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An extrastriate visual area such as V2 or V4 contains
neurons selective for a multitude of complex shapes, all
sharing a common topographic organization.
Simultaneously developing multiple interdigitated
maps—hereafter a ‘‘multimap’’—is challenging in that
neurons must compete to generate a diversity of
response types locally, while cooperating with their
dispersed same-type neighbors to achieve uniform visual
field coverage for their response type at all orientations,
scales, etc. Previously proposed map development
schemes have relied on smooth spatial interaction
functions to establish both topography and columnar
organization, but by locally homogenizing cells’ response
properties, local smoothing mechanisms effectively rule
out multimap formation. We found in computer
simulations that the key requirements for multimap
development are that neurons are enabled for plasticity
only within highly active regions of cortex designated
‘‘learning eligibility regions’’ (LERs), but within an LER,
each cell’s learning rate is determined only by its activity
level with no dependence on location. We show that a
hybrid developmental rule that combines spatial and
activity-dependent learning criteria in this way
successfully produces multimaps when the input stream
contains multiple distinct feature types, or in the
degenerate case of a single feature type, produces a V1-
like map with ‘‘salt-and-pepper’’ structure. Our results
support the hypothesis that cortical maps containing a
fine mixture of different response types, whether in
monkey extrastriate cortex, mouse V1 or elsewhere in
the cortex, rather than signaling a breakdown of map
formation mechanisms at the fine scale, are a product of
a generic cortical developmental scheme designed to
map cells with a diversity of response properties across a
shared topographic space.

Introduction

Map formation is a core process in neural develop-
ment (Cang & Feldheim, 2013; Chklovskii & Koula-
kov, 2004; Goodhill, 2007; Kaas, 1997). A major focus
of theoretical work on map formation has been the
primary visual cortex (area V1; Antolı́k & Bednar,
2011; Carreira-Perpinán & Goodhill, 2004; Durbin &
Mitchinson, 1990; Goodhill, 1993; Keil & Wolf, 2011;
Kohonen, 1982; Koulakov & Chklovskii, 2001; Miller,
1994; Obermayer, Blasdel, & Schulten, 1992; Ober-
mayer, Ritter, & Schulten, 1990; Paik & Ringach, 2012;
Swindale, 1982, 2000; Swindale & Bauer, 1998; Wolf,
Bauer, & Geisel, 1994; Yu, Farley, Jin, & Sur, 2005).
V1 is atypical among visual cortical areas, however, in
that most V1 cells respond to the same basic shape—an
elongated edge-like feature—with multiple continuous
parameters including orientation, spatial frequency,
and ocular dominance (Bosking, Crowley, & Fitzpa-
trick, 2002; Hubel & Wiesel, 1968; Hübener, Shoham,
Grinvald, & Bonhoeffer, 1997; Lennie, 2003; Nauhaus,
Nielsen, Disney, & Callaway, 2012; Swindale, Shoham,
Grinvald, Bonhoeffer, & Hübener, 2000; Yu et al.,
2005). This type of single feature/multiparameter map
has been called a ‘‘polymap’’ (Swindale, 2000), and
though the spatial layout of the polymap’s multidi-
mensional parameter space may be complex, it retains
the simple property that cells’ response preferences tend
to progress gradually across the map, and in such a way
that each cell’s preferred stimulus is roughly the
average of its neighbors’.

In contrast to this, midlevel visual areas such as V4
contain cells selective for a multitude of categorically
distinct shape features, perhaps dozens to hundreds or
more (Anzai, Peng, & Essen, 2007; Op de Beeck et al.,
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2008; DiCarlo, Zoccolan, & Rust, 2012; Gallant, Braun,
& Van Essen, 1993; Kobatake & Tanaka, 1994;
Pasupathy & Connor, 1999, 2001; Rothschild &Mizrahi,
2015; Rust & DiCarlo, 2010; Sato, Uchida, & Tanifuji,
2009), yet all sharing the same coarse topographic
organization. Unlike a single-feature polymap, a signa-
ture characteristic of a multifeature map, hereafter a
‘‘multimap,’’ is fine-scale response heterogeneity (Roth-
schild & Mizrahi, 2015). In particular, each neuron in a
multimap is in general surrounded by cells with
categorically different response preferences whose aver-
age is not a meaningful quantity (Figure 1).

From a developmental perspective, the need to
simultaneously form multiple interdigitated submaps
each representing a categorically distinct feature type—
where each submap may have its own continuous
parameters (making it in effect a ‘‘subpolymap’’)—is
challenging in that all of the cells that will eventually
make up the submap for response-type A must compete
with their immediate neighbors to differentiate them-

selves from the other response types, while cooperating
with their dispersed A-type ‘‘conspecifics’’ to achieve
uniform visual field coverage for the A type at all
orientations, scales, etc. All the while, the cells that will
eventually take on response types B, C, D, etc., must
simultaneously differentiate and develop their own
well-formed submaps, all within the same shared
topographic space (Figure 1).

Previous map formation schemes have generally
included a distance-dependent (e.g., Gaussian or
Mexican hat) local smoothing mechanism that corre-
lates the learning rates of neighboring cells, pushing
them towards similar developmental outcomes
(Antolı́k & Bednar, 2011; Carreira-Perpinán &
Goodhill, 2004; Durbin & Mitchison, 1990; Goodhill,
1993; Keil & Wolf, 2011; Kohonen, 1982; Miller, 1994;
Obermayer et al., 1992; Obermayer et al., 1990;
Swindale, 1982, 2000; Yu et al., 2005; though see
Hansel & van Vreeswijk, 2012; Koulakov & Chklov-
skii, 2001). Some form of smoothing is necessary to
promote the development of map topography and to
produce smooth layouts of continuous map parame-
ters, but conventional compulsory smoothing mecha-
nisms, which homogenize neural responses locally, are
fundamentally incompatible with the fine-scale inter-
mixing of response types that is the hallmark of a
multimap. We hypothesized that multimap formation
requires both (a) activity-dependent learning that
encourages neurons to locally diversify to cover a
spectrum of different response types, as in classical
competitive learning systems (Carpenter & Grossberg,
2010; Rumelhart & Zipser, 1985); coupled with (b) a
permissive smoothing mechanism that allows—but
does not compel—cells to colearn when they lie within
the same strongly activated cortical neighborhood. In
the following, we show that these spatial and activity-
dependent learning criteria together, but not sepa-
rately, produce well-formed multimaps from initially
unstructured neural populations.

Results

To study the requirements for multimap develop-
ment, we compared the performance of a hybrid rule
with both spatial and activity-dependent learning
criteria to two control learning rules, one of which
included only a spatial, and the other only an activity-
dependent learning criterion (Table 1).

