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Concentrations of Cortical GABA and Glutamate in Young Adults
With Autism Spectrum Disorder
Tamar Kolodny , Michael-Paul Schallmo , Jennifer Gerdts, Richard A. E. Edden, Raphael A. Bernier, and
Scott O. Murray

The balance of excitation and inhibition in neural circuits is hypothesized to be increased in autism spectrum disorder,
possibly mediated by altered signaling of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), yet empirical evi-
dence in humans is inconsistent. We used edited magnetic resonance spectroscopy (MRS) to quantify signals associated
with both GABA and the excitatory neurotransmitter glutamate in multiple regions of the sensory and sensorimotor cor-
tex, including primary visual, auditory, and motor areas in adult individuals with autism and in neurotypical controls.
Despite the strong a priori hypothesis of reduced GABA in autism spectrum disorder, we found no group differences in
neurometabolite concentrations in any of the examined regions and no correlations of MRS measure with psychophysi-
cal visual sensitivity or autism symptomatology. We demonstrate high data quality that is comparable across groups,
with a relatively large sample of well-characterized participants, and use Bayesian statistics to corroborate the lack of any
group differences. We conclude that levels of GABA and Glx (glutamate, glutamine, and glutathione) in the sensory and
sensorimotor cortex, as measured with MRS at 3T, are comparable in adults with autism and neurotypical individuals.
Autism Res 2020, 00: 1–19. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.

Lay Summary: γ-Aminobutyric acid (GABA) and glutamate are the main inhibitory and excitatory neurotransmitters in
the human brain, respectively, and their balanced interaction is necessary for neural function. Previous research suggests
that the GABA and glutamate systems might be altered in autism. In this study, we used magnetic resonance spectros-
copy to measure concentrations of these neurotransmitters in the sensory areas in the brains of young adults with autism.
In contradiction to the common hypothesis of reduced GABA in autism, we demonstrate that concentrations of both
GABA and glutamate, in all the brain regions examined, are comparable in individuals with autism and in neurotypical
adults.

Keywords: autism spectrum disorders; magnetic resonance spectroscopy; γ-aminobutyric acid; glutamate; visual cortex;
auditory cortex; sensorimotor cortex

Introduction

An imbalance of excitation and inhibition (E/I) in neural cir-
cuits has been postulated as a key neurobiological characteris-
tic of autism spectrumdisorder [ASD; Nelson&Valakh, 2015;
Rubenstein & Merzenich, 2003; Sohal & Rubenstein,
2019; Yizhar et al., 2011]. E/I balance is a complex multi-
dimensional concept influenced by multiple mechanisms at
the cellular and the circuit levels. Among these mechanisms,
there is an important role for the balanced interaction of the
excitatory neurotransmitter glutamate and the inhibitory
neurotransmitter γ-aminobutyric acid (GABA) to maintain
E/I balance andeffectiveneural processing [Bak, Schousboe,&
Waagepetersen, 2006;McCormick, 1989; Petroff, 2002].Mul-
tiple findings point to alterations in GABAergic signaling in

ASD [Coghlan et al., 2012], including postmortem histologi-
cal analyses that show altered expression of proteins involved
in GABA transmission and low prevalence of GABA receptors
[Fatemi et al., 2014; Fatemi, Reutiman, Folsom, & Thuras,
2009;Oblak,Gibbs,&Blatt, 2011], genetic studies identifying
ASD-risk genes that code for GABA receptors [Griswold et al.,
2012; Ma et al., 2005; Piton et al., 2013], and animal models
demonstrating altered GABAergic pathways [Antoine,
Langberg, Schnepel, & Feldman, 2019; Chao et al., 2010; Han
et al., 2012; Lee, Lee, & Kim, 2017; Martens & Vandeghinste,
2010]. Similar kinds of findings, though less numerous, exist
for glutamatergic signaling disruption in ASD [Carlson,
2012; Carlsson, 2015; Choudhury, Lahiri, & Rajamma,
2012; Fatemi et al., 2018; Jamain et al., 2002; Purcell, Jeon,
Zimmerman, Blue,& Pevsner, 2001; Tarabeux et al., 2011].
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In addition to these indirect findings, magnetic reso-
nance spectroscopy (MRS) provides a noninvasive tech-
nique to measure concentrations of neurometabolites
in vivo [de Graaf, 2019]. Using spectral editing tech-
niques in MRS, it is possible to quantify signals associated
with both GABA and glutamate in specific volumes of
interest in the brain [Puts & Edden, 2012]. Currently, the
most widely used sequence for GABA editing is MEGA-
PRESS [Mescher, Merkle, Kirsch, Garwood, & Gruetter,
1998], yielding a measure of GABA at 3 ppm with contribu-
tion from coedited macromolecules, denoted as GABA+,
and a combined measure of glutamate, glutamine, and glu-
tathione at 3.75 ppm, denoted as Glx [Mullins et al., 2014].
Several recent MRS studies have reported reduced

