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Three models of visual cue combination were simulated: a weak fu-
sion model, a modified weak model, and a strong model. Their relative
strengths and weaknesses are evaluated on the basis of their performances
on the tasks of judging the depth and shape of an ellipse. The models dif-
fer in the amount of interaction that they permit among the cues of stereo,
motion, and vergence angle. Results suggest that the constrained nonlin-
ear interaction of the modified weak model allows better performance
than either the linear interaction of the weak model or the unconstrained
nonlinear interaction of the strong model. Further examination of the
modified weak model revealed that its weighting of motion and stereo
cues was dependent on the task, the viewing distance, and, to a lesser
degree, the noise model. Although the dependencies were sensible from
a computational viewpoint, they were sometimes inconsistent with psy-
chophysical experimental data. In a second set of experiments, the modi-
fied weak model was given contradictory motion and stereo information.
One cue was informative in the sense that it indicated an ellipse, while
the other cue indicated a flat surface. The modified weak model rapidly
reweighted its use of stereo and motion cues as a function of each cue’s
informativeness. Overall, the simulation results suggest that relative to
the weak and strong models, the modified weak fusion model is a good
candidate model of the combination of motion, stereo, and vergence an-
gle cues, although the results also highlight areas in which this model
needs modification or further elaboration.

1 Introduction

Recent years have seen a proliferation of new theoretical models of visual
cue combination, especially in the domain of depth perception. This pro-
liferation is due partly to a poor understanding of existing models and
partly to a lack of comparative studies revealing the relative strengths and
weaknesses of competing models. This article studies how multiple visual
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cues may be combined to provide information about the three-dimensional
structure of the environment.

Depth cue interactions have been extensively studied from a psychophys-
ical and computational perspective (e.g., Rogers & Collett, 1989; Blake,
Bulthoff, & Sheinberg, 1993; Nawrot & Blake, 1993; Tittle, Todd, Perotti,
& Norman, 1995; Turner, Braunstein, & Anderson, 1997). Various models
have been proposed to characterize these interactions (e.g., Bruno & Cut-
ting, 1988; Bulthoff & Mallot, 1988; Clark & Yuille, 1990; Landy, Maloney, &
Young, 1991). Landy, Maloney, Johnston, and Young (1995; see also Clark
& VYuille, 1990) have defined three classes of models for combining visual
cues for depth. Strong fusion models estimate depth by combining the infor-
mation from different cues in an unrestricted manner. Weak fusion models
compute a separate estimate of depth based on each depth cue considered
in isolation. These estimates are then linearly averaged to yield a composite
estimate of depth. The linear coefficients that weight the different cues are
proportional to the cues’ reliability.

Landy et al. (1995) proposed that aspects of the interactive properties of
strong models and the modular properties of weak models can be combined
in modified weak fusion models. Such models allow constrained nonlin-
ear interactions, such as cue promotion and reweighting, between different
cues. Most cues are incapable of providing absolute depth information when
considered in isolation; for example, occlusion provides only order informa-
tion, and motion parallax provides only shape information. However, once
anumber of missing parameters are specified, these cues become capable of
providing absolute depth information. Cue promotion is the determination
of these missing parameter values through the use of other depth cues. For
example, motion parallax is an absolute depth cue if the viewing distance
is known. There are a number of ways that this missing parameter could
be specified, such as by means of the vergence angle or through the inter-
section of constraints using stereo disparities as well as motion parallax.
According to Landy et al. (1995), this nonlinear stage, in which information
from different cues is combined to promote any cue until it is capable of
providing an absolute depth map, is followed by a linear stage, in which a
weighted average is taken of the depth estimates of the different cues.

The results of some psychophysical experiments support relatively weak
models, allowing little interaction between different cues for depth. In-
creases in the number of depth cues available in a stimulus display lead
to increases in the amount of depth perceived and also to improvement in
the consistency and accuracy of depth judgments (Bruno & Cutting, 1988;
Bulthoff & Mallot, 1988; Dosher, Sperling, & Wurst, 1986; Landy et al., 1991).
Bruno and Cutting (1988), for example, varied in a factorial design the avail-
ability of four depth cues (occlusion, relative size, height in the visual field,
and motion perspective). Data from direct and indirect scaling tasks were
consistent with observers’ using a nearly linear additive procedure analo-
gous to a weak fusion model.
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It is clear, however, that the visual system is capable of using more com-
plex rules of cue integration than simple linear averaging. Cue vetoing, a
nonlinear combination rule whereby depth estimates are based on the cue in
a visual scene ranked highest in a hierarchical ordering, has been observed
with a number of visual cues. In the Ames room illusion, for example, per-
spective and other cues appear to veto “familiar size” (i.e., the adults in the
far corners of the room are about equally tall). Turner et al. (1997) placed
motion parallax and binocular disparity in conflict with each other in a
surface detection task, with one cue signaling a surface and the other cue
signaling points scattered randomly within a volume. Binocular disparity
was weighted far more heavily, approaching a veto rule, than motion in-
formation, regardless of which cue was informative about the surface and
despite the two cues being equally reliable when used in isolation.

The results of other experiments support strong fusion models with non-
linear combination rules more powerful than simple cue vetoing. Rogers
and Collett (1989) found that when binocular disparity and motion paral-
lax are placed in conflict in a shape judgment task, observers judged shape
in accordance with disparity information, as in the Turner et al. (1997) ex-
periment. However, fairly strong interaction between motion and stereo
was implied by the percept of nonrigid motion. Nonrigid motion was also
reported by observers in the Turner et al. experiments in trials where dis-
parity and motion information were in conflict. Rather than simply vetoing
the motion cue, the disparity information appeared to affect interpretation
of the motion cue. A number of studies examining the interaction between
stereoscopic depth displays and the kinetic depth effect (KDE) also seem to
point toward a relatively strong model of depth cue combination (Nawrot
& Blake, 1989, 1991, 1993). Retinal disparity can be used to disambiguate
depth relations in otherwise ambiguous KDE displays, and adaptation and
perceptual priming have been shown to transfer between stereoscopic and
kinetic depth displays.

In summary, the current state of the literature suggests that the degree
of interaction between cues may depend on the cues, the experimental con-
ditions, and the task. One formidable possibility is that the visual system
uses a bag of tricks to calculate depth, which would be difficult to model
formally. However, most depth cues bear an orderly and lawful, albeit com-
plicated, relationship to three-dimensional space. Given that, it is likely that
human cue combination in depth perception is more orderly than implied
by the expression “bag of tricks” and should be amenable to being modeled
by some form of fully specified nonlinear model.

One difficulty in evaluating different models for depth cue combination is
that strong and modified weak models are nonlinear and therefore difficult
to analyze quantitatively. Computer simulations are a particularly useful
way of examining visual cue combination when used as a complement to
experimental investigations. They allow competing models to be evaluated
quickly under a variety of conditions in a manner that permits detailed,
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quantitative comparisons among different models. These comparisons can
often reveal hidden or underspecified properties of qualitatively described
theoretical models.