Developing a single-feature map

As a baseline we simulated map formation for a
single feature type, reflective of the situation that holds

Figure 1. Conceptual illustration of a multimap. Top panel: In a

multimap, cells with a diversity of response types (indicated by

different colored symbols) are finely intermixed, while all sharing

the same coarse-scale topographic organization. In an extra-

striate visual area, the different symbols might represent

different types of junctions, contour shapes, etc. Bottom panel:

During multimap development, learning is restricted to the most

active cortical neighborhood, called the LER (purple circle). A

second threshold further restricts RF plasticity to only the most

active neurons within the LER (yellow circles in the example

shown). This competition within the LER promotes response-type

diversification (yellow circles vs. all other features). At the same

time, colearning by cells of the same type within the LER

promotes smooth map formation for that type.
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in V1. A 33 3 33 retina provided input to a cortical
layer consisting of 72 3 72 neurons (Figure 2A, B). A
cortical neuron’s receptive field (RF) at location x¼ (x,
y) consisted of a 33 3 33 array of synaptic weights wx

representing the strength of input from each retinal
pixel. Each neuron’s RF was initialized with a circular
Gaussian area of sensitivity whose center in retinal
coordinates was in rough topographic correspondence
to the neuron’s location in the cortical array (Figure
2B, inset; Figure 5 shows the magnitude of the initial
RF jitter). A sequence of bars (3 pixels wide and 7
pixels long; see Figure 2A) presented to the retina at
random positions and orientations to mimic the arrival
of the sparse independent components of natural
images (Bell & Sejnowski, 1997; Olshausen & Field,
1997; Figure 2A). Each retinal input pattern p(t)
produced a bump of cortical activity, whose height at
each cortical lattice point represented the correspond-
ing neurons’ response Rx (Figure 2B). After each
stimulus, cortical RFs were updated as follows:

wxðtþ 1Þ ¼ wxðtÞ þ LxðtÞ
�

pðtÞ � wxðtÞ
�

ð1Þ

where p(t) was the incoming retinal pattern (providing
the presynaptic activity), and the learning rate

LxðtÞ ¼ aðtÞ �Sx �Ax ð2Þ
consisted of a global rate term a(t) and a product of
spatial and postsynaptic activity-dependent terms
defined in Table 1.

The Spatial rule was a conventional Kohonen rule
(Kohonen, 1982, 1990), where g(d, r) was a Gaussian
function of distance d with standard deviation r, and
xM was the location of the maximally active cortical
neuron M (Figure 2C). The learning rate was made
independent of the postsynaptic activity level (as is
normally the case in Kohonen-style learning, though
see Mitchison & Swindale, 1999) by setting the activity
term A to 1. In the Activity and Hybrid rules, the
function R%(x, r, %tile) returned the response level at
the specified percentile within the neighborhood of
radius r centered on xM (e.g., where 90%tile would refer
to the response level of the neuron that is more active
than 90% of the local population). The thresholding
function

hðR;R%Þ ¼
R if R.R%

0 otherwise

�

was used to restrict learning to the subset of neurons in
the neighborhood whose activity level exceeded R%. In
the Activity rule, all spatial dependence of the learning
rate was eliminated by setting r ¼ ‘, and setting the
spatial interaction term to 1. In the Hybrid rule, in
contrast to the smooth Gaussian spatial interaction
function used in the spatial rule, the function

bðd; rÞ ¼ 1 if d � r
0 otherwise

�

was used to define a circular learning-eligible region
(LER) of radius r centered at location xM within which
the learning rate was flat.

In Figure 2C, bar height again indicates neural
response, while color shows each cell’s learning rate L.
Top and slice views make clear that in spatial learning,
L is tied to a neuron’s distance from M and not its
activity level—though the two are correlated. In hybrid
learning, within the LER (indicated by a purple circle)
L is determined only by the neuron’s response level,
independent of its distance from M. As an alternative
to centering the LER on the maximally activated
neuron, in a few experiments the LER was placed at the
centroid of the maximally activated cortical neighbor-
hood. Results were similar in all major respects (data
not shown). Activity learning was equivalent to Hybrid
learning with an infinite LER. For each neuron at each
time step, learning pushed the neuron’s RF in the
direction of p(t) (Figure 2D). The time courses of a(t),
r(t), and %(t) are given in Figure 3.

As expected, spatial learning produced maps resem-
bling those in V1 of carnivores and primates, with
quasiperiodic orientation columns and interspersed
‘‘pinwheels’’ (Carreira-Perpinán & Goodhill, 2004;
Kaschube et al., 2010; Figure 4A, left frame). We
examined the progression of RFs along a representative
line of cortical cells (marked by arrows). RF location,
size, orientation, and aspect ratio are represented by
red ellipses derived from two-dimensional (2-D)
Gaussian fits to the sensitive zone in each cell’s synaptic
weight matrix (Figure 4B, C, left frame). Average RF
aspect ratio was AR¼ 2.11 6 0.18. RF centers are
shown as colored dots, plotted in scaled retinal

Learning rule

Spatial interaction term Activity term

S ¼ A ¼

Spatial g(jj x � xM jj, r(t)) 1

Activity 1 h
�
RxðtÞ; R%

�
xM; r;%tileðtÞ

��

Hybrid b(jj x � xM jj, r) h
�
RxðtÞ; R%

�
xM; r;%tileðtÞ

��

Table 1. Receptive field update equations for Spatial, Activity, and Hybrid learning rules.
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Figure 2. Illustration of Spatial, Hybrid, and Activity learning rules. (A) An oriented bar stimulus activates an input pattern p on a 333

33 retina. (B) Resulting bump of activity on the cortex, where column height represents neural response. Response of each neuron Rx

was computed as Pearson’s correlation coefficient between the corresponding components of p and the neuron’s RF matrix wx. Inset

�
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coordinates. Gray lines indicate topographic offsets
(TOs) of RF centers from their associated cortical
lattice positions. Average absolute TO for the line of
cells was 2.13 6 1.17 cortical lattice units—that is, a
cell’s RF center was on average offset from its nominal
visual field position by 2.13 cortical intercell spacings
(translated into visual coordinates). To quantify map
smoothness, we measured the average change in RF
center position between neighboring neurons (DP ¼
1.24 6 0.52 lattice units, down from an initial value of
6.4), as well as average changes in preferred orientation
(Dh¼ 14.21 6 10.188, down from 458; Figure 4C, left
frame). We checked for an orientation bias in the
overall pattern of TOs, and found none (see Figure 4D,
E and caption text). Finally, to quantify the uniformity
of visual field coverage, we measured the number of RF
centers that fell within a randomly positioned square
box sized to contain five RF centers on average. A pdf
of the actual number of RF centers/box is shown in
Figure 4F (left frame, red data), compared to the same
measurement performed on a regular grid of RFs
(green data) or RFs drawn randomly from a 2-D
uniform distribution (gray-blue data). Compared to the
uniform distribution, Spatial learning produced an
excess of both small and large hit counts, correspond-
ing to areas of dispersed and clumped RFs, respec-
tively.