GABA+ concentration in children with ASD, lending sup-
port to the E/I imbalance model [Gaetz et al., 2014; Harada
et al., 2011; Ito et al., 2017; Kubas et al., 2012; Port et al.,
2017; Puts et al., 2017; Rojas, Singel, Steinmetz, Hepburn, &
Brown, 2014]. However, others reported no differences in
GABA+ levels between children with and without ASD [Brix
et al., 2015; Carvalho Pereira, Violante, Mouga, Oliveira, &
Castelo-Branco, 2018; Cochran et al., 2015; Drenthen et al.,
2016; Goji et al., 2017]. Several studies with adult partici-
pants also found no differences in levels of GABA+ in ASD
[Ajram et al., 2017; Horder et al., 2018; Kirkovski, Suo,
Enticott, Yücel, & Fitzgerald, 2018; Port et al., 2017; Pretzsch
et al., 2019; Robertson, Ratai, & Kanwisher, 2016]. Hence,
although the overall trend is for lower GABA+ in ASD, it
seems that results are inconsistent, owing perhaps to differ-
ences in experimental procedures and analysis methods,
regions of interest (ROIs), and sample characteristics, as sum-
marized in several recent reviews [Ajram et al., 2019; Ford &
Crewther, 2016; Schür et al., 2016]. In the case of Glx, results
are even less conclusive, with studies reporting reduced
[Bernardi et al., 2011; Corrigan et al., 2013; DeVito et al.,
2007; Hegarty et al., 2018; Horder et al., 2013, 2018; Kubas
et al., 2012; Tebartz Van Elst et al., 2014], equivalent [Ajram
et al., 2017; Aoki et al., 2012; Brix et al., 2015; Carvalho
Pereira et al., 2018; Endres et al., 2017; Friedman et al., 2006;
Goji et al., 2017; Hardan et al., 2008; Horder et al., 2018; Ito
et al., 2017; Libero et al., 2016;Mikkelsen et al., 2017; Robert-
son et al., 2016], or increased [Bejjani et al., 2012; Brown,
Singel, Hepburn, & Rojas, 2013; Doyle-Thomas et al., 2014;
Page et al., 2006] levels in ASD. In the current study, we
sought to extend previous results by measuring GABA+ and
Glx simultaneously using current methodology, in a rela-
tively large sample of well-characterized individuals with
ASD, including previously unexamined ROIs, and testing the
functional relevance of neurometabolite levels by correlating
individual differences in MRS measures with behavior and
ASD symptomatology.
We quantified GABA+ and Glx in multiple regions of

the sensory and sensorimotor cortex, including primary
visual, auditory, and motor areas. Sensory sensitivities are
common in ASD [Ben-Sasson et al., 2009; Leekam, Nieto,

Libby, Wing, & Gould, 2007; Rogers & Ozonoff, 2005]
and have been recently recognized as a core diagnostic
feature of autism [American Psychiatric Association,
2013]. There are various psychophysical and neuroimaging
findings that are consistent with alterations in the neural
circuitry underlying sensory perception in ASD [Robertson&
Baron-Cohen, 2017]. Both GABA and glutamate play an
important role in the sensory systems in the brain, and it
has been previously shown using MRS that these neuro-
transmitter levels are modulated by sensory input [Apšvalka,
Gadie, Clemence, & Mullins, 2015; Kurcyus et al., 2018;
Mekle et al., 2017] and are associated with sensory percep-
tion in the visual [Edden, Muthukumaraswamy,
Freeman, & Singh, 2009; Van Loon et al., 2013], auditory
[Kompus et al., 2015], and tactile [Heba et al., 2016; Puts,
Edden, Evans, McGlone, & McGonigle, 2011] domains.
Moreover, it has been suggested that the role of GABA and
glutamate in perception and behavior may be different in
the autistic brain than in neurotypicals [NTs; Puts et al.,
2017; Robertson et al., 2016], and that it may correlate with
subjective experience of the sensory world [Sapey-
Triomphe, Lamberton, Sonié, Mattout, & Schmitz,
2019]. Thus, sensory and sensorimotor areas are the focus of
the current study.

