (2000) asked observers to 

identify common objects. Observers were asked to name 
gray-scale images of briefly presented common objects 
(e.g., clock, brush, and stapler). Each observer was trained 

on 20 objects. Each session began with a series of 2-s 
displays in which each of the 20 objects was presented 
along with its name. Stimuli were then briefly presented 
and observers were asked to name the object. 
Performance shown here is averaged across four 
observers. Three replications of this, or a very similar 
training procedure, resulted in very similar learning 
effects. Observers showed a small amount of learning; 
slopeL = 0.1836. 

7. Oblique direction of motion discrimination for 
a field of dots 

(a) Ball and Sekuler (1982, 1987) trained observers to 
discriminate small changes in the direction of motion of a 
field of spatially random dots moving with 100% motion 
coherence. Observers were presented with stimuli in two 
temporal intervals, and had to report whether the 
direction of motion in the two intervals was the same or 
different. The dots moved in one of four oblique 
directions (centered on 45°, 135°, 225°, and 315°). The 
direction of motion difference between the two intervals 
was 3 degrees, and was randomly selected to be either 
clockwise or counterclockwise. Performance is averaged 
across eight observers; slopeL = 0.381. 

(b) Similarly, Matthews and Welch (1997) carried out 
a study in which observers were trained to discriminate 
differences in the direction of motion for a field of 
random dots moving within a 10-degree aperture. The 
direction of motion was 45° or 135° and the field of dots 
traveled at 2, 10, or 16 degrees/s (the data presented here 
are averaged over all three speeds). Observers were 
presented with a moving field of dots in each of two 
temporal intervals, and were asked to indicate whether 
the direction of motion in the second interval was rotated 
clockwise or counterclockwise compared to the first. 
Performance is averaged across six observers. Observers 
showed only a small amount of learning; the slope of 
learning, slopeL was 0.0727. SlopeL, averaged across both 
studies (7a, 7b) was 0.2269. 

8. Oblique direction of motion discrimination for 
a single dot 

(a) Matthews and Welch (1997) trained observers to 
discriminate differences in the direction of motion for a 
single moving dot moving within a 10-degree aperture. 
The direction of motion was 45° or 135° and the dot 
traveled at 2, 10, or 16 degrees/s (the data presented here 
are averaged over all three speeds). Observers were 
presented with a moving dot stimulus in each of two 
temporal intervals, and were asked to indicate whether 
the direction of motion in the second interval was rotated 
clockwise or counterclockwise compared to the first. 
Performance is averaged across six observers. Observers 
showed only a small amount of learning; the slope of 
learning, slopeL was 0.3676. 

(b) In a very similar study, Matthews et al. (1999) 
trained observers to discriminate differences in the 
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11. Vernier offset discrimination  direction of motion for a single moving dot moving 
within a 10-degree aperture at 10 degrees/s. The direction 
of motion was 45° or 135°. Observers were presented 
with a moving dot stimulus in each of two temporal 
intervals, and were asked to indicate whether the 
direction of motion in the second interval was rotated 
clockwise or counterclockwise compared to the first. 
Performance is averaged across five observers. Observers 
showed only a small amount of learning; the slope of 
learning, slopeL, was 0.0979.  SlopeL averaged across both 
studies (8a, 8b) was 0.2327. 

Many learning studies have examined performance 
discriminating Vernier offsets (e.g., McKee & 
Westheimer, 1978; Fahle & Edelman, 1993; Fahle et al., 
1995) with the belief that this is a task mediated by fairly 
low-level visual mechanisms. Herzog and Fahle (1997) 
used two straight lines (10 × 2 arc min) that were slightly 
displaced relative to each other, and trained subjects to 
discriminate the direction of the offset. The presentation 
time was 150 msec. Half the observers performed the task 
using horizontal lines as stimuli, the other half using 
vertical lines. Performance is averaged across 10 observers 
and both orientations; slopeL= 0.290. 