To verify that our instantiation of Spatial learning
was not limited to organizing maps with a single
stimulus parameter (orientation), but was capable of
developing a bona fide polymap with multiple contin-
uous parameters (as has been previously shown with
Kohonen-style learning rules; Goodhill, 1993; Swin-
dale, 2000), we repeated the simulation experiment for
the same single feature but now with two parameters—
orientation and spatial frequency (Supplemental Figure
S1A). The resulting orientation map was very similar to
that generated by the spatial rule in the orientation-
only case (Supplemental Figure S1C; compare to
Figure 4A, left panel). However, the cortex now
showed coordinated orientation and spatial frequency
structure (Supplemental Figure S1D, E). In particular,
in keeping with previous studies (Hübener et al., 1997;
Nauhaus et al., 2012; Swindale, 2000), the iso-
orientation and isospatial-frequency contours tended to

be orthogonal to each other (Supplemental Figure
S1F). This test confirmed that Spatial learning was
capable of generating maps of a single basic response
type with multiple parameters (the developed RFs are
shown in Supplemental Figure S1B), in accord with the
prevailing model of V1. This result is in effect a control
condition for the spatial learning experiment described
below: In contrast to its effectiveness in mapping
multiple continuous parameters across the visual field
for a single basic feature type (as in a conventional
polymap) the Spatial rule, owing to its compulsory
local smoothing operation, will be incapable of forming
a multimap.

We next simulated map development with a Hybrid
rule (i.e., that included both spatial and activity-
dependent learning rate factors). Compared to spatial
learning, the mature map was noisier, tending towards
a ‘‘salt and pepper’’ appearance at a fine scale (Figure
4A, center frame; see also (Espinosa & Stryker, 2012;
Hooser, 2007; Kaschube et al., 2010; Ohki, Chung,
Ch’ng, Kara, & Reid, 2005; Rothschild & Mizrahi,
2015; Rothschild, Nelken, & Mizrahi, 2010; Yen,
Baker, & Gray, 2007; Yoshimura, Dantzker, & Call-
away, 2005). Average cell-to-cell changes in RF
orientation (Dh¼ 35.0 6 25.8) and position (DP¼ 1.59
6 0.82) were larger than in Spatial learning (Figure 4C,
center frame). However, other characteristics were
represented with greater specificity. Orientation tuning
was slightly sharper (AR ¼ 2.39 6 0.15; Figure 4B,
center frame), average TOs were halved (TO ¼ 1.01 6
0.58; Figure 4D, E center frame), and visual field
coverage was more uniform (Figure 4F, middle frame).
We performed Kolmogorov-Smirnov tests and con-
firmed that the Spatial and Hybrid AR, Dh, DP, and
TO distributions were highly significantly different
from each other (p , 0.0001).

We noted that even though the LER was a circular
region with a diameter of 15 cortical lattice units (see
purple circle in Figure 2C, middle frame) and remained
fixed in size throughout the simulation, the Hybrid rule
drove down average TOs from an initial value of 5 to a
final value near 1, one-fifteenth the diameter of the
LER. Though unintuitive, this emergence of topogra-
phy on a much finer scale than the learning radius is
consistent with classical results in map formation (e.g.,

 
illustrates a 33333 RF weight vector for a particular cortical neuron. The green dashed square indicates the smaller central region of

the retina over which cortical RFs were initialized and stimuli were delivered; this avoided boundary cutoff effects. The blob just

inside the green border shows this cell’s initial area of sensitivity, located in rough topographic correspondence to its location in the

cortical array. (C) Same cortical response bump as in (B), with color representing each neuron’s learning rate Lx according to Equation

2 and Table 1 for the three learning schemes. M indicates the maximally active neuron (or center of mass of the activity bump, with

similar results). (D) Illustration of RF update for low, medium, and high learning rates. Zoomed portion of RF weight matrix just before

learning is shown at left; red ellipse shows Gaussian fit to sensitive region; blue box marks retinal stimulus. After learning, RF looks

more like the most recent stimulus.
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see Kohonen, 1990). To confirm that the LER diameter
nonetheless plays some role in determining map
outcomes, we ran additional simulations to explore the
relationship between the size of the LER and the ability
of the Hybrid rule to produce a sharpened topographic
map. We found that when the LER was large enough
to contain the majority of the cells responsive to a
stimulus despite their initial random jitter, the posi-
tional noise was suppressed during development and
the final map was well formed (Figure 5A, upper and
middle rows). However, if the initial RF jitter was so
large that many of the cells responsive to a given
stimulus fell outside the LER, the hybrid rule was
incapable of refining the map (Figure 5A, lower row).
The relationship between the initial RF jitter, the LER
diameter, and the quality of map outcome is summa-
rized in Figure 5B. Thus, the scale of the LER is
important in that it must be large enough to rein in the
initially jumbled RF centers, but not so large that the
hybrid rule loses any meaningful sense of locality (and
effectively degenerates to the Activity rule; see below).

The results of Hybrid learning shown in Figure 4
were produced using highly simplified inputs—a single
oriented bar presented on the retina at each develop-
mental step (Figure 2). This scenario meant that
learning would always take place in a single well-
defined region in the map, and that RFs would
essentially become isomorphic to individual stimuli. To
test whether Hybrid learning can handle more complex
inputs that activate neurons over a much larger region
of the cortex (i.e., not mostly contained within the scale

of a single LER), we repeated the Hybrid learning
experiment of Figure 4 with stimuli consisting of four
randomly placed/oriented bars (Supplemental Figure
S2A). We found that maps formed using the complex
stimuli were very similar to those developed with simple
inputs (Supplemental Figure S2C, D), having a local
salt-and-pepper organization, low topographic distor-
tion but a for a few strays, and simple, oriented RFs
(Supplemental Figure S2B). Thus, Hybrid learning was
competent to process cluttered inputs containing
multiple items in variable arrangements. Since this issue
was not our main focus, however, and we saw no
significant difference in the outcomes using simple
versus complex stimuli, we reverted to the use of simple
stimuli in the remaining simulations described in the
paper.

The Activity rule produced sharply tuned RFs (AR¼
2.32 6 0.16; Figure 3B, right frame), but lacking any
mechanism to bias nearby neurons to learn together,
was unable to form a map at all (Dh¼ 45.008 6 29.388,
DP¼ 6.76 6 3.76, TO ¼ 5.12 6 2.04; Figure 4, right
column).