Specifically, we aimed to quantify GABA+ and Glx in
ROIs previously associated with functional disruptions in
ASD, which are also well established in the MRS literature:
an occipital region over the early visual cortex, a left tem-
poral region over the auditory cortex, and a parietal region
over the sensorimotor cortex. These voxel locations are
common in MRS studies [Puts & Edden, 2012], have clear
anatomical landmarks [Gaetz et al., 2014], show good spa-
tial overlap within and between participants [Bai et al.,
2017], and have high signal-to-noise ratio (especially in
the occipital and parietal regions; Mikkelsen, Loo, Puts,
Edden, & Harris, 2018). Furthermore, there is evidence for
disrupted gamma-band oscillations over these regions in
ASD [Cornew, Roberts, Blaskey, & Edgar, 2012; Dickinson,
Bruyns-Haylett, Smith, Jones, & Milne, 2016; Rojas et al.,
2011; Snijders, Milivojevic, & Kemner, 2013], altered neu-
ral responses as indexed with functional MRI [fMRI;
Brieber et al., 2010; Millin et al., 2018], and previous
reports of altered neurometabolite levels in children with
ASD [Gaetz et al., 2014; Port et al., 2017; Puts et al., 2017;
Rojas et al., 2014], all suggestive of E/I disruptions. In addi-
tion to the above three regions, we placed two additional
volumes of interest over left and right area MT+, a higher-
ordermotion-sensitive visual area in the extrastriate cortex
[Born & Bradley, 2005; Huk, Dougherty, & Heeger, 2002;
Zeki, 2015]. While not previously studied with MRS, this
region is of interest since atypical processing of moving
visual stimuli is often reported in ASD, both in behavior
and in neuroimaging [Koh, Milne, & Dobkins, 2010;
Koldewyn, Whitney, & Rivera, 2011; Manning, Tibber,
Charman, Dakin, & Pellicano, 2015; Robertson et al.,
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2014; Robertson, Martin, Baker, & Baron-Cohen, 2012;
Spencer et al., 2000].

Since developmental changes may underlie the mixed
results in previous MRS studies as described above, we
confined the current sample to young adults, while con-
trolling for effects of sex, IQ, and psychotropic medica-
tion as possible confounds, and applying various analysis
approaches. Our results demonstrate typical concentra-
tions of both GABA+ and Glx in adult ASD in all exam-
ined regions. Moreover, we did not find any associations
of GABA+ or Glx with behavioral measures of visual sen-
sitivity or with clinical measures of ASD symptoms.

Methods
Participants

Forty NT adult participants and 31 adult participants with
ASD were recruited for the study. The same cohorts also
participated in other studies recently reported by our
group [Kolodny, Schallmo, Gerdts, Bernier, & Murray,
2020; Millin et al., 2018; Murray et al., 2018; Schallmo
et al., 2018; Schallmo, Kolodny, et al., 2019; Schallmo,
Millin, et al., 2019]. All participants had normal IQ
(Wechsler Abbreviated Scale of Intelligence score; Stano,
2004) of at least 75, and normal or corrected-to-normal
vision. Groups were of equivalent ages and IQ (age range:
18–30 years; nonverbal IQ scores: 75–160; Table 1). All
participants reported smoking no more than one ciga-
rette per day within the past 3 months, no illicit drug use
within the past month, and no alcohol use within 3 days
prior to scanning. Participants with ASD met diagnostic
criteria for ASD on the Autism Diagnostic Interview-
Revised [ADI-R; Lord, Rutter, & Le Couteur, 1994], the
Autism Diagnostic Observation Schedule - 2nd Edition
[ADOS-2; Lord et al., 2012], and according to expert clini-
cal judgment using DSM-5 [American Psychiatric Associa-
tion, 2013] criteria. Participants were included in the
study only if stable on any medication dosage for at least
3 months prior to the study (see Supporting Information
Table S1 for detailed medication information). All partici-
pants provided written informed consent to participate
and were compensated monetarily for their time. The
research protocol was approved by the Institutional
Review Board of the University of Washington (UW).

One NT and one ASD participant withdrew midway
through the MRI scan due to discomfort and their data
are not included. One ASD participant was excluded due
to excessive motion during the scans resulting in severe
artifacts. This resulted in a final sample of 39 NT and
29 ASD participants (Table 1). Nine temporal ROI data
sets are missing: two NT and one ASD participants with-
drew from the experiment after completing the main
MRS session but before attending the separate session in
which the temporal ROI was acquired. In two NT and

one ASD participants, the temporal ROI acquisition was
skipped due to time constrains during scanning. In addi-
tion, one NT and two ASD participants had severe arti-
facts in this scan and their data have been excluded. This
resulted in a final sample of 34 NT and 25 ASD partici-
pants for the temporal ROI. One parietal data set of an
ASD participant was also excluded due to severe artifacts,
resulting in a final sample of 39 NT and 28 ASD partici-
pants for the parietal ROI.