9. Spatial frequency discrimination for a 
complex plaid  

12. Band-pass noise identification with high-
contrast noise 

Fine and Jacobs (2000) asked observers to 
discriminate changes in spatial frequency within a 
complex plaid pattern using a 4AltFC task. The “wicker” 
texture contained two orthogonal signal gratings masked 
by four noise gratings. One signal grating was centered on 
3 cpd, had an orientation of -45°, and a contrast of 1.5% 
to 12.8%.  The other signal grating was centered on 9 
cpd, had an orientation of 45°, and a contrast of 5.5% to 
44%. The first noise component had a frequency of 9 
cpd, an orientation of -45 degrees, and a contrast of 
11.2%. The second noise grating had a frequency of 3 
cpd, an orientation of 45 degrees, and a contrast of 3.2%.  
The third noise grating had a frequency of 4.3 cpd, an 
orientation of 0 degree, and a contrast of 7.1%.  The 
fourth noise grating had a frequency of 6.2 cpd, an 
orientation of 9 degrees, and a contrast of 7.1%. Phases 
were randomized in each presentation interval. 
Observers were asked to discriminate in which of four 
temporal intervals both signal gratings in the plaid shifted 
slightly in spatial frequency. Observers showed more 
improvement than when asked to discriminate small 
changes in spatial frequency within simple plaids (study 
5), suggesting that integrating information across a wide 
range of spatial frequencies and orientations is a relatively 
plastic process. Observers showed relatively large 
improvements in performance as they learned to base 
their responses on the spatial frequencies and 
orientations that are relevant for the task. SlopeL averaged 
across five observers was 0.2517. 

Gold, Bennett, and Sekuler (1999) examined the 
ability of observers to discriminate between 10 band-pass 
Gaussian filtered noise textures. The textures were 
Gaussian noise fields (5.25 × 5.25 degrees) filtered by a 2 
to 4 cycle per image rectangular frequency filter. High-
contrast external two-dimensional noise, with a spectral 
density of 25.55 × 10-6 deg2, was added to each noise 
texture to make discrimination more difficult. Each 
texture, with added noise, was displayed for 500 msec. 
Observers identified each texture as one of a set of noise-
free versions of each texture. Performance is averaged 
across two observers; slopeL = 0.4195. 

13. Band-pass noise identification with low-
contrast noise 

Gold et al. (1999) examined the ability of observers to 
discriminate between 10 band-pass Gaussian filtered 
noise textures. The textures were Gaussian noise fields 
(5.25 × 5.25 degrees) filtered by a 2 to 4 cycle per image 
rectangular frequency filter. Low-contrast external two-
dimensional noise, with a spectral density of 0.04 × 10-6 
deg2, was added to each noise texture to make 
discrimination more difficult. Each texture, with added 
noise, was displayed for 500 msec. Observers identified 
each texture as one of a set of noise-free versions of each 
texture. Performance is averaged across two observers; 
slopeL = 0.5666. 

10. Cardinal orientation discrimination  14. Novel face discrimination with high-contrast 
noise Matthews and Welch (1997) trained observers to 

discriminate orientation differences between two single-
line stimuli. Each line stimulus was 1, 5, or 8 degrees long 
and 5 min wide and had an orientation of 0° or 90°. 
Observers were presented with a line stimulus in each of 
two temporal intervals, and were asked to indicate 
whether the second stimulus was rotated clockwise or 
counterclockwise compared to the first. Performance is 
averaged across five observers; slopeL= 0.2785. 

Gold et al. (1999) examined the ability of observers to 
discriminate between 10 faces. High-contrast external two-
dimensional noise, with a spectral density of 25.55 ×10-6 
deg2, was added to each face to make discrimination more 
difficult. Each face, with added high-contrast noise, was 
displayed for 500 msec. Observers matched the stimulus 
face to a set of noise-free versions of every face. 
Performance is averaged across two observers; slopeL = 
0.7350. 
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15. Simple shape search 
Sigman and Gilbert (2000) asked observers to report 

whether a randomly positioned triangle was present 
within a display of 24 distracters. Observers were trained 
with the target triangle at a particular cardinal 
orientation, with the distracter triangles oriented along 
the other three cardinal axes. The sides of the triangles 
were 27 min in length and their centers were separated by 
54 min. The stimulus array subtended 4.2 × 4.2 degrees 
of visual angle, and a small fixation spot of 1 arc min 
radius was positioned in its center. The stimulus array was 
presented for 300 msec on every trial. Performance is 
averaged across four observers; slopeL = 0.7771. 