In summary, when the input stream contained a
single basic feature type, both Spatial and Hybrid
learning schemes produced viable maps; the Spatial
rule emphasized fine-scale smoothness but with signif-
icant topographic distortion; Hybrid maps were locally
noisy but had more uniform visual field coverage. The
Activity rule produced sharply tuned cells but was
incapable of forming a topographic map.

Figure 3. Time course of simulation parameters for Spatial and Hybrid learning. Spatial: (A) Gaussian scale parameter r (measured in

cortical lattice units) and (B) global learning rate a both decreased linearly over simulation time, as in previous SOM models. Hybrid:

(C) During the early phase of development (up to 150,000 steps), in which 100% of the neurons in the LER crossed the learning

threshold, the Hybrid rule mainly acted to smooth the initial topographic jitter. Once basic map topography was established,

differentiation within local neighborhoods was encouraged by a jump in the learning threshold (% scale on the left axis) and a

corresponding increase in the global learning rate (right axis). Interestingly, when learning threshold and learning rate were increased

more gradually (lowest red line), spatial correlations left over from the topographic refinement phase persisted in the final map,

appearing as a coarse columnar structure reminiscent of Spatial learning outcomes (see Figure 11).
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Figure 4. Learning a single-feature map: Contrasting Spatial, Hybrid, and Activity learning rules. (A) Mature map (after 450,000

stimulation steps) shows preferred orientation (hue) and tuning (saturation). Only central 44 3 44 area of cortex is shown. (B) RF

profiles for the line of cortical neurons indicated by arrows in (A). Red ellipses were fit to RF weight vectors, showing RF center,

�

Journal of Vision (2015) 15(16):3, 1–21 Jain, Millin, & Mel 7

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934737/ on 02/24/2016



Developing multiple physically intermixed maps

We next compared the capacity for multimap
formation using Spatial versus Hybrid learning rules
(the activity rule was dropped from consideration given
its inability to form a map of any kind). Each neuron’s
RF (i.e., weight vector) was expanded to include inputs
from four mutually exclusive stimulus channels at each
retinal location. A stimulus consisted of a spatial
pattern—an oriented bar, in order to maintain consis-
tency with the preceding experiments—presented in one
of the four channels. Each neuron was initialized in the
same coarse retinotopic fashion as before, but where
the initial circular Gaussian blob-shaped sensitive
zones were aligned between the four channels for each
neuron (meaning that the cell initially received all four
types of input from a given part of the retina). The
amplitudes of the blob-shaped initial RF sensitivity
profiles in the four channels were drawn from an
exponential distribution, so that different cells initially
showed different preferences for stimuli appearing in
different channels (Figure 6A). During development,
stimuli were presented at random positions/orienta-
tions as before, now also randomly alternating between
the four stimulus channels. Given that a neuron, over
the course of development, could retain some sensitiv-
ity to more than one stimulus channel, it’s nominal
response type (color coded) was assigned at any given
time according to which stimulus channel generated the
cell’s maximal response over all channels, positions,
and orientations. To accommodate the increased
number of response types that could develop in this
model, the number of neurons in the cortical network
was increased 4-fold.

The outcomes of Spatial versus Hybrid learning were
radically different in this case where the inputs were of
multiple types (Figure 6). As expected, spatial learning
homogenized local areas of the cortex. As a result, the
cortical map was partitioned into discrete single-type
islands (Figure 6B, C), with poor tuning and incom-
plete, patchy coverage of retinotopic space for each
type (Figure 6B through D). The breakdown in
retinotopic coverage, which grew worse as the number
of types increased (data not shown), could be explained
by a simple geometric model (Figure 7). (We note that

Spatial learning with two independent feature channels
is equivalent to a previously proposed model of ocular
dominance column formation with no between-eye
correlations; Goodhill, 1993).

In contrast, Hybrid learning allowed the complete
intermixing of different response types at a fine scale
(Figure 6E), while also producing uniform coverage of
both retinotopic space and preferred orientation within
each of the four submaps (Figure 6F, G). To determine
quantitatively the degree to which each of the feature-
specific submaps was well organized, we measured the
changes in retinotopic position and preferred orienta-
tion between all pairs of nearest neighbors within each
submap (where nearness was determined by the cells’
RF centers in visual coordinates). As shown in Figure
8A, distances between nearest neighbors of the same
type were concentrated towards medium inter-RF
distances, with fewer short and long distances com-
pared to either (a) a uniform random distribution of the
same number of RF centers (black random histogram),
or (b) a random selection of same number of units from
the multimap without regard to type preference (blue
shuffled histogram). Likewise, changes in preferred
orientation between nearest neighbor cells were biased
towards small values compared to what we would
expect from random orientation preference assignment
(i.e., 458), or the average change in preferred orienta-
tion between neighboring units when the same number
of units was drawn randomly from the multimap
without regard to type preference (Figure 8B). To-
gether, these measurements support the conclusion that
the Hybrid rule can produce multiple interdigitated
feature maps that are individually smoothed both in
terms of visual field coverage and unit-to-unit changes
in a continuous RF parameter.

To determine whether the Hybrid rule would scale to
more response types, we simulated up to 16 types and
found that: (a) type commitment tends to occur early in
development (Figure 9), and (b) once type commitment
has occurred, development of each type-specific sub-
map occurs virtually independently since each neuron
eventually crosses the activity-dependent learning
threshold only for stimuli of its own type (Figure 10).
Hybrid learning can therefore produce well-formed
multimaps even for a large number of independent

 
preferred orientation, aspect ratio, and size. (C) Cell-to-cell changes in orientation preference and RF center location are plotted for

same line of cells. Dashed black line marks horizontally aligned averages of the two quantities; r value is Pearson’s correlation

coefficient. (D) Combined plot showing preferred orientation and RF center for each cortical neuron. Gray lines show TO between

each neuron’s cortical site (lying on a regular grid) and its RF center in scaled retinal coordinates (marked by a colored dot). Dot color

code is same as in (A). (E) A random sample of TOs is collected; average absolute TO is shown as a gray bar at upper left. Smaller blue

bar shows length of vector sum of all TOs, demonstrating a lack of a global orientation bias. The length of the gray lines was scaled up

by a factor of 2.2X. (F) Quantifying uniformity of visual field coverage: Histogram of number of RF centers falling in a randomly placed

square box sized to contain five centers on average (red data). Green bar shows hypothetical result for a square grid of RF centers,

blue shaded region corresponds to RF centers drawn randomly from a 2-D uniform distribution.
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response types. The main physical limitation on the
number of interdigitated maps is that nearest neighbors
within each submap grow further apart as the number
of types increases, thus increasing ‘‘wirelength’’ de-
mands, though this limitation would be less severe in a
three-dimensional (3-D) cortex compared to the 2-D
model studied here.