MRI and MRS Acquisition

MR data were acquired on a Philips Achieva 3 Tesla scanner,
with a 32-channel high-resolution head coil, over two scan-
ning sessions. Detailedmethodswere reported in recent pub-
lications from our group [Schallmo et al., 2018; Schallmo,
Millin, et al., 2019] and are briefly described here following
the MRS-Q guidelines for reporting acquisition parameters
and quality measures of MRS [Peek et al., 2020]. Briefly,
we used Mescher-Garwood Point Resolved Spectroscopy
sequence (MEGA-PRESS) to quantify GABA+ and Glx within
27 cm3 voxels (320 averages, 2 s TR, 68 ms TE, 2048 spectral
data points, 2 kHz spectral width, 1.4 kHz refocusing pulse,
VAPOR water suppression). Fourteen-millisecond editing
pulses were applied at 1.9 ppm (“on”) or 7.5 ppm (“off”) dur-
ing alternating acquisitionswithin a 16-step phase cycle. The
duration of a singleMRS runwas approximately 11 min.

MRS was acquired in five different regions for each partic-
ipant (Fig. 1): An occipital 3 × 3 × 3 cm3 voxel was placed
medially within occipital cortex adjacent to the occipital
pole, and aligned parallel to the cerebellar tentorium
[Muthukumaraswamy, Edden, Jones, Swettenham, & Singh,
2009]. A centro-parietal 3 × 3 × 3 cm3 voxel was centered
on the “hand knob” within the central sulcus [Yousry et al.,
1997], and aligned parallel to the dorsolateral cortical

Table 1. Demographics and Clinical Scores

NT (n = 39) ASD (n = 29) Stats

Demographics
Sex 23 M/16 F 19 M/10 F χ2(1) = 0.30, P = 0.583
Age (years) 23.0 (3.5) 22.7 (3.6) t(66) = 0.34, P = 0.734
Nonverbal IQa 113 (13) 112 (17) t(66) = 0.41, P = 0.681
Handedness 37 R/2 L 25 R/4 L χ2(1) = 1.55, P = 0.213
Clinical scales
ADOS-2b – 7.34 (1.56) –

Sensory Profile 141.9 (17.7) 154.9 (25.0) t(65) = 2.49, P = 0.015
Social

Responsiveness
Scale

38.6 (17.0) 73.4 (27.7) t(66) = 6.40, P < 0.001

Note. Values for age, IQ, and all clinical scales represent means, with
standard deviations in parentheses.

aNonverbal IQ was calculated based on the Wechsler Abbreviated Scale
of Intelligence (WASI).

bAutism Diagnostic Observation Schedule, 2nd Ed. (ADOS-2) total com-
parison score.

INSAR Kolodny et al./Cortical GABA and glutamate in ASD 3



surface, in the hemisphere contralateral to the dominant
hand. A temporal 4 × 3 × 2 cm3 voxel was placed in the left
hemisphere aligned to the mid-temporal lobe with the long
aspect (4 cm) of the cuboid positioned such that the top of
the voxel contained the superior temporal gyrus [Gaetz

et al., 2014]. The voxel was placed in the left hemisphere
following previous studies in children [Gaetz et al., 2014;
Port et al., 2017; Rojas et al., 2014] and due to the proximity
to language-processing areas. Left and right 3 × 3 × 3 cm3

voxels in the ventrolateral occipital lobes, parallel to the

Figure 1. Regions of interest in visual, auditory, and motor areas. For each ROI, the voxel location for an example participant is over-
laid on a sagittal slice from their anatomical scan and presented in the upper row (A). The spatial percent overlap across NT participants
(B) and ASD participants (C) is presented on top of an example subject’s anatomical scan in sagittal, axial, and coronal (top to bottom)
views.
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lateral cortical surface, were further positioned based on an
in-session functional localizer fMRI scan designed to iden-
tify human MT complex (hMT+, not attempting to distin-
guish between areas MT and MST, which are both motion
selective; Huk et al., 2002). The localizer consisted of drifting
and static 15% contrast gratings subtending 2� visual angle
presented in the center of the visual field in alternating 10 s
blocks (duration = 195 s, TR = 3 s, resolution = 3 × 3 × 5 mm,
14 slices with 0.5 mm gap). Functional localizer data were
acquired prior to the anatomical scan and subsequent MRS
runs, in order to minimize the effect of frequency drift dur-
ing MRS caused by gradient heating during fMRI. The hMT
+ region was identified online using Philips iViewBOLD to
identify voxels in the lateral occipital lobe that responded
significantly more to moving versus static gratings (t ≥ 3.0).