16. Novel face discrimination with low-contrast 
noise 

Gold et al. (1999) examined the ability of observers to 
discriminate between 10 faces. Low-contrast external two-
dimensional noise, with a spectral density of 0.04 × 10-6 
deg2, was added to each face to make discrimination more 
difficult. Each face, with added low-contrast noise, was 
displayed for 500 msec. Observers matched the stimulus 
face to a set of noise-free versions of every face. 
Performance is averaged across two observers; slopeL = 
0.8815. 

Discussion 
As can be seen from Figure 3, the amount of learning 

varies widely between different tasks. Some tasks (e.g., 
cardinal direction discrimination for a single dot and 
resolution limits) show no or almost no improvement 
with practice, whereas in other tasks (e.g., novel face 
discrimination and shape search) d’ improved by more 
than a factor of three over four sessions of training.  

It is still not clear what sort of neuronal changes 
underlie these improvements in performance found with 
practice. One suggestion is that perceptual learning might 
be mediated by changes in the tuning of the sensitivity 
functions of the relevant neurons: neural tuning 
functions might shift, sharpen, or broaden with practice 
depending on the stimulus and the task. Alternatively, it 
has been suggested that learning might be a consequence 
of selective reweighting of the neurons that contribute to 
the psychophysical response, so that the neurons best 
tuned for optimal performance are given more weight 
(e.g., Saarinen & Levi, 1995). We believe that these two 
explanations are consistent with each other, because 
selective reweighting of neurons will necessarily result in 
changes in the tuning functions of all mechanisms 
(including decision mechanisms) subsequent to the 
reweighting. It seems likely that this reweighting or 
retuning as a function of practice may not result in 
permanent changes in the tuning properties of neurons, 
but may instead be context dependent. The lack of 
transfer across stimuli and tasks found psychophysically 

(e.g., Beard et al., 1995), as well as the context-dependent 
learning effects found by Crist, Li,, and Gilbert (2001), 
suggests that even at very early stages of processing, 
reweighting may be task specific and mediated by higher-
level cognitive feedback and attention.  

Obviously the neuronal changes underlying 
performance improvements may well differ substantially 
depending on the task. For example, the process of 
reweighting of inputs (and the consequent shifts in 
tuning) may take place sequentially throughout the visual 
system. Consistent with this, observers often seemed to 
show more learning for the stimuli that intuitively might 
be considered more complex (Green & Swets, 1966). 
Figure 2 shows the stimuli from the different tasks, 
ranked in order of the learning slope, with the tasks that 
showed least learning at the top. As can be seen from 
Figure 2, tasks involving relatively simple stimuli (plaids, 
bars, moving dots) and judgments along a single 
perceptual dimension, such as a spatial frequency, 
orientation, or direction of motion, tended to show only 
small amounts of learning.  

We classified tasks as low level if they involved a 
judgment along a “basic” perceptual dimension, such as a 
single spatial frequency, orientation, direction of motion, 
or position. In none of the tasks described above were the 
stimuli corrupted by external noise (external noise 
paradigms have tended to be carried out in the periphery 
where learning effects are larger). Eleven tasks were 
classified as low level: resolution limit thresholds (study 
2), direction of motion discrimination for a single dot 
(studies 1, 8a & 8b), direction of motion discrimination 
for a field of dots (studies 3a, 3b, 7a & 7b), orientation 
discrimination (studies 4a, 4b & 10), and Vernier offset 
discrimination (study 11). Performance on low-level tasks 
showed fairly limited improvement with practice; after 
four sessions, the slope of the learning index averaged 
across these tasks (treating different studies using the 
same task as separate studies) was slopeL= 0.1658. This 
limited learning is a little surprising given the growing 
literature on low-level plasticity. However, many low-level 
learning studies finding strong learning effects have 
examined improvements in performance within one or 
two sessions (e.g., Fiorentini & Berardi, 1980, 1981; Shiu 
& Pashler, 1992; Fahle et al., 1995) or have examined 
learning in the periphery (Crist, Kapadia, Westheimer, & 
Gilbert, 1997; Dosher & Lu, 1998, 1999; Mayer, 1983) 
where, as described above, learning effects seem to be 
larger (Fendick & Westheimer, 1983; Bennett & 
Westheimer, 1991; Westheimer, 2001), at least for low-
level tasks.  