Discussion

Our main finding is that a Hybrid learning rule that
restricts learning to those neurons that (a) are
contained anywhere within a strongly activated cortical
neighborhood, designated the LER, and (b) that are
strongly activated themselves, allows for the develop-
ment of a multimap consisting of multiple functionally
distinct feature maps that are physically interdigitated
and in topographic register within the same cortical
area. We showed that having both an LER that
transiently defines the cortical neighborhood where
synaptic plasticity can occur, but having the learning
rate within the LER depend only on a cell’s activity
level (i.e., with no fine-scale dependence on spatial
location), is necessary to allow multimap formation:
When the learning rate is influenced by a cell’s location
within the LER, as is the case in Spatial learning, the
effect is to correlate closely neighboring cells’ learning
rates and to smooth the map at the fine scale, which
works against the local differentiation of RF response
types needed for multimap formation. Or, when a cell’s
learning rate is determined only by its activity level,
regardless of its location in the cortex, a map does not
form at all.

How learning parameters affect multimap
outcomes

Important parameters in multimap formation are the
learning threshold and learning rate, which control the
transition between smoothing and differentiation
(Figure 3). Early in development, a low learning
threshold, which encourages most or all of the neurons
in a neighborhood to learn together, and a low learning
rate, which leads to a gentle averaging process within
the learning neighborhood, together promote smooth
topographic map formation with little or no response-
type differentiation. This is appropriate since the
neurons in all the maps that will eventually form must
agree on the same basic topography. Once this initial
stage of topographic map formation is complete,
raising the learning threshold so that only a fraction of
the most active neurons within a neighborhood learn
together, and raising the learning rate so that active

neurons differentiate from their neighbors quickly,
leads to the symmetry-breaking competitive interaction
that partitions the map into different response-type
channels.

This differentiation process is similar to that seen in
classical competitive learning schemes (Carpenter &
Grossberg, 2010; Rumelhart & Zipser, 1985). For
example, suppose an input containing a feature of type
A is presented to the system, and only the top 25% of
the neurons responding to the input in the LER are
allowed to learn. That cohort of neurons will begin to
differentiate itself from the other cells in the neigh-
borhood by updating their RFs en masse in the
direction of feature type A. When an input of type B
stimulates the neighborhood, neurons in the type A
cohort are less likely to respond since their RFs have
begun to specialize, so a different 25% of the neurons
will tend to be selected based on their elevated activity
levels, and begin to represent stimuli of type B. With
repeated presentations of their preferred stimulus types,
each cohort will continue to differentiate from the
others until it becomes virtually unresponsive to inputs
of other types (Figure 6). Once the cortex has
partitioned itself into different response-type channels
in this way, as the activity threshold for learning
increases further, the neurons within each channel
begin to differentiate further to represent different
parameter values of their respective response types,
including orientation, scale, etc. When the threshold
becomes so high that no further learning occurs,
multimap formation is complete.

Is a Hybrid rule the default in cortical map
development?

We showed that the Hybrid rule is not limited to
organizing multimaps. When presented with inputs
representing only a single stimulus type, the hybrid rule
produces V1-like orientation maps with a salt-and-
pepper appearance at the fine scale (Espinosa &
Stryker, 2012; Hooser, 2007; Kaschube, 2014; Ohki et
al., 2005; Rathelot & Strick, 2006; Rothschild &
Mizrahi, 2015; Rothschild et al., 2010; Yen et al., 2007;
Yoshimura et al., 2005; note that salt-and-pepper maps
are not limited to visual cortex; see also Rathelot &
Strick, 2006; Rothschild &Mizrahi, 2015; Rothschild et
al., 2010). Given that a Hybrid rule is competent to
produce maps in both single and multifeature cases
(i.e., both unimaps and multimaps), we may speculate
that the default rule used in cortical development is of
this general kind, since it encourages topographic map
formation where applicable, but under the conditions
illustrated in Figures 4 and 6, imposes no constraint on
the eventual similarity, or not, of immediately adjacent
neurons. This permits neurons with heterogeneous
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response properties to develop in close quarters.
According to this interpretation, the salt-and-pepper
layout seen in V1 in rodents would be viewed not as a
crudely organized sensory cortex, but as a generic, well-
organized cortical visual area that happens to represent
only a single basic feature type. Indeed, as shown in
Figure 4, in exchange for accepting larger transitions in
orientation preference from cell to cell on average
(Figure 4C), the salt-and-pepper maps organized by the
Hybrid rule achieve more uniform visual field coverage
than the smooth maps organized by the spatial rule; the
avoidance of gaps in coverage may be the more urgent
design criterion when relatively few neurons are
available in a particular cortical area. For its part,
spatial learning might be brought to bear in special
cases—for example, in V1 in carnivores and primates,
where (a) a single feature type dominates so that
constructing a smooth map is even possible, (b) enough
neurons are available so that the warping of visual field
coverage caused by simultaneous smoothing along
multiple parameter dimensions is functionally insignif-
icant, and (c) subsequent processing stages somehow
benefit from spatial pooling of cells with gradual cell-
to-cell parameter changes (e.g., for motion processing).

Finally, it is worth noting that a crude form of
spatial learning can be achieved using low learning
thresholds and learning rates within a hybrid learning
scheme, since these settings allow mass colearning
within a local neighborhood (Figure 11; see also
Chklovskii & Koulakov, 2004; Koulakov & Chklov-
skii, 2001). Where smoothness is of critical importance,
however, our results suggest that dedicated neural
‘‘hardware’’ that correlates the responses of immedi-
ately adjacent neurons may be the most effective
approach.

What about areas like the inferotemporal
cortex that contain many response types, but
rather than random intermixing, show signs of
local correlations both horizontally and
vertically?