T1-weighted structural MRI data were acquired in each
session using MPRAGE sequence at 1 mm isotropic resolu-
tion. In the first MRS session, a structural scan was run after
the MT+ functional localizer, followed by MRS scans in a
fixed order: left MT+, parietal, occipital, and right MT+. The
session lasted approximately 1 hr and 10 min. In a second
session that lasted approximately 1 hr, an in-session struc-
tural scan was followed by a second acquisition of an occip-
ital voxel, then by temporal MRS. The latter part of this
session included additional fMRI scans reported elsewhere
[Millin et al., 2018]. Both sessions occurred within a 2-week
time window. The fixed order of scans was chosen to maxi-
mize similarity of parameters when comparing scans of a
specific region across participants. Examining the data qual-
ity measures, there were no systematic relationships
between water frequency drift or creatine peak width and
scan order (Fig. S3). There were, however, slightly more
occasions of rejected time points in the right MT+ voxel in
the ASD group, which was the last region in the acquisition
sequence in the main MRS session, and this might be
related to increased subject motion toward the end of the
session. During structural MRI and MRS scans, participants
watched a movie of their choice, to reduce fatigue and max-
imize compliance.

MRS Analysis

MRS data were analyzed in the Gannet 2.0 toolbox [Edden,
Puts, Harris, Barker, & Evans, 2014] withinMATLAB 2017a.
Briefly, data were processed using the toolbox-standard
approach, including automated frequency and phase cor-
rection, artifact rejection (frequency correction >3 SD above
themean), and 3 Hz exponential line broadening. To calcu-
late the concentration of GABA+, a Gaussian was fit to the
peak at 3 ppm. To calculate the concentration of Glx, a dou-
ble Gaussian was fit to the peak at 3.75 ppm (Fig. 2). The
area under the fitted curve served as the measure for metab-
olite concentration, and was scaled relative to water; the
unsuppressed water peak was fit with a mixed Gaussian–
Lorentzian. Tissue segmentation was performed on the T1

anatomical scan using SPM8 [Friston et al., 1994], and the tis-
sue fractions were used to apply a scaling for neurometabolite
concentrations based on the proportion of graymatter, white
matter, and CSF within eachMRS voxel, to account for differ-
ent relaxation properties in different tissue types [Gasparovic
et al., 2006; Mikkelsen et al., 2019]. A further correction
(alpha-correction approach) was applied to GABA+ assuming
twice the concentration in gray versus white matter [Harris,
Puts, & Edden, 2015]. Tissue correctionwas not applied in the
main analysis of Glx because there is no common standard
for the ratio of Glx concentration in gray and white matters.
However, since some studies suggest a similar 2:1 ratio of glu-
tamate in gray and white matter [Morgenroth et al., 2019;
Srinivasan et al., 2006], a complementary analysis was con-
ducted using an alpha-corrected Glx. In addition, GABA+
values without the alpha-correction were also calculated
(hereafter “uncorrected GABA+”), to align with the methods
used in previous studies. For further comparability with other
studies, GABA+ and Glx values scaled to creatine rather than
to water are also reported, and these metabolite ratios were
not tissue corrected. Concentrations for GABA+ and Glx are
reported in institutional units (i.u.).

Voxel Placement Overlap

The quantification of spatial overlap of MRS voxels
within each group was done using the Dice coefficient
[Dice, 1945], defined as the intersection between voxel

masks divided by their mean volume: DC=
2jA

T
Bj

jAj+ jBj , where

A and B are the MRS voxel masks for a specific region
(e.g., occipital) registered to Talairach space for two differ-
ent participants; || denotes the number of anatomical
voxels (1mm isotropic voxels) that fall within the MRS
voxel mask; and A\B denotes the intersection of the two
masks, that is, the number of anatomical voxels that are
common to the two MRS voxel masks. The DC ranges
between 0 (no overlap) and 1 (perfect overlap). To esti-
mate between-subject overlap in each group of partici-
pants, the Dice coefficient was calculated for each
subjects’ MRS voxel mask and each of the masks of any
other participants from the same group (NT/ASD). These
n−1 values (where n is the number of participants in the
group) were averaged to create an index of spatial consis-
tency for each subject and all other subjects in the same
group. This procedure was done separately for each of the
ROIs, and allowed for testing of whether the spatial over-
lap is significantly greater in one group than the other.
Left-handed participants (Table 1) were excluded from
the spatial overlap analysis of the parietal ROI.