Often learning for these low-level stimuli is very 
specific for orientation, spatial position, size, and, 
occasionally, eye of origin. It has, therefore, been argued 
that learning must be taking place in neurons, situated 
early in processing, that are selective for these properties. 
However, it is possible that neurons normally unselective 
for properties like orientation and spatial position might 
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become more selective with training (Mollon & Danilova, 
1996). Unfortunately, the neurophysiological evidence for 
changes as a function of practice at early stages of visual 
processing is still fairly weak. Although Schoups, Vogels, 
Qian, and Orban (2001) have evidence for small changes 
in the slope of neural tuning within V1 as a function of 
practice using an orientation discrimination task in the 
periphery, other studies have not found evidence for 
significant changes in population-tuning properties using 
a bisection task (Crist et al., 2001) and an orientation-
discrimination task very similar to that of Schoups et al. 
(Ghose, Yang, & Maunsell, 2002). However, Crist et al. 
did find context-dependent surround interactions within 
V1 after training, suggesting that practice modifies task-
dependent feedback from higher visual areas. 

We found that the five tasks using stimuli that 
contained external noise (studies 9, 12, 13, 14, and 16) 
showed, on the whole, more learning than low-level tasks, 
with the slope of the learning index averaged across 
studies containing external noise being slopeL= 0.5709. 
This observation is not particularly surprising because 
several studies have found greater learning effects when 
external noise is added to a stimulus (Dorais & Sagi, 
1997; Dosher & Lu, 1998, 1999; Saarinen & Levi, 1995; 
Gold et al., 1999; though curiously in the Gold et al. 
studies, more learning was demonstrated in low- than in 
high-noise conditions). Reweighting or retuning of 
neurons would help to exclude external noise (by 
reducing the weighting of those neurons for which tuning 
does not match the stimulus well, or for which responses 
are particularly sensitive to external noise) as well as to 
reduce internal noise by excluding neurons with a low 
signal-to-noise ratio. Improvements in performance on a 
variety of tasks have been shown to be due to a 
combination of external noise exclusion and, in some 
studies, to suppression of internal noise. For example, 
Dorais and Sagi (1997), Dosher and Lu (1998, 1999), and 
Saarinen and Levi (1995), using orientation 
discrimination, contrast detection, and Vernier acuity 
tasks, have found that learning for stimuli masked with 
external noise is consistent with external noise exclusion 
as a major factor in perceptual learning. Gold et al. 
(1999), using a similar external noise technique on face 
recognition, also found that a significant amount of 
learning seemed to be due to a reduction in external 
noise, with training seeming to have little effect on 
internal noise. 

We also found that more complex tasks that required 
discriminations along more than one perceptual 
dimension showed more learning. Five tasks required 
discrimination between patterns containing more than 
one spatial frequency and orientation (studies 5, 9, 12, 
and 13) or a shape discrimination (study 15). The average 
slope of learning for these studies was slopeL=0.4356 (note 
that three of these stimuli also included external noise). 
Modifying the tuning of neurons or placing more weight 
on the outputs of neurons best tuned for a task may be 

more difficult when the useful information in a stimulus 
varies along multiple perceptual dimensions. 

We classified tasks as high level if they involved 
identifying or discriminating real-world natural objects. 
Three tasks were categorized as high level: familiar object 
recognition (study 6) and novel face recognition with low- 
and high- contrast noise (studies 14 & 16). The average 
slope of learning across these three tasks was slopeL= 0.6. 
Although observers showed large amounts of learning in 
an unfamiliar face-identification task, they showed much 
less learning for familiar objects. One possibility is that 
previous experience of observers with the familiar objects 
used in the Furmanski and Engel (2000) experiment may 
have limited the extent of further learning within the 
experiment. Observers may have already had mechanisms 
that were optimally (or close to optimally) tuned for 
identification of objects at the basic level of categorization 
used in the study. Consequently, performance may have 
been limited mainly by factors such as irreducible internal 
noise, limiting the potential for further improvement. 
Tasks using familiar stimuli generally demonstrate less 
learning than those using less familiar stimuli: for 
example, Ball and Sekuler (1982, 1987; see above, studies 
3a and 7a); Matthews and Welch (1997; see above, 
studies 3b and 7b); and others (Mayer, 1983; Vogels & 
Orban, 1985; McKee & Westheimer, 1978) have found 
more learning for oblique as opposed to cardinally 
oriented stimuli.   