We present the results of simulations of three models for the combination
of stereo, motion, and vergence angle cues for depth. The models were
instances of a strong fusion model, a weak fusion model, and a modified
weak fusion model. Investigators who advocate each of these three classes
of models have omitted important details that are necessary if these models
are to be specified fully and implemented. For example, investigators have
failed to characterize the noise that corrupts the various visual signals that
are used as inputs to the models. Consequently, when implementing the
models, we have had to supply details that were not supplied by the theorists
who originally proposed the models. In all cases, we have attempted to
make sensible and straightforward choices, avoiding exotic, or at least less
obvious, implementations of these models.

The goal of experiment 1 was to compare the performances of the three
models so as to evaluate their relative plausibility as models of cue com-
bination for both object depth and object shape perception. A variety of
noise conditions such as flat noise and Weber noise were simulated because
the noise model was expected to have a significant effect on performance.
The goal of experiment 2 was to explore the modified weak fusion model
more closely. In the case of depth perception, an important part of good cue
combination is the ability to learn which cues are informative under which
circumstances and to weight them accordingly. Using a pretrained model,
we set either motion or stereo to always indicate a flat surface, while the
other cue continued to indicate an ellipse. The cue indicating an ellipse was
informative in the sense that the training feedback was always correlated
with this cue; the cue indicating a flat surface was uninformative. The mod-
ified weak model successfully learned to reweight motion and stereo cues
as a function of their informativeness. Overall, the simulations reported in
this article suggest that the modified weak fusion model is a good model of
the combination of motion and stereo signals relative to weak and strong fu-
sion models. However, the results also highlight areas in which the modified
weak fusion model needs modification or further elaboration.

2 Stimulus

The simulated stimulus was a two-dimensional ellipse whose width varied
along the frontoparallel plane and whose depth varied along the line of
sight (see Figure 1, panel A). Sixteen different ellipses were presented to
each model; the width and depth of each ellipse varied independently and
took values between 12 and 48 cm. The ellipse was positioned at one of
eight viewing distances from the simulated observer, ranging between 72
and 408 cm. (Details of the stimulus are in appendix A.)

We simulated a point traveling around the perimeter of the ellipse at
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Figure 1: (Panel A) Illustration of the simulated stimulus. (Panel B) Illustration

of the object shape task and the object depth task.

a constant velocity, rather like a train traveling around a track, instead of
modeling the ellipse itself rotating. This was a different stimulus from that
used by Johnston, Cumming, and Landy (1994) in their psychophysical
experiments and is a less realistic stimulus than theirs, although it does
produce a reliable impression of depth in human observers when extended
in height (Perotti, Todd, Lappin, & Phillips, 1998; Jacobs & Fine, 1998). This
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Figure 2: (Panel A) lllustration of the simulated stereo signal. (Panel B) Illustra-
tion of the simulated motion signal.

stimulus has the advantage that it avoids artifactual depth cues resulting
from changes in retinal angle subtended by the ellipse over time. For each
of 20 time slices of the point traveling around the perimeter of the ellipse,
three sources of information were given to the simulated observers: stereo
disparity, retinal motion, and vergence angle.

Stereo information consisted of the stereo disparity angle subtended by
the point on the ellipse at each moment in time (see Figure 2, panel A). It
was assumed that the simulated observer always fixated the center of the
ellipse. Let the vergence angle y, be the angle between the lines connecting
the fixation point and the centers of the left and right retinas. Let the angle
i be the angle between the lines connecting the location of the point on the
ellipse at time step i and the images of this point on the left and right retinas.
The stereo disparity at time step i, denoted §;, is equal to y; — w,.

Motion information consisted of the monocular retinal velocity of the
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point at each moment in time expressed in degrees of retinal angle (see
Figure 2, panel B). We assumed a cyclopean eye. The retinal velocity at
time step i is the angle m; between the lines connecting the aperture of
the eye and the locations of the point on the ellipse at time steps i — 1
and i. The velocity of the point traveling around the ellipse was a function
of the perimeter of the ellipse; the point traveled more slowly for ellipses
with small perimeters and more quickly for ellipses with large perimeters.
By choosing the point’s velocity to be dependent on the perimeter of the
ellipse, we removed artifactual depth and shape cues based on the overall
magnitudes of the retinal velocities, and also prevented knowledge of the
retinal velocities from being used as a cue from which viewing distance
could be inferred.

The vergence angle (1) of an observer fixated on the center of the ellipse
was the third source of information given to the simulated observers. This
angle was directly related to the viewing distance (D) through the equation

|
=2tant(—= 2.1
» (35): @)

where | is the interocular distance. We chose to use the vergence angle as
one of a number of cues that observers appear to use to estimate viewing
distance. There are a large number of cues for viewing distance, and viewing
distance estimates appear to increase and grow more accurate as the num-
ber of cues increases. Bradshaw, Glennerster, and Rogers (1996) found that
horizontal disparities were scaled by an estimate of the egocentric viewing
distance that was approximately an additive function of vertical disparities
and vergence angle. However, depth constancy was far from complete in
their study, unlike those done with more naturalistic viewing conditions
(Glennerster, Rogers, & Bradshaw, 1993; Durgin, Proffitt, Olsen, & Reinke,
1995), suggesting that other cues besides vergence angle and vertical dis-
parities also provide viewing distance information.

Three noise conditions were examined: a Weber noise condition, a flat
noise condition, and a velocity-uncertainty noise condition. In the Weber
noise condition, motion, stereo, and the vergence angle were corrupted
by additive gaussian noise whose distribution had a mean of zero and a
standard deviation proportional to the signal magnitude (i.e., proportional
to the disparity angle, the retinal motion, and the vergence angle).

In the flat noise condition, motion and stereo cues were corrupted by
additive gaussian noise with mean zero and a constant variance, while the
vergence angle was corrupted by Weber noise as in the Weber noise condi-
tion. Once again motion uncertainty was modeled as uncertainty about the
retinal velocities.

An alternative way to model motion noise is as uncertainty about the
velocity of the moving point on the ellipse rather than uncertainty about the
retinal velocity. In the velocity-uncertainty condition, noise in the motion
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cue was modeled as uncertainty about the velocity of the moving point on
the ellipse. In this velocity-uncertainty condition, stereo and vergence angle
signals were corrupted by noise with the same distribution as in the Weber
condition, while the motion signals were corrupted by adding zero-mean
gaussian noise to the velocities of the point traveling around the ellipse.