Psychophysics

Visual sensitivity was assessed in two psychophysical
tasks quantifying motion discrimination thresholds and
contrast detection thresholds. Detailed methods for these

INSAR Kolodny et al./Cortical GABA and glutamate in ASD 5



tasks can be found in a recent publication from our group
[Murray et al., 2018]. Briefly, stimuli were presented using
a ViewSonic PF790 CRT monitor (120 Hz) with an associ-
ated Bits# stimulus processor (Cambridge Research Sys-
tems, Kent, UK). The monitor luminance was linearized
using custom software. Stimuli were presented on a Win-
dows PC in MATLAB 2015a (MathWorks, Natick, MA)
using Psychtoolbox-3 [Brainard, 1997; Pelli, 1997], with a
chin rest used to stabilize head position at a viewing dis-
tance of 66 cm.
For motion discrimination, the task was to detect

whether a briefly presented grating drifted left or right
[Foss-feig, Tadin, Schauder, & Cascio, 2013; Tadin,
Lappin, Gilroy, & Blake, 2003]. Gratings were sinusoidal
luminance modulated at two possible contrast levels (3 or
98%) and three different sizes (0.84�, 1.7�, or 10� diame-
ter) and appeared in the center of the screen on a mean
luminance background. Motion speed was 4 Hz, and

spatial frequency was 1.2 cycles/�. Gratings were pres-
ented within a circular aperture, whose edges were
blurred with a Gaussian envelope (SD = 0.21�). Stimulus
duration was adjusted using a Psi adaptive staircase proce-
dure, to determine the amount of time needed to cor-
rectly discriminate motion direction with 80% accuracy
(i.e., the threshold). For the purpose of the current analy-
sis, we computed a geometric mean across thresholds
from different conditions, to create an overall estimate of
motion sensitivity. For seven NT and six ASD partici-
pants, thresholds were not obtained for all of the stimuli
conditions, hence their data from this task were not
included. One NT and one ASD participants were
excluded from the analysis due to catch trial accuracy
lower than 80% (catch trials contained large high-
contrast gratings presented for 333 ms). One additional
NT participant and one ASD participant were excluded
because their thresholds were more than 3 SDs away from

Figure 2. Group averaged MRS spectra. Raw spectra (black), fitted GABA+, and Glx peaks for NT (blue) and ASD (red), and fitting resid-
uals (green). Shaded regions represent the standard deviation across individual participants.
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the groups’ mean. This resulted in a final sample of
30 NT and 21 ASD participants for the motion
discrimination task.

For contrast detection, the task was to detect whether a
grating (sinusoidal luminance modulation within a
Gaussian window, SD = 0.42�, FWHM = 1�, 1.5 cycles/�,
vertical or horizontal orientation) was presented at the
center of a mean gray background during either the first
or second of two possible stimulus presentation intervals.
Stimulus contrast was adjusted using the same staircase
procedure as above to determine the lowest contrast that
could be detected with 80% accuracy (i.e., the threshold).
One participant in each group is missing the data for this
task, thus the final sample for the contrast detection task
includes 38 ASD and 28 ASD participants.

Clinical Scales

Clinical and cognitive assessments were conducted by cli-
nicians expert in the evaluation of individuals with neu-
rodevelopmental disorders. Autism symptom severity was
estimated using the ADOS-2 [Lord et al., 2012], and was
obtained only for participants in the ASD group. An over-
all comparison score was used for correlations with MRS
measures reported in the main text, and domain compar-
ison scores, separating social affect, and restricted and
repetitive behaviors [Hus, Gotham, & Lord, 2014], were
included in the exploratory analysis reported in the
Supporting Information. Self-report on the Social Respon-
siveness Scale (SRS) served as an additional tool to capture
autism-related symptoms in the NT population as well

[Constantino, 2011; Constantino & Gruber, 2005]. To
examine sensory characteristics as reflected in everyday
behavior, we used the Adult/Adolescent Sensory Profile
[Catana & Dunn, 2002] across all participants. One ASD par-
ticipant did not complete this scale, hence data are reported
for 39 NT and 28 ASD participants. To reduce the number
of statistical tests, a total score (sum over the four subscales:
sensory sensitivity, sensation seeking, sensory avoiding, and
low registration) was used and reported in the main text.
Subscale scores were used in the exploratory analysis
reported in the Supporting Information.

Statistics

Statistical analyses were performed in MATLAB 2017a.
Group differences were examined using two-sample t tests,
with equality of variances verified using Levene’s test and
normal data distribution verified using the Shapiro–Wilk
test. In case of deviation fromnormality, the nonparametric
Mann–Whitney U test was used to compare groups and is
reported accordingly. Correlations were computed using
two-tailed Pearson’s correlation coefficients. Significance
level was defined as P < 0.05 for any individual test. Given
the large number of statistical comparisons, the Benjamini–
Hochberg procedure for controlling the false discovery rate
(FDR) was applied to adjust P-values in analyses where a sig-
nificant effect was found, separately for each analysis and
metabolite but across ROIs and groups, and the number of
comparisons corrected for is reported next to each corrected
value. Unless otherwise stated, reported P-values are
uncorrected.