Consistent with the tendency for more complex tasks 
to show more learning, neuronal tuning at higher stages 
of processing has been shown to be highly experience 
dependent. This experience-dependent plasticity may help 
alleviate the trade-off between the need to have highly 
specific neurons, and biological limitations on the 
number of neurons that can be devoted to visual 
processing. Despite the fact that it would require a 
prohibitive number of neurons to represent every possible 
stimulus (because the more selective a neuron is, the 
smaller the number of possible stimuli it can represent), 
neuronal tuning in extrastriate cortex is remarkably 
specific. It seems that rather than representing every 
possible stimulus, neurons only represent a subset of 
possible stimuli. Especially at higher stages of processing, 
selectivity seems to be strongly shaped by experience, with 
neurons preferentially representing stimuli that have been 
frequently encountered, or behaviorally important in the 
past. Given that past experience is a good predictor of 
future experience, adaptability allows neurons to 
selectively represent an ecologically important subset of all 
possible stimuli. For example, neurons in inferotemporal 
cortex (IT) are not strongly tuned for retinotopic position, 
but are tuned for particular shapes: for example, neurons 
in macaque IT respond to particular objects and shapes, 
including hands and faces (Desimone, Albright, Gross, & 
Bruce, 1984; Logothetis, Pauls, & Poggio, 1995). These 
responses seem to be strongly shaped by experience with 
objects particular to that animal’s environment. For 

 

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933496/ on 02/28/2016



Fine & Jacobs 198 

example, monkey face selective cells in IT show different 
responses to different faces, with their responses carrying 
identity information. The tuning of these cells seems also 
to be dependent on factors other than physical similarity, 
such as familiarity or social hierarchy (Young & Yamane, 
1992; Rolls & Tovee, 1995). 

Appendix A 
This Appendix includes a brief summary of signal 

detection theory (based mainly on Green & Swets, 1966) 
with explanations of the assumptions and methods used 
in our calculations. 

SDT in a Yes-No Psychophysical 
Procedure 

In a typical yes-no psychophysical task, an observer is 
presented with an observation interval that contains noise 
(n) alone or contains both signal and noise (s). The 
observer responds yes (S) if she believes the signal was 
present and no (N) otherwise. e is the sensory event 
associated with the observation interval. P(s) is the a priori 
probability of the signal, and P(s|e) is the a posteriori 
probability that signal occurred, given the evidence e. 
Using Bayes rule, 

( ) ( )
( )

( ) ( ) ( ) ( )
=

+
P s P e s

P s e
P n P e n P s P e s

. (1) 

In such tasks, observers necessarily have a criterion 
(βp) for responding S and N, based on the evidence 
provided by the observation interval. So for a given 
criterion, we can describe our subject’s behavior as 
follows:  

  if: ( )   , respond S
 else: respond N

 ≥



pP s e β  . (2) 

For example, in the extreme case, if an observer were 
rewarded for saying yes correctly, and was not penalized 
for saying yes incorrectly, she might choose the criterion 
βp =0, and say S on all trials, regardless of the sensory 
evidence (e).  

P(S|s) is the probability of a hit: saying yes when the 
signal was present. P(S|n) is the probability of a false 
alarm: saying yes when only noise was present. P(N|s) is  a 
miss, and P(N|n) is a correct rejection. A receiver-
operating curve (ROC) shows how the probability of hits 
and false alarms change as an observer bases her 
responses on different criteria. As the observer lowers her 
criterion, the number of hits increases, but so do the 
number of false alarms. Because an observer only has the 
choice of responding yes or no, P(S|s)+P(N|s)=1 and 
P(S|n)+P(N|n)=1. The ROC curve, therefore, also 
describes the number of misses and correct rejections. If 
signal and noise are equally likely, and the observer 

chooses a criterion that maximizes the probability correct, 
then the probability correct is simply p(c)=P(S|s) or 
equally p(c)=P(N|n). 