Weber noise was added to the vergence angle signal in all noise conditions
because a Weber noise model is a conservative one, due to the vergence
angle’s being inversely related to viewing distance. In addition, a fourth
condition was considered as a control. In this no-noise control condition,
noise was not added to any of the cues. This condition was used to check
that it was added noise that limited performance of the models. In all noise
models, motion and stereo noise levels were set at values chosen to make
stereo a slightly more reliable cue for judging the depth of an ellipse. These
noise levels are consistent with psychophysical data (e.g., Rogers & Graham,
1982). (Table 1 in appendix A contains the equations used for the noise
models.)

3 Tasks

The depth of an ellipse is the distance from the point on the ellipse closest
to the observer to the point farthest away; its width is the distance from the
left-most point to the right-most point (see Figure 1, panel B). The shape of
an ellipse is defined as the ratio of the ellipse’s depth to its width. This ratio
is sometimes referred to as the form ratio. Cues from which shape can be
calculated independently of absolute depth, width, or viewing distance are
known as scale-invariant cues. Cues from which shape cannot be computed
independent of such information are known as scale-dependent cues.

Motion is a scale-invariant cue because both width and depth scale lin-
early with viewing distance (see Figure 3). For example, an object of 40 cm
depth at a viewing distance of 240 cm produces the same retinal motion
signal as an object of 20 cm depth at half that viewing distance. Because
width from motion also scales linearly with viewing distance, shape can
be directly computed without explicit knowledge of the viewing distance.
However, motion alone provides only a shape cue; without information
about the viewing distance, or the size or velocity of the object, there is no
way of inferring object depth.

In contrast to motion, stereo is not a scale-invariant cue. Although the
width of an object indicated by retinal stereo disparities scales linearly, the
depth of an object indicated by a given retinal signal scales with the square
of the viewing distance (see Figure 3). The same disparity retinal signal
indicates an object of 20 cm depth at a viewing distance of approximately
172 cm or an object of 40 cm depth at a viewing distance of 240 cm. Stereo
disparities are therefore scale dependent; there is no way of inferring shape
information independent of the viewing distance. Although stereo dispari-
ties are occasionally described as absolute depth cues, it is necessary to have
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Figure 3: Scaling of motion and stereo retinal signals with distance from the
observer.

an estimate of the vergence angle or the viewing distance to obtain either
object depth or shape information from stereo information. This need to
scale disparities by the viewing distance is referred to as the stereo scaling
problem. As would be expected from the geometry, both Johnston (1991) and
Durgin et al. (1995) have found evidence that depth estimates mediated by
stereo disparities were scaled by the viewing distance estimate. In addition,
Trotter, Celebrini, Stricanne, Thorpe, and Imbert (1992) found that responses
of V1 cells were modulated by changes in the viewing distance.

Differences in the geometrical information provided by the scale-invariant
cue of motion and the scale-dependent stereo cue motivated us to examine
both an object depth task and an object shape task.

4 Models of Cue Combination

A series of nonlinear artificial neural networks trained using the backpropa-
gation optimization algorithm were used to simulate the different observers.
Each network performed a regression, possibly nonlinear, that mapped in-
puts to outputs. In this study, any reasonable regression procedure could
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be used. In contrast to researchers who use neural networks for the pur-
poses of biological modeling, our simulations were intended as a functional
study of cue combination. Neural networks were used because they have a
number of convenient computational properties. They show comparatively
fast learning and good generalization on a wide variety of tasks (Chau-
vin & Rumelhart, 1995). Their theoretical foundations are also becoming
increasingly better understood (e.g., Chauvin & Rumelhart, 1995; Smolen-
sky, Mozer, & Rumelhart, 1996). In addition, they are efficient and easy
to implement. Their parameter values can be estimated using a gradient-
descent procedure in which the relevant derivatives are computed using
an implementation of the chain rule known as the backpropagation algorithm
(Rumelhart, Hinton, & Williams, 1986). The recursive nature of this algo-
rithm makes neural networks efficient to run on relatively large-scale tasks
and easy to program.

The instances of the strong fusion, weak fusion, and modified weak fu-
sion models used in our simulations are illustrated in Figure 4. Each box
in the panels represents an independent network, and the labeled lines
represent the flow of information between the networks. With one excep-
tion, noted below, the networks have a generic form (an input layer fully
connected to a hidden layer, which is fully connected to an output layer;
the hidden units of the networks use the logistic activation function, and
the output units use a linear activation function; the networks are trained
to minimize the sum of squared-error objective function). The inputs to the
networks were linearly scaled to fall in the interval between —1 and 1 (stereo
disparities and retinal velocities) or between 0 and 1 (vergence angle); the
desired outputs were scaled to fall in the interval between 0 and 1. Each
network of each model was trained independently for 3000 epochs, and the
networks were trained in their logical order (e.g., if the output of network A
is an input to network B, then network A was trained before B). At the end
of training, network performances had reached asymptote. In general, the
simulations showed virtually no overfitting, possibly due to the fact that the
noisy input signals prevented the networks from memorizing the training
data. The number of hidden units and the learning-rate parameter for each
network were optimized under the Weber noise condition in the sense that
networks with fewer or more hidden units or with a different learning rate
showed equal or worse generalization performance. (Further details of the
simulations are provided in appendix A.)

Figure 4 (panel A) illustrates the strong fusion model. The model con-
sisted of two networks. The first network (labeled “viewing distance”) re-
ceived an estimate of the vergence angle (yy) as input and calculated an esti-
mate of viewing distance (dy). The second network (labeled “unconstrained
interaction”) received as input a set of 20 stereo disparities (6, i =1, ..., 20),
a set of 20 retinal velocities (m;, i =1, ..., 20), and the viewing distance es-
timate produced by the preceding network. The output was an estimate of
either the depth or the shape of the ellipse. Because this network contained
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Figure 4. Instances of the strong fusion, weak fusion, and modified weak fusion
models used in the simulations.

hidden units and was fully connected, the strong model was relatively un-
constrained and could form high-order nonlinear combinations of stereo,
motion, and vergence angle information.

The weak fusion model, shown in panel B, consisted of four underlying
networks. The first network, like the first network in the strong model, re-
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ceived as input the vergence angle (yy) and computed an estimate of the
viewing distance (dy). The stereo computation network used the viewing-
distance estimate computed by the initial network (dy) and the set of stereo
disparities (8;) to estimate either the depth or the shape of the ellipse. The mo-
tion computation network used the viewing-distance estimate computed by
the initial network (dy) in conjunction with the set of 20 retinal velocities (m;)
to provide an independent estimate of ellipse depth or shape. The weighting
network was given the estimate of viewing distance estimate (dy) as input
and then computed the linear coefficients (ws; and wp) used to average the
outputs of the stereo (depth,) and motion (depth,) computation networks
so as to produce the best final estimate of depth. For the object depth task,
for example, the weighting network computed the weights ws and wy, as a
function of the estimated viewing distance (dy) using the equation

depth = (wj; x depthy) + (wm x depth,), 4.1)

where depth is the weak fusion model’s final estimate of object depth, depth,
is the output estimate of the underlying stereo computation network, depth,,
is the output estimate of the underlying motion computation network, and
w; and wp, are, respectively, the weights used to average the output esti-
mates of the stereo and motion networks. Whereas the other networks of
the cue combination models have a generic form, the weighting network is
nonstandard in the sense that its output unit is a sigma-pi unit (Rumelhart,
Hinton, & McClelland, 1986). Specifically, the weighting network has four
layers of units: an input layer, a hidden layer, a layer consisting of two units
(the activations of these units are the values ws and wy,), and an output
unit. The weights on the connections from the two units in the third layer to
the output unit are set equal to the depth or shape estimates produced by
the stereo computation network and motion computation network, respec-
tively. Because the two units in the third layer use the logistic activation
function, the weights ws; and wy, are constrained to lie between zero and
one; they are not constrained to sum to one.