The inferotemporal (IT) cortex contains cells with a
wide range of object-related response properties, and
as would be expected for a multimap, it is not
uncommon for nearby cells in IT to respond best to
very different stimuli (for review, see Op de Beeck et
al., 2008). In a departure from an idealized multimap,
however, cells in IT tend to have related response

Figure 5. Smoothing role of LER in Hybrid learning. (A) Left

column: Initial TOs for each RF were drawn uniformly from a

circle of radius r centered on the neuron’s cortical site. Three

levels of initial RF jitter are shown (r ¼ 0.62, 6.2, and 18.5

cortical lattice units), chosen to achieve initial average TOs of

0.5, 5.0, and 15.0 lattice units. By default, simulations were

initialized with medium jitter (r¼ 6.2). Purple circle indicates an

LER of diameter¼7; a larger LER was used in Figure 4 (diameter

¼ 15). Right column: Outcomes of Hybrid learning rule. (B)

When initial jitter was mostly contained within the LER (true for

low and medium jitter cases), mature map showed refined

�

 
topography. Otherwise, map failed to organize. Overlaid green

dots indicate the low, medium and high jitter cases shown in

(A).
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properties moving both horizontally across the map
(up to 400 lm), and vertically across the entire
thickness of the cortex (Op de Beeck et al., 2008;
Desimone & Gross, 1979; Fujita et al., 1992; Gochin,
Miller, Gross, & Gerstein, 1991; Tanaka, 2003;
Yamane, Tsunoda, Matsumoto, Phillips, & Tanifuji,
2006). One way to interpret these data is to assume
that any given small neighborhood of IT cortex does
not contain a full mixture of response types, as would
be the case for an idealized multimap, but only cells
representing the (potentially many) features associated
with a particular object or group of related objects. In
this more intricately structured type of map, nearby
cells would tend to fire together, since they would tend
to respond to the same object or object class, but
would not necessarily have smoothly varying response
properties from neuron to neighboring neuron as in an
idealized polymap. Rather, immediately adjacent cells
might respond best to different features of their
common preferred object(s). While we did not study
map formation using natural images as inputs, when
development is driven by complex high-dimensional
natural stimuli, a Hybrid rule could presumably
encourage simultaneous differentiation of multiple
cells within the LER, all moving off in different
directions in feature space, so that ultimately small
cortical neighborhoods tend to represent different
features of the same objects. Further work will be
needed to understand this more realistic developmen-
tal situation. In the mean time, the most definitive way
to distinguish whether a cortical area has developed
under the influence of a spatially-determined learning
rate, as in Kohonen-style learning, versus a Hybrid
rule of the kind studied here, is to measure whether the
response properties of neurons can in general be
predicted by interpolating the response properties of
their immediately surrounding neighbors. Put another
way, to the extent that immediately neighboring cells
lie in a low-dimensional continuous parameter space
of the same object feature, a map is more likely to be a
polymap. To the extent that this continuous param-
eter space test fails at the finest special scale, it
becomes more likely that neurons have been allowed
to differentiate locally based on their activity levels, as
occurs in classical competitive learning systems
(Carpenter & Grossberg, 2010; Rumelhart & Zipser,
1985).

It is also possible that a cortical area is a multimap
horizontally, but something closer to a polymap
vertically. That is, minicolumns might differentiate as
units (because the activity-dependent term in the hybrid
learning rate might depend on activity of an entire
column, and apply to all neurons within the column).
Superimposed with this, there could be a smoothing
mechanism that correlates learning rates of neighboring
cells along the vertical dimension in the column. This

could lead to the spreading out of cells in the vertical
dimension to cover the continuous parameter space of
the column’s preferred object feature.

Why should multiple response types be
comapped in the same cortical area?

Developing and maintaining multiple maps within
the same cortical area could be advantageous for at
least three reasons. First, in a hierarchical system, it is
efficient from a wiring perspective to form multiple
different compound features at Level nþ1 if those
features can be constructed from the same set of
elemental features contained in Level n. For example,
L-junctions and T-junctions are both composed of
oriented edge elements, so that neurons representing
those two compound features can be fed by the same
set of axons from a preceding area. Second, from the
converse (but still wiring) perspective, it is efficient to
house distinct features at Level nþ1 if those features
form the common elements from which even higher-
order features at Level nþ2 will be constructed. Third,
when features are mutually exclusive (such as an L-
junction and a T-junction), only one of which can be
present at a given image location at a time,
colocalizing the cells in the cortex makes it convenient
for local circuits to impose competitive (e.g., ‘‘winner
take all’’ type) interactions between them to sharpen
their selectivity.

What mechanism(s) could account for a flat
learning-enablement profile within the LER?

A core feature of Hybrid learning is a mechanism
that enables all of the neurons in the LER to learn, but
within the LER, the learning rate is determined
exclusively by a neuron’s activity level rather than its
location. This implements the Hebbian principle that
postsynaptic neurons that fire more in response to a
given input should learn more. Any structurally
imposed tendency for neighboring neurons to have
correlated learning rates, simply because they are
neighbors in the cortex, pushes neighboring neurons
towards similar developmental outcomes, and works
against the fine-scale diversity required for multimap
formation (Figure 12).

A key prediction of our model is that during
development of a higher order visual area (or any area
of cortex with fine-scale mixing of response types), RF
plasticity is gated by two nonlinear selection process-
es. First, learning should be enabled at any given time
only in spatially restricted—heavily activated—areas
of the map. Second, within those learning-enabled
areas, a cell’s learning rate should be determined only
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Figure 6. Learning a four-feature multimap with Spatial versus Hybrid rules. (A) Initial state of cortical array shows random initial type

preferences; colors here represent four feature types. Four-column bar graphs (enlarged in inset) represent each neuron’s response to

its best stimulus of each type. Spatial rule (left panel): (B) At maturity, cortical map is partitioned into single-feature islands with

�
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by its activity level, independent of its precise cortical
location; and an equally or more active neuron outside
the LER should show no plasticity.

What kinds of neural mechanisms could give rise to
a flat learning enablement profile within a cortical
region? One possibility is that when an input to a
particular region reaches a certain threshold level of

intensity, a subpopulation of interneurons activated

by the stimulus transiently shuts down one or more
other classes of interneurons in the region. For

example, Somatostatin-expressing interneurons

(SOM), which inhibit all other interneuron types,
might be capable of producing such an effect (Pfeffer,

Xue, He, Huang, & Scanziani, 2013). Along these

Figure 7. Geometric model explaining breakdown of retinotopic coverage in multifeature spatial learning. The breakdown in coverage

could be explained by the following simple model, where N is the number of feature types. We found island radius rI is roughly

proportional to r(0), the initial scale of the Gaussian spatial interaction function g(). If islands are modeled as squares with width 2rI,

and islands of a given type are assumed to occur at uniform intervals across the cortical surface, then edge-to-edge distance between

two nearest islands of the same type is ð
ffiffiffiffi
N
p
� 1Þ � 2rI. This means that for purposes of co-training, cells of a given type only lie within

reach of cells of their same type within their own island, and thus do not know about, and cannot form a continuous map with, neurons

of the same type in other islands. The dependence of the island separation on
ffiffiffiffi
N
p

means the coverage problem grows worse as the

number of feature types increases. (A) Feature preference maps when learning eight independent types, with small, medium, and

large LERs (corresponding to r ¼ 3, 7, and 10 cortical lattice units). Grouping of a single feature type into islands is clearly evident