Table 2. GABA+ and Glx Concentrations

ROI NT ASD Stats

GABA+ Occipital 3.76 (0.27) 3.82 (0.28) U = 497, P = 0.399
BF01 = 2.94

Left MT+ 3.21 (0.27) 3.26 (0.22) t(66) = −0.77, P = 0.442
BF01 = 3.08

Right MT+ 3.24 (0.28) 3.28 (0.31) t(66) = −0.61, P = 0.542
BF01 = 3.39

Temporal 3.25 (0.48) 3.22 (0.38) t(57) = 0.20, P = 0.841
BF01 = 3.69

Parietal 3.67 (0.27) 3.77 (0.29) t(65) = −1.55, P = 0.127
BF01 = 1.44

Glx Occipital 6.91 (0.68) 6.72 (0.75) t(66) = 1.10, P = 0.288
BF01 = 2.39

Left MT+ 5.51 (0.86) 5.54 (1.07) U = 554, P = 0.446
BF01 = 3.95

Right MT+ 6.59 (0.67) 6.83 (0.71) t(66) = −1.46, P = 0.183
BF01 = 1.61

Temporal 7.17 (0.93) 7.11 (1.11) t(57) = 0.24, P = 0.697
BF01 = 3.66

Parietal 5.17 (0.59) 5.12 (0.73) U = 492, P = 0.248
BF01 = 3.77

Note. Values represent means, with standard deviations in parentheses. Two-sample t tests are reported for variables that met the normality assump-
tion, Mann–Whitney U test reported otherwise. BF, Bayes factor.
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To aid interpretation of null results, we complemented
our standard null hypothesis significance testing with
Bayesian analyses. The Bayes factor (BF) quantifies the ratio
of the probability of the observed data under the null
hypothesis (no group differences) and the probability of the
data under the alternative (groups differ). Thus, if there is
strong evidence in favor of the null, it will be reflected in a
large BF; whereas, if the null hypothesis cannot be rejected
due to low statistical power, this will result in a BF close to
1 (see Jarosz & Wiley, 2014; Rouder, Speckman, Sun,
Morey, & Iverson, 2009 for comprehensive description of
the Bayesian approach). We adopt here the convention that
a BF between 1 and 3 implies anecdotal evidence for the
lack of an effect, and a BF larger than 3 provides moderate
evidence for the lack of an effect.

Outlier Exclusions

Several individual scans were deemed unusable by examin-
ing the raw spectra, due to severe artifacts, and were
excluded before quantifying GABA+ or Glx, as described in
the “Participants” section. All other obtained scans were
included in the main analyses reported in the “Results” sec-
tion. To examine the possible effects of outliers on our sta-
tistical results, we conducted an additional analysis,
excluding data points deviating more than 3 SD from the
groups’ mean. For the main analysis, this resulted in an
exclusion of a single data point—Glx concentration of a NT
participant in the temporal ROI, and this exclusion did not
alter the pattern of the results (i.e., no group difference in
Glx concentration). In addition, we applied a stricter proce-
dure excluding any scan with an outlier value on any of the
following data quality measures: water frequency drift, crea-
tine (Cr) peak width, number of excluded timepoints, and
fitting errors for GABA+, Glx, water, and Cr. This resulted in
an exclusion of one occipital scan (ASD participant), three
left MT+ scans (one NT, two ASD), three right MT+ scans
(two NT, one ASD), three parietal scans (NT participants),
and eight temporal scans (five NT, three ASD). A group
comparison of GABA+ and Glx concentrations after these
exclusions yielded the same pattern of results as in the
main analysis, with no group difference in any metabolite
in any of the ROIs (all ts < 1.3, P > 0.22).

Results

Using MR spectroscopy, we measured the concentration
of GABA+ (GABA plus coedited macromolecules) and Glx
(glutamate plus glutamine and glutathione) in five ROIs in
visual, auditory, and motor cortices (Figs. 1 and 2; Fig. S1),
among young adults with ASD and demographically mat-
ched NT participants (Table 1). No differences were found
between the ASD and the NT groups, in any of the metabo-
lites and ROIs (all t-values57-66 < 1.55; Table 2; Fig. 3).

Traditional statistics were complemented with Bayesian
analysis to quantify the evidence for the absence of group
differences, yielding moderate evidence for the lack of an
effect in most regions (1.44 < BF01 < 3.95; Table 2).