Four of the five underlying networks of the modified weak fusion model
(panel C of Figure 4) were nearly identical to the weak fusion model. It dif-
fered from the weak model in including one additional network that was
used to model an instance of cue promotion. Johnston et al. (1994) found that
the combination of stereo and motion cues helped human observers solve
the stereo scaling problem when they were asked to choose which of a set
of cylinders appeared circular. We modeled this combination of motion and
stereo by including a network that mapped sets of stereo disparities (5;) and
retinal velocities (m;) to provide an additional estimate of the viewing dis-
tance (dsm). Retinal velocities scale inversely with viewing distance, whereas
stereo disparities scale inversely with the square of the viewing distance.
Consequently there is only one object depth at one viewing distance that
is consistent with both motion and stereo retinal signals (see Figure 3). By
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combining motion and stereo disparity information, through this intersec-
tion of constraints, both object depth and viewing distance can be computed
without the need for additional information, such as the vergence angle. In
the modified weak model, limited nonlinear interaction between motion
and stereo was allowed for the purpose of computing this additional es-
timate of the viewing distance (dsm). This viewing-distance estimate was
generally more accurate than the vergence-angle estimate (dy) under the
noise conditions studied. Under the Weber noise condition, for example,
the correlation coefficient between the estimate of viewing distance dy and
the real viewing distance was 0.7821, while the correlation coefficient for
dsm and the real viewing distance was 0.9166, corresponding to a root mean
square (RMS) error nearly twice as large for dy than dsy,. This improved
stereo-motion viewing-distance estimate was used as an additional input
to the motion, stereo, and weighting networks of the modified weak fusion
model.

5 Experiment 1

The first experiment compared the performances of the different models
(strong, weak, and modified weak models) on the two tasks (object shape
and object depth tasks) under various noise conditions (Weber noise, flat
noise, velocity-uncertainty noise, and no noise). Figures 5 and 6 show the
results on the object shape task and object depth task, respectively. The
two graphs in each figure show the models’ performances in the Weber
noise condition and in the no-noise condition. Performances in the flat and
velocity-uncertainty noise conditions were very similar to those in the Weber
noise condition and, thus, are not shown. The horizontal axis of each graph
gives the model; the vertical axis gives the generalization performance at
the end of training. The metric used to quantify generalization performance
is the correlation between the actual output of a model and the target output
(the real shape or depth of an ellipse) using a set of test patterns that differed
from the patterns used during training. The error bars in the graphs give
the standard error of the mean for 10 runs of each model.

None of the models we simulated had any difficulty in solving either
the depth task or the shape task in the absence of noise, as shown by the
comparatively good performance of each of the models in the no-noise
control condition. Rather than lack of computational power, it was added
noise that was the most significant factor limiting performance for each
model. Good generalization performance was therefore based on the ability
of each model to resolve ambiguity due to noise. This result highlights the
seriousness of the problem mentioned above: that theorists proposing cue
combination models have failed to specify noise conditions that are realistic
and can be used to distinguish the relative strengths and weaknesses of
competing cue combination models. In the absence of noise, widely different
models all show good performance.
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Figure5: Generalization performances of the strong (S), weak (W), and modified
weak (MW) models on the object shape task in the (top) Weber noise condition
and (bottom) no-noise condition. Generalization performance was quantified
as the correlation between a model’s actual output and the target output using
the set of test patterns. Standard error bars for 10 runs are shown.

The shape task was easier than the object depth task. As can be seen by
comparing Figures 5 and 6, the generalization performances on the shape
task were consistently better than those on the object depth task. Because the
shape task was significantly easier for all three models, this result is unlikely
to be due to a specific architectural property of a particular model. The
results are also independent of the particular noise condition used. Shape
is a scale-invariant property of objects, whereas object depth is susceptible
to uncertainty in the viewing-distance estimate. It is the scale invariance of
the shape task that makes it easier to solve.
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Figure6: Generalization performances of the strong (S), weak (W), and modified
weak (MW) models on the object depth task in the (top) Weber noise condition
and (bottom) no-noise condition. Generalization performance was quantified
as the correlation between a model’s actual output and the target output using
the set of test patterns. Standard error bars for 10 runs are shown.

The literature on visual perception often contains an implicit assump-
tion that people use a single representation of three- dimensional space for
all tasks (e.g., Gogel, 1990). Recent evidence suggests, however, that dif-
ferent tasks may involve the use of different spatial representations (e.g.,
Graziano & Gross, 1994). In particular, there are reasons to believe that ob-
servers have separate representations for the shape and depth of objects. The
shape of objects is a useful cue for object recognition that is independent
of distance-scaling effects, which provides a motive for representing shape
independently of depth (Brenner, van Damme, & Smeets, 1997; Mishkin,
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Ungerleider, & Macko, 1983). Our results show that the shape task is easier
than the object depth task. Because object depth representations are neces-
sarily susceptible to uncertainty in the viewing-distance estimate, making
shape judgments dependent on object depth estimates would unnecessarily
corrupt shape estimates. Separate representations could restrict the effects
of uncertainty in viewing distance so that representations of scale- invariant
properties are not needlessly corrupted.

Figures 5 and 6 also illustrate that the modified weak model showed the
best performance in the object depth task and comparable performance to
the strong model in the shape task. This was also the case in the flat and
velocity-uncertainty noise conditions (not shown). This result is surprising
because, in theory, the strong model should always be able to perform at
least as well as the modified weak model due to the fact that it is less
constrained. However, the strong model did not perform best; it seems that
the complexity of the object depth task meant that the absence of built-in
structure in the strong model allowed it to fall into relatively poor local
minima of the error surface in the presence of noise during training. The
addition of extra hidden units to the networks of the strong model did not
remedy this problem.