The likelihood ratio lsn(e) provides a measure of the 
probability of evidence e given that the signal occurred, 
relative to the probability of e given that noise occurred:  

( )
( )

=sn
P e s

l
P e n

. (3) 

Note that the likelihood ratio is independent of the a 
priori probability of signal and noise. The likelihood ratio 
is monotonically related to the a posteriori probability, 
provided the a priori probabilities are not zero. Because 
the two scales are monotonically related, criterions based 
on a posteriori decision rules ( )pβ  and the more 
conventionally used likelihood ratio ( )β  are related. For 
example, when signal and noise are equally probable (i.e., 
P(s)=P(n)=0.5) it can be shown that 

( )
1- ( )

=sn
P s e

l
P s e

, (4) 

and a likelihood ratio criterion of β has an exact 
equivalent in terms of a posteriori probabilities, such that  

1-
= p

p

β
β

β
. (5) 

Conveniently, in a yes-no task, the slope of the ROC 
curve at any point is equal to the likelihood ratio criterion 
that generated that point. 

In many psychophysical procedures, correct decisions 
(hits and correct rejections) are equally rewarded, and 
errors (false alarms and misses) are equally penalized. In 
this case, the optimal decision rule is to choose a criterion 
that maximizes the number of hits and minimizes the 
number of false alarms, i.e., maximizes P(S|s)-P(S|n) 
(where noise and signal are equally likely). The best 
strategy is to choose S if and only if lsn(e)>=β. Where false 
alarms were not measured, we assume in our analysis that 
observers weight hits and correct rejections equally and 
false alarms and misses equally. In all the studies we 
reviewed, error feedback did not distinguish between hits 
and correct rejections or between false alarms and misses. 

SDT in a Forced-Choice 
Psychophysical Procedure 

Most forced-choice procedures have two observation 
intervals, one of which contains both signal and noise (s) 
and the other of which contains noise alone (n). We 
assume that the observer’s decision about which of the 
two intervals contains the signal is based on the 
likelihood ratio for each observation interval, lsn(ei), i=1, 2, 
and that the two observation intervals can be treated as 
statistically independent.  
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Because the signal and noise distributions are not 
directly observed, it is possible to scale the underlying 
variable x so that mn=0, and σn=1, using the 
transformation 

We assume that the observer chooses the first interval 
if and only if the likelihood ratio associated with the first 
interval is greater than the likelihood ratio associated with 
the second interval (lsn(e1)> lsn(e2)). The percentage correct 
in a 2-alternative forced-choice task is then the area under 
the yes-no ROC curve,  

1

0
( ) 1 ( ) ( ) = − ∫ k kP C P S n dP S s . (6) 

−′ = n

n

x mx
σ

. (12) 

The percent correct in an m-alternative forced-choice task 
is  

11

0
( ) [1 ( )] ( )

−
= −∫

m
k kP C P S n dP S s ; (7) 

Under this transformation, , a measure of the 
discriminability of the signal from noise, is the difference 
between the means of the signal and noise distributions, 
divided by the standard deviation of the signal 
distribution,  

'd

−′ = s n

s

m md
σ

. (13) 
see Green and Swets (1966) for further details. 

In a forced-choice task, the observer must decide 
which of m intervals contains the signal. One way of 
analyzing 2-alternative forced-choice experiments is to 
assume that yes-no decisions are based on the magnitude 
of x, whereas forced-choice decisions are based on 
differences in magnitude between interval 1 and interval 
2, x1-x2. The probability of an observer responding that the 
signal occurred in the first interval (R1), given that the 
signal occurred in the first interval (<sn>), can be 
expressed as, 

Signal and Noise Distributions 
The relationships described above do not depend on 

the distributions of signal and noise. However, the shape 
of the ROC curve is heavily dependent on what 
assumptions are made about signal and noise. If a sensory 
event is thought of as being composed of many smaller, 
independent events, then regardless of the distribution of 
these underlying events, the sum of these smaller events, 
mapped onto a single dimension, will have a Gaussian 
distribution (based on the central limit theorem). 
Experimental evidence also suggests that the Gaussian 
assumption seems to hold for a wide variety of 
psychophysical tasks. By accepting the Gaussian 
assumption, signal and noise distributions can be 
described as 

1 1 2( ) (
∞

)< > = − < >∫
k

P R sn f x x sn  (14) 

(see Equation 10). 