(only a single feature type is shown. Red circles are fit to the type islands. (B) Conceptual model of patchy multimap development by

the spatial rule; colors represent four independent feature types. (C) Island radii estimated from the circular fit corresponded very

closely to r(t¼ 0). Box plots mark 25th and 75th percentile limits of the distribution and ends of the whiskers mark the highest and

lowest values of the data lying within 1.5 times the interquartile range of the box edges (the fence). (D) Estimated minimum distances

between same-type island pairs based on circular fits (median ¼ horizontal line within the box) matched closely the theoretical

predictions in each of the three cases.

 
mixed-type borders. (C) Individual islands contain compressed orientation maps. Only blue-type islands are shown for clarity, other

three single-type maps were similar. (D) Distant separation of same-type islands led to gaps in retinotopic coverage within each type

map (only blue-type islands are shown). Hybrid rule (right panel): (E) Neurons are sharply tuned, and four types are completely

intermixed across the cortex. (F) RF centers within a single type map are roughly uniformly distributed over the cortex (only blue-type

map is again shown). (G) Combined orientation-position map for blue type shows uniform visual field coverage, and entire spectrum

of orientations contained within each local region. Similar results were found in simulations with up to 16 types.
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lines, a recent review (Karnani, Agetsuma, & Yuste,
2014) discusses mechanisms supporting ‘‘blanket
inhibition’’ in the cortex, but also points to a possible
mechanism for producing ‘‘holes’’ in the blanket:
activation of vasoactive intestinal polypeptide (VIP)
interneurons that inhibit somatostatin (SOM) inter-
neurons. A local silencing of SOM inhibition by VIP
interneurons might transiently enable plasticity to a
uniform degree across the affected region, producing a
‘‘flat’’ LER. Alternatively, a level playing field for
synaptic plasticity might be generated within a
strongly activated cortical region by a saturating
concentration of a volume-transmitted modulatory
factor that is necessary for the induction of plasticity
(Zoli, Jansson, Syková, Agnati, & Fuxe, 1999).
Though these mechanistic issues are complex and will
require further study, it is likely to be most important
for successful multimap formation in the brain that
the learning rate have a flat profile at the center of the
LER (rather than at the edges), especially early in the
map formation process, before response type com-
mitment has occurred. The flat center removes fine-
scale location as a factor in determining learning rates,
so that immediately neighboring neurons with differ-
ent random initial conditions are free to diverge to
represent different feature types. Once type commit-
ment has occurred (Figure 9), and the learning activity
threshold is set high, the hybrid rule functions
similarly to a conventional Kohonen rule operating on
cells of a single basic response type, since only cells of
a single type will be able to cross the high threshold.

From that point on, the requirement of a flat spatial
learning profile is less certain.

What about complex cells?

We have focused on the formation of maps of
‘‘simple cells,’’ that is, cells containing only a single RF
subunit representing a particular shape feature. In
reality, many or most cells in visual cortex, beginning
already in V1, are ‘‘complex’’ (Gilbert, 1977; Hubel &
Wiesel, 1962). Complex cells pool over multiple
spatially displaced RF subunits (Chen, Han, Poo, &
Dan, 2007; Hubel & Wiesel, 1962; Mel, 1997), which is
thought to be the main mechanism responsible for
increasing spatial invariance from stage to stage in the
ventral visual processing stream (Cadieu et al., 2007;
Fukushima, 1980; Hubel & Wiesel, 1962; Lee, Grosse,
Ranganath, & Ng, 2009; Mel, 1997; Nandy, Sharpee,
Reynolds, & Mitchell, 2013; Ranzato, Huang, Bour-
eau, & LeCun, 2007; Riesenhuber & Poggio, 1999; Rust
& DiCarlo, 2010; Serre, Wolf, & Poggio, 2005; Sharpee,
Kouh, & Reynolds, 2013; Ullman, Vidal-Naquet, &
Sali, 2002; Wallis & Rolls, 1997). Our focus here on
multimap formation involving simple rather than
complex cells was justified by the assumption that the
same two rules need to be followed whether the cells
involved in the map formation process are simple or
complex. In particular, a representational unit—
whether the lone RF subunit of a simple cell, or one of
the several subunits within a complex cell RF—should

Figure 8. Local order in the four-feature multimap developed with the Hybrid rule. (A) Distribution of RF centers’ distances (DP) to

their nearest neighbors of the same feature type showed fewer short and large distances within the same type (four thin red curves,

one for each type; thick red curve shows the average), and were thus more uniformly distributed in space, as compared to the two

controls: ‘‘Shuffled’’ (blue curves) shows data when type identities were shuffled; ‘‘Random’’ (black curves) shows data for randomly

distributed RF centers. (B) Similarly, the distribution of orientation differences (Dh) to nearest neighbors of the same type showed

fewer very small and very large angles compared to the shuffled and random controls, indicative of a more even progression of

orientation preferences across each submap than would be expected by chance.
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learn a stimulus only when (a) the subunit lies within a
strongly activated cortical neighborhood, and (b) the
subunit is itself strongly activated by the stimulus.
What differs about training a map containing complex
cells is that an additional mechanism must be included
that ties together the multiple subunits contained
within a complex cell’s RF. The most commonly
proposed mechanism to do this is a temporal trace rule
(Berkes & Wiskott, 2005; Földiák, 1991; Wallis &
Rolls, 1997). While this is clearly an important part of a
full understanding of map formation in extrastriate
visual areas, the process that encourages the multiple
RF subunits of a complex cell to differentiate into
distinct spatial variants of the same basic stimulus can
occur after the process that differentiates cells into
separate feature maps, and so, we argue, can be studied
separately.

What is the relationship to multilayered feature
hierarchy models?

A multimap is a structure containing a potentially
large number of different topographic maps each with

its own internal spatial parameters such as orientation,
scale, etc. According to this definition, hierarchical
object recognition models that have been studied for
many years typically contain multimaps in each major
layer of the hierarchy. However, the shared topo-
graphic organization in these systems has generally
been explicitly imposed by the system designer, rather
than developed from scratch (Fukushima, 1980; Le
Cun et al., 1990; Lee et al., 2009; Ranzato et al., 2007;

Figure 9. Early feature type commitment in the Hybrid

algorithm. At the outset of multimap development, each

cortical cell was initialized with a level of sensitivity that was

randomly drawn from an exponential distribution for each of its

N features channels (see inset in Figure 6A, for N ¼ 4). A

neuron’s primary type was defined as the type whose best

stimulus (of that type) generated the cell’s maximum response

over all stimuli of all types. As shown here, the fraction of cells

that switched type fell rapidly towards 0 with advancing

simulation time, indicating that under Hybrid learning, cortical

units committed early to their respective type maps, after

which development of the different features maps proceeded

virtually independently.