In order to understand better the performances of the modified weak
model relative to those of the strong model, we also simulated two variants
of the strong model and one variant of the modified weak model. Recall
that the strong model contains a network that maps the stereo and motion
signals and the estimate of viewing distance based on the vergence angle
(dy) to estimates of object shape or object depth. In the first variant of the
strong model, this network was also given as an input the estimate of view-
ing distance based on stereo and motion signals (dsm). The generalization
performances of this variant were nearly identical to those of the original
strong model (the average correlation coefficients for the variant on the
shape and depth tasks were 0.899 and 0.778; the corresponding values for
the original strong model were 0.913 and 0.774).

In a second variant of the strong model, this network was given the
viewing-distance estimate based on stereo and motion signals, but not the
estimate based on the vergence angle (the first variant was given both of
these estimates). This variant also did not perform better than the original
strong model (its average correlation coefficients on the shape and depth
tasks were 0.895 and 0.710). For the sake of completeness, we also simu-
lated a variant of the modified weak model. In this variant, the networks of
the model used the viewing-distance estimate based on stereo and motion
signals, but not the estimate based on the vergence angle. This variant per-
formed similar to the original modified weak model on the object shape task
and worse than the original model on the depth task (the average correla-
tion coefficients for the variant on the shape and depth tasks were 0.899 and
0.700; the corresponding values for the original modified weak model were
0.910 and 0.803). This outcome is surprising because the viewing-distance
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estimate based on the stereo and motion signals, dsm, is more accurate than
the estimate based on the vergence angle, dy. One probable explanation is
that dy, but not dsm, is independent of noise in the stereo and motion cues,
and this may be important for accurately estimating depth.

It should be emphasized that no strong conclusions can be drawn con-
cerning the superiority of the modified weak model over the strong model
(or any of the variants of it that we simulated). We suggest, however, that the
superior performances of the modified weak model provide evidence that
the constraints imposed on it are at least not overly restrictive. Although
nontrivial constraints are imposed on the modified weak model, they do
not seem to impair its ability significantly to find a satisfactory solution to
both the shape and depth tasks.

The modified weak model performed significantly better than the weak
model. This is because constraints imposed on the weak model prevented
any interaction between motion and stereo cues. In the case of the modi-
fied weak model, constrained interaction between motion and stereo signals
provided a relatively accurate estimate of the viewing distance. This accu-
rate source of information about the viewing distance gave the modified
weak model a significant advantage over the weak model.

The relatively good performance of the modified weak model suggests
that the modularity constraints imposed on it (the model contains separate
stereo and motion depth computation networks) do not prevent it from find-
ing a good solution. The architecture of the modified weak model provides
an adequate compromise between modularity and the power to combine
cues, thereby showing both good performance and parsimonious design.
Stereo and motion information could interact in a constrained manner to
provide an additional estimate of viewing distance, while the overall archi-
tecture remained essentially modular.

Although the comparative simulation results suggest that the modified
weak fusion model is a good candidate model of the combination of mo-
tion and stereo cues, further simulation results with this model indicate be-
haviors that are sensible from a computational viewpoint but inconsistent
with existing psychophysical data. In this sense, the simulation results show
shortcomings of the modified weak model. We highlight these shortcomings
in order to provide a fair evaluation of the strengths and weaknesses of this
model and to encourage advocates of the model to consider modifications
that may make the model’s behavior more consistent with psychophysical
results.

Figure 7 gives the weighting of motion and stereo as a function of viewing
distance for the different tasks for the modified weak model in the Weber
noise condition. The horizontal axis represents the viewing distance, and
the vertical axis represents the weights assigned to motion and stereo (W
and w; in equation 4.1). The weightings of motion and stereo cues in flat and
velocity-uncertainty noise conditions were similar to the weightings in the
Weber noise conditions and therefore are not shown. As might be expected,
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Figure 7: Weights assigned to motion and stereo information by the modified
weak model as a function of viewing distance for the object shape and object
depth tasks. Standard error bars for 10 runs are shown.

the weights added approximately to one over all distances for both depth
and shape tasks in all noise conditions, although they were not constrained

to do so.

In the case of the shape task (panel A of Figure 7), motion information
was weighted far more heavily than stereo information for all three noise
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conditions. This is consistent with the fact that retinal velocities provide a
scale-invariant cue to shape. Because the motion cue to shape is not suscep-
tible to noise in the viewing-distance estimate, it remains consistently the
most reliable cue under all conditions tested. The weight assigned to stereo
increased with viewing distance in all three noise conditions.

In the object depth task (panel B of Figure 7), the opposite results were
found: stereo was weighted more heavily than motion for all three noise
conditions. Again, the weight assigned to stereo increased with viewing
distance for all three noise conditions.

That the weight assigned to stereo increased with distance is an un-
expected finding because it is inconsistent with psychophysical data. The
results differ from the psychophysical findings of Johnston et al. (1994), as
well as those of several other investigators who found increased reliance
on motion as the viewing distance increased (see Tittle et al., 1995, for a
discussion). Johnston et al. (1994) explained this by arguing that motion is
a more reliable cue at farther distances. The difference between the perfor-
mance of the simulated modified weak model and that of the observers in
Johnston et al.’s study is not easy to explain by assuming slightly different
noise conditions for motion and stereo than the three we used. It is also not
easy to explain by considering differences between the KDE displays used
by Johnston et al. and the displays that we used. (Appendix B provides
a lengthy discussion of these issues.) In short, analysis of the equations
relating either motion or stereo information to estimates of object depth
shows that for a point traveling around a fixed ellipse at a constant velocity,
the depth estimates based on stereo become more accurate as the viewing
distance increases relative to the depth estimates based on motion. There-
fore, it is not the case that motion is providing more reliable information
at greater viewing distances. One possible explanation of the difference be-
tween the simulation results reported here and the psychophysical data is
that human observers have different biases in their estimates of viewing
distance than those included in the modified weak model. The distance
judgments of human observers tend to be biased toward viewing distances
of approximately 1 meter; viewing distances less than this value tend to
be overestimated, whereas viewing distances greater than this value tend
to be underestimated. This phenomenon is known as the specific distance
tendency. The study of Johnston et al., which reported that subjects relied
more strongly on motion at farther viewing distances, used distances of 0.5
and 1.2 meters. It is likely that observers’ estimates of viewing distance are
more accurate at 1.2 meters than they are at 0.5 meter, and this may affect
their relative use of motion and stereo. Our model, and the modified weak
fusion model as outlined by Landy et al. (1995), does not include biases in
viewing-distance estimates. Our simulation results suggest that advocates
of this model may want to include such a mechanism in future versions.

As a final conclusion based on the results of experiment 1, we return to
the issue of single versus multiple representations of visual space. Both the



1316 I. Fine and Robert A. Jacobs

modified weak model and the strong model performed better on the shape
task than the depth task for all the noise conditions. The relative weighting
of motion and stereo was significantly different for shape and depth tasks
for all noise conditions and over a wide range of viewing distances. These
differences between the shape and the depth task provide a source of moti-
vation for having separate representations of object depth and object shape.
Landy et al. (1995) proposed the existence of a depth map to which all cues
were promoted. Our results motivate the additional existence of a shape
map. Separate representations for the depth and shape of an object would
permit independent cue weighting functions, allowing each judgment to be
separately computed so as to minimize the effects of noise.