( )
21 22

2
( )( ) 2 exp

2

−  −
= −

 

s
s

s

x mf x s πσ
σ

  (8) 

Equally, the probability of an observer responding 
that the signal occurred in the first interval (R1), given 
that the signal occurred in the second interval (<ns>), can 
be expressed as, 

1 1 2( ) (
∞

)< > = − < >∫kP R ns f x x ns  (15) and 

( )
21 22

2
( )( ) 2 exp

2

−  −
= −

 

n
n

n

x mf x n πσ
σ

 , (9) (see Equation 11). 
The resulting ROC curve is similar to the yes-no 

ROC curve, however 2′ ′=ROCd d . With a few more 
assumptions, the ROC curve for an m-alternative forced-
choice task can also be approximated (Swets, 1964). 

where ms, σs and mn, σn are the means and standard 
deviations of the signal and noise distributions.  

In the case of a yes-no task, the ROC curve can easily 
be determined from these signal and noise distributions. 
For a given criterion k, the probability of a hit, P(S|s), or a 
false alarm, P(S|n), can be found by integrating the area 
under the signal or the noise distribution that falls above 
that criterion. 

( ) ( )
∞

= ∫kP S s f x s dx  (10)  

or 

( ) ( )
∞

= ∫kP S n f x n dx  (11) 

It should be noted that the shape of the ROC is 
heavily dependent on the assumptions that are made 
about the separation between signal and noise and the 
relative standard deviations of the signal and noise. 
However, simulations showed that although d’ varies if we 
change the relative standard deviations of signal and 
noise, our estimate of learning, L, remains very robust to 
variation in the estimate of the relative standard 
deviations of signal and noise (assuming that the relative 
standard deviations of noise and signal remain constant 
throughout training, which may of course, not be the 
case). 

 

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933496/ on 02/28/2016



Fine & Jacobs 200 

Percent Correct as a Function of d’ 
for Various Experimental Designs 

Assuming that signal and noise have equal standard 
deviations, and that the observer maximizes the percent 
correct, we can calculate how percent correct is related to 
d’ for any given task.  

Threshold studies measure what stimulus intensity is 
necessary to achieve a fixed level of performance (usually 
~75% in a 2-alternative forced-choice task). Studies 
measuring d’ and percentage correct, on the other hand, 
measure performance for a fixed stimulus intensity level. 
Figure 1A shows two idealized psychometric functions for 
a yes-no task, measured before (solid) and after (dashed) 
training. Each value of percent correct in both 
psychometric functions can easily be converted into d’, as 
described above. Figure 1B shows d’ as a function of 

stimulus intensity for both psychometric functions. The 
change in d’ with practice for a particular stimulus 
intensity corresponds to the vertical separation between 
the two curves at that intensity value. As shown by the red 
and blue lines in Figure 1, the change in d’ with practice 
depends on the particular stimulus intensity that is 
chosen. We calculated changes in d’ choosing stimulus 
intensities well within the mid range of each psychometric 
curve. Where possible, we used a stimulus intensity where 
d’ was 0.5 at the beginning of training. A d’ of 0.5 
corresponds to a stimulus intensity resulting in 
performance at 59.9% correct in a yes-no task. 
Conveniently, within reasonable limits, our estimate of 
the value of the learning index remained fairly robust to 
the choice of the intensity value for which we calculated 
changes in d’ with practice. 

Appendix B 
The following is a MATLAB program that calculates d’ from psychometric functions. Some of the routines in our 

simulations made use of the psychophysics toolbox (Brainard, 1997; Pelli, 1997). 
 