Figure 10. Independence of development of individual feature

maps within a multimap under the Hybrid rule. An area of cells

at the center of the cortical array of radius r
ffiffiffiffi
N
p

(corresponding

in size to an LER with r ¼ 7, N ¼ 4) was tracked during a

simulation to measure the mean activity of the fraction of

neurons crossing the learning threshold h(t) as a function of

simulation time. (A) As the number of feature types was

increased by a factor of two in a series of runs, the length of

simulation time was also doubled. Following the initial period of

topographic refinement (which also varied in length by powers

of two), the abrupt jump in the mean firing rate corresponds to

the abrupt jump in learning threshold (to upper sixth %tile, see

Figure 3). For purposes of faster simulation times, we shortened

(;10 fold, 150,000 to 15,000) the topographic refinement

phase by using a higher learning rate (results were qualitatively

and quantitatively similar to runs with lower learning rates). (B)

The near invariance in the mean activity of suprathreshold

neurons over time, when time was normalized by the number

of feature types, attested to the independence of development

of the different feature maps, regardless of the number of types

involved.
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Riesenhuber & Poggio, 1999; Serre et al., 2005) though
also see (Hyvärinen & Hoyer, 2001).

How many different feature maps does a higher
cortical area contain?

In a hierarchical sensory system, where more
complex features are built by conjoining simpler
features, the number of different possible shape
features can grow extremely rapidly. To illustrate,
assuming we begin with just three different local
contour elements (straight, convex and concave) that
can be joined two or three at a time to form junctions,
the three elements can be combined to create nine types
of L-junctions, each with two orientation parameters,
and 27 types each of T-junctions, forks and arrows,
each with three orientation parameters, for a total of
nearly 100 feature types, each with two or three
orientation parameters. If just two of these intermedi-
ate-level features are conjoined to form higher order
features, the number of types nominally jumps to
;10,000, each with from four to six spatial parameters.
This simple analysis ignores the fact that not all
features are equally useful, so that a learning rule with
access to natural image statistics indicating which
features are most common, and a supervisory or
reinforcement input indicating which discriminations
are most important, can pare the system down to a
smaller number of the most useful features, and thus
escape the combinatorial explosion (see Mel & Fiser,
2000, for a treatment of this issue). Inescapably,

however, a hierarchical system that builds complex
features by conjoining simple features is bound to end
up with a very large number of different features that
must be separately mapped across the visual field (as in
a convolutional neural network), each with their
respective internal parameter variations (Dollar, Tu, &
Belongie, 2006; Lee et al., 2009; Ranzato et al., 2007;
Serre et al., 2005; Yamins, 2013).

It remains an open question how many independent
feature maps coexist within any extrastriate visual area,
but it is possible to estimate how many feature maps
can in principle be accommodated within a particular
area by estimating the number of neurons needed to
form one map and comparing that to the total number
of neurons available. Single unit recordings in macaque
area V4 suggest that the number of distinguishable
shape features represented by V4 neurons may number
in the hundreds or more (Anzai et al., 2007; DiCarlo et
al., 2012; Gallant et al., 1993; Kobatake & Tanaka,
1994; Pasupathy & Connor, 1999, 2001; Rust &
DiCarlo, 2010; Sato et al., 2009). Are there enough
neurons in V4 to map the entire visual field for such a
number of features? A rough calculation suggests the
answer is ‘‘yes.’’ The total surface area of V4 in
macaque is about 540 mm2 (Felleman & Essen, 1991)
with a cell density of ;100,000/mm2 (as compared to
;200,000 neurons under a square millimeter in the
striate cortex, (O’Kusky & Colonnier, 1982). To be
conservative, assuming only half of those neurons are
available to participate in feature maps, this yields an
estimate of 27 million available neurons. According to
physiological data regarding RF sizes at different

Figure 11. Developmental outcomes for Hybrid rule using different time courses of %tile(t) and a(t). Orientation and TO maps for six

time courses of learning threshold and global learning rate as shown in Figure 3. At the end of the initial period of topographic

refinement, during which all neurons in the LER could learn, when the learning threshold and rate were increased gradually (leftmost

column), the final map showed coarse columnar structure and map contortion similar to that seen under spatial learning. When the

learning threshold abruptly jumped to allow only the top 3% of active neurons in the LER to learn and at a high rate (rightmost

column), the mature map became highly differentiated (i.e., salt-and-peppery) at a fine scale and showed very low topographic

distortion. Intermediate cases led to intermediate results.
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eccentricities in V4 (Freeman & Simoncelli, 2011), we
estimate that just 50 cells are required to tile the visual
field for a single feature type, assuming zero RF
overlap. Assuming a 10-fold RF overlap factor (so that
every point in every map is covered by 10 neurons), 500
neurons would be required per feature to provide
retinotopic coverage. Features also have spatial pa-
rameters, however, such as orientation, scale, etc.
Assuming each feature has two continuous parameters,
each of which has 10 gradations, this consumes another
factor of 100 neurons, thus, 50,000 neurons per feature
map. Under these assumptions, V4 would have the
neuronal capacity to hold 540 complete feature maps.
Assuming all neurons in all maps are physically well
mixed in three dimensions, a block of roughly 83 83 8
cell bodies would contain one cell of each response
type, so that neurons of the same type would on
average be separated by eight cells’ bodies in any

direction—well within the footprint of a pyramidal
neuron’s dendritic arbor (Elston & Rosa, 1998).

Other combinations of numbers of features and
numbers of parameters can be contemplated. For
example, V4 contains enough neurons to represent 50
feature maps each with three parameters, or 2,500 maps
each with two parameters assuming coarser sampling of
the parameter values, and so on. It is also worth noting
that the spatial pooling of RF subunits by complex cells
as discussed above may reduce the number of neurons
needed to tile the visual field, thus easing the numerical
requirement of neurons needed per feature map. In vivo
imaging methods (Andermann, Kerlin, Roumis,
Glickfeld, & Reid, 2011; Bonin, Histed, Yurgenson, &
Reid, 2011; Ikezoe, Mori, Kitamura, Tamura, & Fujita,
2013; Nauhaus et al., 2012; Ohki et al., 2005; Roth,
Helmchen, & Kampa, 2012; Smith & Häusser, 2010)
seem the most promising avenue to yield solid
quantitative descriptions of the features and their
parameters represented within both developing and
mature extrastriate cortical areas.

Keywords: map formation, extrastriate areas, visual
cortex, visual development, orientation map, self-orga-
nization, competitive learning, computer model
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