6 Experiment 2

Experiment 2 examined the ability of the modified weak model to com-
pensate for changes in the relative usefulness of different cues. Landy et al.
(1995) suggested that changes in the weights assigned to different cues for
visual depth might serve to compensate nearly instantly for changes in their
relative reliability. Young, Landy, and Maloney (1993) found that human ob-
servers altered the weights that they assigned to depth estimates based on
texture and motion cues as a function of the cues’ reliabilities. Turner et al.
(1997) exposed observers to displays where either motion parallax or stereo
disparity specified a three-dimensional sinusoidal corrugation in depth,
while the other cue indicated random points scattered randomly within the
volume. They found that performances on a depth judgment task improved
when the observers were told whether motion or stereo was the informative
cue. It is thought that this improvement in performance is due to a change
in the relative degree to which observers relied on motion and stereo cues.
Performance was better when the same cue was relevant for an entire block
of trials than when the relevant cue changed on a trial-by-trial basis. This
result suggests that a significant amount of cue reweighting might not occur
instantaneously.

We began with a previously trained system that simulated the modified
weak model. Either the stereo or the motion cue indicated an ellipse varying
in width and depth; the other cue was set to indicate a flat surface on the
fixation plane. The cue that indicated a flat surface was therefore uninforma-
tive as far as judging the depth or the shape of the ellipse was concerned. We
examined the depth and shape estimates of the modified weak model when
provided with this contradictory information from motion and stereo. We
were interested in how the depth and shape estimates and the weights as-
signed to the different cues changed over time with additional training. We
predicted that the weight assigned to the informative cue would increase
at the expense of the weight assigned to the uninformative cue. We also
predicted that the depth and shape estimates of the model would improve
as the weight assigned to the informative cue increased. In the simulations
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reported in this section, the weights assigned to stereo and motion were
constrained to be nonnegative and to sum to one. In addition, we consider
only the Weber noise condition (the results with the other noise conditions
were qualitatively similar).

The weight assigned to the informative cue was examined over time for
the object depth task. When motion was the informative cue, the weight
assigned to motion (averaged over all test patterns) increased dramatically
over about 300 pattern presentations. The opposite occurred when stereo
was the informative cue, though the effect was less strong due to ceiling
effects because the model had initially relied heavily on stereo information.
Analogous results were found for the shape task. When stereo was the infor-
mative cue, the weight assigned to stereo significantly increased over time.
The weight assigned to motion significantly increased when motion was
the informative cue, although the model initially relied heavily on motion,
and again, therefore, there were ceiling effects.

Figure 8 shows the depth estimates of the modified weak model as a func-
tion of real depth. The horizontal axis gives the real depth of an ellipse; the
vertical axis gives the depth estimate produced by the model. The fine solid
line along the diagonal of each graph represents perfect depth constancy.
The solid circles in the graphs represent the depth estimates of the model
when both stereo and motion were informative cues providing information
about the depth of the ellipse. When both cues were informative, there was
asmall, consistent tendency to overestimate the depth of “shallow” ellipses
and underestimate the depth of “deep” ellipses. We believe that this is due
to the use of a set of training patterns in which, on average, a pattern repre-
sented an ellipse of moderate depth. The model learned to bias its estimates
toward this average value.

The bottom graph shows the depth estimates of the model when the mo-
tion cue indicated a flat surface. Data shown are averaged over all the test
patterns and, thus, are averaged over the full range of viewing distances.
We predicted that initially (before the model received additional training
allowing it to compensate for the fact that one cue was uninformative) the
ellipse would appear shallower when one cue indicated a flat surface. The
solid triangles represent the initial depth estimates of the model. As pre-
dicted, the slope of the function relating the depth estimates to the real
depths of the ellipses is comparatively flat; the model strikingly underesti-
mated the depths of the ellipses. This result is consistent with the common
finding of underestimation of depth by human observers in reduced cue
conditions (e.g., Bulthoff & Mallot, 1988; Landy et al., 1991). The shaded
squares represent the depth estimates of the model after additional train-
ing. The model learned to rely almost entirely on the stereo cue. This curve
approaches the depth-estimate function of the model when both cues were
informative (solid circles), although there is a slightly greater tendency to
underestimate the depth of deep ellipses and overestimate the depth of shal-
low ellipses. The gray diamonds represent the depth estimate of the model
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Figure 8: Depth estimates of the modified weak fusion model as a function of
the real depth of an ellipse. (Top) The case when motion was the informative
cue and the stereo cue indicated a flat surface. (Bottom) The case when stereo
was the informative cue and motion indicated a flat surface. Standard error bars
for 10 runs are smaller than the symbols.
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halfway through the additional training period. As might be expected, the
curve falls halfway between the initial depth estimates of the model and
the estimates at the end of additional training. This improvement in perfor-
mance over time is due to the fact that the model learned to reweight motion
and stereo cues so as to rely more heavily on the informative cue. Quali-
tatively similar results were found when the stereo cue was uninformative
(see the top graph of Figure 8).

Figure 9 shows the shape estimates of the modified weak model as a
function of real shape. The horizontal axis gives the real depth-to-width ra-
tio of an ellipse (normalized by the maximum depth-to-width ratio), and the
vertical axis gives the depth-to-width ratio estimate of the model (also suit-
ably normalized). The fine solid line along the diagonal represents perfect
shape constancy. When stereo indicated a flat surface and motion was the
informative cue (top graph), there was a small, consistent tendency to un-
derestimate the depth of deep ellipses. These data resemble psychophysical
performance in several studies on motion parallax that revealed a similar
tendency by human observers to underestimate the depth of objects whose
depth was greater than their width (Braunstein & Tittle, 1988; Caudek &
Proffitt, 1993; Ono & Steinbach, 1990). Caudek and Proffitt (1993) speculated
that observers were using a compactness assumption—an assumption that
objects are about as deep as they are wide. Our simulation data, however,
reveal that another possible cause is the reduced cue conditions used in
the psychophysical experiments. It may be that subjects used a “flatness”
assumption: observers interpret the absence of a visual cue to depth that
normally appears in an environment as indicative of a lack of depth. In our
simulations, underestimation of the depth of deep ellipses increased when
either cue indicated a flat object (there is also an increase in the underes-
timation of the depth of shallow ellipses, though it is less easily noticed
for these objects because of their small depths). Similarly, human observers
may have interpreted the absence of expected cues, such as stereo or texture
information, as indicative of a lack of depth, causing them to underestimate
the depth of deeper ellipses.