 
% ExampleMain.m 
 
% example code showing how to calculate d prime from psychometric functions 
% other necessary functions are 
% FitdvPercent.m 
%  dvpercent.m 
% normcdf.m 
 
% contrast values for the psychometric function 
contrast=0:.2:1;  
task='YESN'; 
 
% theoretic percent correct for each contrast, before and after training 
per_correct_before=[0.5000    0.5371    0.6326    0.7500    0.8542    0.9271]; 
per_correct_after= [0.5000    0.6326    0.8542    0.9688    0.9964    0.9998];  
 
%initial estimate of separation 
init_dprime=1; 
 
%find dprime for each contrast 
for i=1:length(contrast)  
% IF YOUR MACHINE DOESN'T HAVE FMINS TRY USING FMINSEARCH %- EQUIVALENT FUNCTIONS 
 if(1)    
 dprime_before(i)=fmins('FitdvPercent', init_dprime, [], [],per_correct_before(i), task); 
 dprime_after(i)=fmins('FitdvPercent',  init_dprime, [],[],per_correct_after(i), task); 
else 
 dprime_before(i)=fminsearch('FitdvPercent', init_dprime,[],per_correct_before(i), task); 
 dprime_after(i)=fminsearch('FitdvPercent',  init_dprime, [],per_correct_after(i), task); 
end 
end 
 
% find the contrast for which dprime=0.5 before training 
init_dprime=0.5; 
interp_contrast=interp1(dprime_before, contrast, init_dprime); %the contrast for which d'==.5 
 
% find the dprime value after training for the contrast at which dprime=0.5 
% before training). 
new_dprime=interp1(contrast, dprime_after, interp_contrast);  
 
subplot(1, 2, 1) 
plot(contrast, per_correct_before, 'k', contrast, per_correct_after, 'k--'); 
xlabel('contrast') 
ylabel('percent correct') 

 
legend('before training', 'after training') 
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subplot(1, 2, 2) 
plot(contrast, dprime_before, 'k', contrast, dprime_after, 'k--'); 
xlabel('contrast') 
ylabel('dprime') 
 
 
%*****************************************% 
function L=FitdvsPercent(dprime, correct, task); 
 
% finds the d prime separation for a given percent correct  
% uses maximum likelihood function minimization 
bestper=dvPercent(dprime,task); 
L=(correct-bestper)^2; 
 
 
%*****************************************% 
function bestper=dvPercent(dprime,task); 
 
% finds the percent correct (assumining an optimal criterion etc.) for a given 
% dprime 
 
% creates signal and noise distributions, assuming signal and noise 
% have equal standard deviations of 1 
% distributions are scaled by the standard deviation of the noise 
sigS=1; %standard deviation of signal 
sigN=1; %standard deviation of noise 
x=linspace(-10, 10, 1000)./sigN; 
dprime=dprime/sigN; 
sigS=sigS/sigN; 
 
%calculate the hit/false alarm rate 
 
hit=1-NormalCumulative(x, dprime, sigS^2); 
fa=1-NormalCumulative(x, 0, sigS^2); 
 
if (task=='YESN') %yes-no    
 correctvals=hit+(1-fa); %assuming the criterion is that yes and no equally likely 
 beta=find(correctvals==max(correctvals)); 
 bestper=hit(beta(1)); 
  
elseif (task=='2ALT') %2-alt FC 
 bestper=0; 
 bestper=sum((hit(1:length(x)-1)-hit(2:length(x))).*(1-fa(2:length(x)))); 
  
elseif (task=='3ALT')  
 bestper=0; 
 bestper=sum((hit(1:length(x)-1)-hit(2:length(x))).*((1-fa(2:length(x))).^2)); 
  
elseif (task=='4ALT')  
 bestper=0; 
   bestper=sum((hit(1:length(x)-1)-hit(2:length(x))).*((1-fa(2:length(x))).^3)); 
  
elseif (task=='SMDF')% same different 
 correct1=hit+(1-fa);%assuming the criterion is that same and different equally likely 
 beta=find(correct1==max(correct1)); 
 beta=beta(1); 
 bestper=2*(hit(beta))^2-2*hit(beta)+1; 
end 
 
 
%*****************************************% 
function prob = NormalCumulative(x,u,var) 
 
% function prob = NormalCumulative(x,u,var) 
% Compute the probability that a draw from a N(u,var) 
% distribution is less than x. 
% Taken from the psychophysics toolbox 
% http://www.psychtoolbox.org// 
% 6/25/96  dhb  Fixed for new erf convention. 
 
[m,n] = size(x); 
z = (x - u*ones(m,n))/sqrt(var); 
prob = 0.5 + erf(z/sqrt(2))/2; 
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