The solid circles in Figure 9 represent the initial shape estimates of the
model when both stereo and motion were informative cues; the shaded
squares represent the model’s shape estimates after additional training dur-
ing which one cue was made uninformative. Overall, performance was bet-
ter when both cues were informative, as would be expected. However, shape
estimates for the very deepest ellipses were more accurate after recovery in
the case when motion was the only informative cue than when both cues
were informative (top graph). Performance for these deepest ellipses im-
proved when the model was encouraged to use motion information alone
rather than both motion and stereo information. Again, this is consistent
with the fact that motion is a scale-invariant cue to object shape and stereo
is not.

Although there have been relatively few studies of how human observers
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Figure 9: Shape estimates of the modified weak fusion model as a function of
the real shape of the ellipse. (Top) The case when motion was the informative
cue and the stereo cue indicated a flat surface. (Bottom) The case when stereo
was the informative cue and motion indicated a flat surface. Standard error bars
for 10 runs are smaller than the symbols.
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compensate for reduced cue conditions, examination of the behavior of the
modified weak fusion model reveals behavior that is qualitatively similar
to psychophysical data in certain respects. For example, Turner et al. (1997)
found that when human observers discriminated a surface from points scat-
tered randomly within a volume, they were capable of good performance
with motion or stereo information alone. However, when motion was the
reliable cue, the presence of stereo as an unreliable cue impaired perfor-
mance significantly. When the same cue was reliable through an entire
block of trials, performance improved, suggesting that observers learned
to reweight their relative reliance on motion and stereo over time. These
experimental results are similar to the simulation results found using the
modified weak model. The presence of a cue for “flatness” initially leads the
model to underestimate both shape and depth in a manner that resembles
psychophysical data collected under reduced cue conditions. The modi-
fied weak fusion model is capable of learning to reweight cues in order to
use reliable cue information more extensively, similar to human observers.
Because the modified weak model is broadly consistent with the limited
amount of psychophysical data available, we tentatively conclude that the
modified weak fusion model may provide a good model of how human
observers learn to compensate for changes in cue informativeness.

7 Summary

Recent years have seen a proliferation of new theoretical models of cue
combination, especially in the domain of depth perception. This prolifer-
ation is partly due to a poor understanding of existing models and partly
due to a lack of comparative studies revealing the relative strength and
weaknesses of competing models. Three models of visual cue combination
were simulated: a weak fusion model, a modified weak model, and a strong
model. Experiment 1 compared the performances of the three models on
a shape judgment task and an object depth task. The results suggest that
the constrained nonlinear interaction of the modified weak model allows
better performance than either the linear interaction of the weak model or
the unconstrained nonlinear interaction of the strong model. It seems, there-
fore, that the modified weak fusion model represents a good compromise
between the need for modularity and the need for cue interaction. Further
examination of the modified weak model revealed that its relative weighting
of motion and stereo cues was dependent on the task, the viewing distance,
and, to a lesser degree, the noise model. Although the dependencies were
sensible from a computational viewpoint, they were sometimes inconsistent
with psychophysical experimental data. The fact that different weightings
were used for different tasks suggests that it is sensible for human observers
to use multiple representations of visual space.

Experiment 2 examined the ability of the modified weak model to com-
pensate for changes in the relative usefulness of different cues. It was found
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that the model is capable of learning to reweight cues in order to use reliable
cue information more extensively, similar to human observers. Overall, the
simulation results suggest that, relative to the weak and strong models, the
modified weak fusion model is a good candidate model of the combination
of motion, stereo, and vergence angle cues, although the results also high-
light areas, such as the specification of noise models, in which this model
needs modification or further elaboration.

Appendix A

This appendix provides details of the simulations that were not included
in the main body of the text. The set of training patterns was based on
ellipses varying between 10 and 50 cm in width and depth and viewing
distances between 69 and 411 cm. The test data were based on ellipses
varying between 12 and 48 cm in width and depth and viewing distances
varying between 72 and 408 cm. Training patterns were presented randomly,
and the network weights were updated after each pattern presentation using
the backpropagation algorithm. Ten independent runs were simulated for
each task for each model.

Three noise conditions were considered: Weber noise, flat noise, and
velocity-uncertainty noise. The noise distributions were always gaussian
with a mean of zero; the three conditions differed in terms of the variances
of the noise distributions and the signals that were corrupted by noise. In the
Weber and flat noise conditions, the stereo signals (6, i = 1, ..., 20), motion
signals (m;, i =1, ..., 20), and vergence angle signal (1) were corrupted by
noise; the variances of the noise differed in the different conditions. In the
velocity-uncertainty condition, the stereo and vergence angle signals were
corrupted by noise with the same distribution as in the Weber condition;
the motion signals, however, were corrupted by adding zero-mean gaussian
noise to the velocities (vi,i = 1, ..., 20) of the point traveling around the
ellipse. The equations characterizing the variances of each of these noise
conditions are provided in Table 1.

The number of hidden units and the learning-rate parameter for each
network were optimized under the Weber noise condition in the sense
that networks with fewer or more hidden units or with a different learning
rate showed equal or worse generalization performance. The network that
mapped the vergence angle to an estimate of viewing distance had 1 input
unit, 25 hidden units, and 1 output unit. The network in the strong model
that mapped the estimate of viewing distance, the motion signal, and the
stereo signal to an estimate of shape or object depth had 41 input units,
40 hidden units, and 1 output unit. In the weak model, the networks that
mapped the estimate of viewing distance and either the motion or stereo
signals to an estimate of shape or depth had 21 input units, 15 hidden units,
and 1 output unit. The corresponding networks in the modified weak fusion
model were identical except that they had 22 input units (the extra input
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Table 1: Equations Characterizing the Variances of the Weber Noise, Flat Noise,
and Velocity-Uncertainty Noise Conditions.

Weber Flat Velocity Uncertainty
od = (ksi)? od = (3ks)? od = (ksi)?
Ur%i = (kmmi)2 Ur%i = (%km)2 Uvzi = (kmv)2
0'3\/ = (kwyv)z 03\, = (ky\,)’v)z 0-5\/ = (kWVv)Z

Note: §; denotes the stereo signals, m; denotes the motion
signals, v denotes the velocity of the point traveling around
the ellipse, and y;, denotes the vergence angle. The variance
of the noise added to the ith stereo signal is denoted o3; the
variance of the noise added to the ith motion signal is de-
noted o2;; the variance of the noise added to the ith velocity
signal is denoted o3; and the variance of the noise added
to the vergence angle is denoted afv. The constants ks, knm,
and k,, were used to scale the variances. The coefficient of
a half in the flat condition was used to equalize approx-
imately the variance of the noise in flat and Weber noise
conditions.

is the estimate of viewing distance based on motion and stereo signals).
The network in the modified weak model that mapped motion and stereo
signals to an estimate of viewing distance had 40 input units, 16 hidden
units, and 1 output unit. The network in the weak model that computed the
weights used to average the depth or shape estimates based on stereo or
motion signals (ws; and wp, in equation 2.1) had 1 input unit, a layer of 17
hidden units followed by a layer of 2 hidden units (the activations of these
units were the weights ws and wy,), and 1 output unit. The corresponding
network in the modified weak model was identical except that it had 2 input
units.

Appendix B

Some researchers have claimed that motion is a more reliable cue to ob-
ject depth than stereo at greater viewing distances (see Durgin et al., 1995;
Johnston et al., 1994). This appendix analyzes the equations relating either
motion or stereo information to object depth in order to show that for a point
traveling around a fixed ellipse at a constant velocity, the depth estimates
based on stereo become more accurate as the viewing distance increases rel-
ative to the depth estimates based on motion. Therefore, it is not the case that
motion is providing relatively more reliable information at greater viewing
distances.

For the sake of brevity, we consider only the flat noise condition (simi-
lar results are found using the Weber noise condition). The appendix first
considers the variance of the object depth estimates when noise is added to
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the stereo and motion signals but not to the vergence angle signal. Then it
considers the case when all signals are corrupted by noise.

Consider object depth estimates based on stereo information first. Using
the small angle approximation, it is the case that

| |
depth, ~ ; — y_ (B.1)
n

where depth, is the object depth estimate and 1 is the interocular distance
(using cm as the unit of measurement), and y; and y;, are the angles sub-
tended by the points on the ellipse farthest from and nearest to the observer
(see Figure 2). The only variables in this equation that change with viewing
distance are y; and y,. The dependencies of these quantities on the viewing
distance are given by (again using the small angle approximation)

(B.2)
D+9

Vi~

and

Yn ~

where D is the viewing distance (in cm) and d is the depth of the ellipse (in
cm).

Now consider object depth estimates based on motion information (using
the small angle approximation):

/ v/

depth,,, ~ n:_f - (B.4)
n

where depth,, is the object depth estimate, v" is the component of the moving
point’s velocity (in cm per frame) that is parallel to the frontoparallel plane,
and ms and mp, are the retinal velocities (expressed in degrees of retinal angle
per frame) when the point is at the locations on the ellipse farthest from and
nearest to the observer. The only variables in this equation that change with
viewing distance are m; and my; the dependencies are given by

v/

ms = (B.S)
D+

and

~

mp = (B.6)
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Comparisons of equations B.1 and B.4, B.2 and B.5, and B.3 and B.6 indi-
cate that object depth estimates from stereo information and from motion
information scale similarly with viewing distance. Indeed, they scale iden-
tically except for a scaling factor.

When noise is added to the stereo and motion cues, it ought to be the
case that the variances of the depth estimates based on stereo signals and on
motion signals scale similarly with viewing distance. Consider the flat noise
condition in which the noise added to the stereo and motion signals has a
fixed distribution (for the moment, there is no noise added to the vergence
angle). Using the fact that the disparity §; is equal to y; — yy, and the fact
that in the flat noise condition zero-mean gaussian noise with variance o
is added to the disparity 3;, equation B.1 can be rewritten as:

|
w+ (& £os)  w+ (8nEos)
o |
Yitos ynEos

depth, ~ (B.7)

(B.8)

For the motion cue, zero-mean gaussian noise with variance ar% is added to
the retinal angle m;. Equation B.4 can be rewritten as:

v v

depth,, ~ - . B.9
p m ms + Om Mp — om ( )

Inspection of equations B.8 and B.9 shows that the variances of the depth
estimates based on stereo information and on motion information scale
identically with viewing distance when the cues are corrupted by noise,
except for a scaling factor.

The influences of noise on object depth estimates are not easy to ascer-
tain by visual inspection of the relevant equations when noise is added
to the vergence angle signal, as well as the stereo and motion signals. We
have therefore conducted numerical analyses by plugging numbers into the
equations and plotting the results. The equations used in these analyses are
those in this appendix (though without the small angle approximation) and
equation 2.1 in the main body of the text. We used a fixed ellipse with a
point traveling around the ellipse at a constant velocity. The magnitude of
the noise added to (or subtracted from) the motion signals was set equal to
omi (as defined in the flat noise condition; see appendix A); similarly, the
magnitude of the noise used to corrupt the stereo signals was set equal to
osi, and the magnitude of the noise used to corrupt the vergence angle signal
was set equal to o,,. Nine viewing distances were considered, spanning the
range used in the simulations.

The results are shown in Figure 10. The horizonal axis of panel A gives
the viewing distance in centimeters; the vertical axis gives the object-depth
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estimate (the true object depth is 10 cm). Let d® and d'" denote the largest
and smallest depth estimates at a given viewing distance produced using
combinations of noisy motion and vergence angle signals for a fixed amount
of noise (for example, it may be that the largest depth estimate is produced
when noise is added to the motion signals and subtracted from the vergence
angle signal, whereas the smallest estimate is produced when noise is sub-
tracted from the motion signals and added to the vergence angle signal).
Similarly, let d"® and d™" be the largest and smallest depth estimates pro-
duced using combinations of noisy stereo and vergence angle signals. As is
shown in panel A, with very short viewing distances (around 80 cm), depth
estimates based on noisy motion and vergence angle signals are slightly
more accurate than depth estimates based on noisy stereo and vergence an-
gle signals. However, for all other viewing distances, depth estimates based
on stereo signals are more accurate than those based on motion signals.

Define the motion and stereo errors at a given viewing distance, denoted
em and €5, as follows:

1 .

en =3 (|d;qax —d[ + [dmin — d|) (B.10)
1 .

&= (|o|§;”ax —d[ + [dnin — d|) , (B.11)

where d is the true object depth. Define the accuracies of the depth esti-
mates based on motion signals and on stereo signals as the reciprocals of
the squared corresponding errors (e;? and egz). Finally, define the motion
and stereo weights:

Wm = —"—— (B.12)
€m” t+ €5
—2
€
Wy = —5o—sp. (B.13)
€m” + €5

In the case of the simulations, where the amount of noise is a random vari-
able (rather than a single fixed value as in this appendix), we would expect
the weights of the motion and stereo cues to be inversely related to their
relative variances. The weights in equations B.12 and B.13, based on the
relative accuracies of the depth estimates from motion and stereo signals
for a fixed amount of noise, are shown in panel B. The horizontal axis gives
the viewing distance; the vertical axis gives the weights. Consistent with
the neural network simulation results (see Figure 7), the weight assigned
to stereo increases with viewing distance, whereas the weight assigned to
motion decreases.
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Figure 10: (Panel A) The upper and lower curves of shaded dots give the object
depth estimates d™® and d7" produced when noise corrupts the motion and
vergence angle signals; the upper and lower curves of solid dots give the depth
estimates d"™> and d™" produced when noise corrupts the stereo and vergence

angle signals. (Panel B) Th

e weights assigned to motion and stereo.
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