Although the groups were not different in age, sex or IQ
(Table 1), we examined the effects of these possible modera-
tors on the MRS results. There were no differences in GABA+
or Glx levels between males and females in any of the ROIs
(all t-values57-66 < 1.28; Fig. S2), and there were no
significant correlations with age nor nonverbal IQ (all
r-values59-68 < 0.22). Another possible confound common
inMRS studies in ASD is the use of psychotropic medication
that might affect the levels of GABA and glutamate [Krystal
et al., 2002; McLoughlin et al., 2009; Taylor et al., 2008]. As
our inclusion criterion in this study was stable dosage of

Figure 3. No group differences in GABA+ concentration (A) or
in Glx concentration (B). For each region of interest, the left bars
(blue) represent the NT group, the right bars (red) represent the
ASD group. Horizontal black lines denote group mean, bars
denote 95% confidence intervals, and the central dark area of the
bar denotes 1 SD around the mean. Gray symbols represent indi-
vidual participants. i.u., institutional units.
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any medication, we conducted additional analyses to exam-
ine the possible effects of medications in our sample. There
were no differences between ASD and NT after the exclusion
of any participants using psychotropic medication (all
t-values46-51 < 1.95), and no differences between participants
with ASD treated or not treated with psychotropic medica-
tion (all t-values23-27 < 1.65; Fig. 4; Tables SII and SIII).

To examine the possibility that the ASD and NT groups
differed in the consistency of voxel placement, which could
have introduced noise and conceal group differences, we
corroborated the visual inspection (Fig. 1B,C) with a quanti-
fication of spatial overlap of the MRS voxels within each
group using the dice coefficient (see the “Methods” section).
This analysis yielded average coefficients of 0.54 to 0.69

Figure 4. (A, B) No group differences in GABA+ concentration or in Glx concentration after excluding participants using any psycho-
tropic medication. For each ROI, the left bars (blue) represent the NT group, the right bars (red) represent the ASD group. (C, D) No dif-
ferences in GABA+ or Glx concentration between ASD participants who are currently treated with psychotropic medication (left bar,
green) or are not treated with psychotropic medication (right bar, purple). In all panels, horizontal black lines denote group mean, bars
denote 95% confidence intervals, and the central dark area of the bar denotes 1 SD around the mean. Gray symbols represent individual
participants.

Table 3. Dice Coefficients of Voxel Overlap

ROI NT ASD Stats

Dice coefficients Occipital 0.69 (0.06) 0.65 (0.09) U = 378, P = 0.017a

Left MT+ 0.63 (0.06) 0.64 (0.06) U = 485, P = 0.407
Right MT+ 0.63 (0.07) 0.64 (0.07) U = 451, P = 0.272
Temporal 0.61 (0.05) 0.60 (0.07) U = 371, P = 0.418
Parietal 0.54 (0.09) 0.57 (0.05) U = 342, P = 0.340

Note. Values represent means, with standard deviations in parentheses. Mann–Whitney U test on the ranked means reported for variables that did not
meet the normality assumption.

aAdjusted P-value = 0.085 (FDR correction for five comparisons).
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(Table 3), in the range expected considering individual dif-
ferences in brain size and shape (for anatomically defined
ROIs) and in functional organization (for functionally
defined ROIs). There was less consistency in the occipital
ROI in the ASD group than in the NT group; however, this
difference was not significant after correction for multiple
comparisons (Table 3). There were no significant group dif-
ferences in any of the other regions, confirming that voxel
placement was similarly consistent in ASD and NT and
ruling out this possible confound.
Importantly, we assessed data quality to ensure that poor

quality was not obscuring any group differences. The follow-
ing seven quality metrics were comparable across groups:
water frequency drift, creatine (Cr) peak width, number of
excluded time points, and fitting errors forwater, Cr, GABA+,
and Glx (Fig. S3; and see the “Methods” section for outlier
handling).
Additionally, we reanalyzed the data applying different

approaches used in previous studies to examine whether
the choice of our specific methods affected the results
(Table SIV). First, we calculated the ratio of GABA+ to
Glx, which did not differ between the groups in any of
the regions (Fig. S4a). Next, in the main analysis, GABA+
and Glx were scaled to unsuppressed water [Mullins
et al., 2014]. The pattern of results did not change when
scaling to creatine (Fig. S4b,c). Similarly, in the main
analysis GABA+ measurements were corrected for gray
and white matter ratio within each voxel [Harris et al.,
2015] whereas Glx measurements were not. Repeating
the GABA+ analysis without the correction and the Glx
analysis with the correction also did not yield any group
differences (Fig. S4d,e). Voxel composition was also simi-
lar between groups, with the exception of lower fraction
of gray matter and higher proportion of white matter in
the occipital region in the ASD group than in the NT
group (Table SV).

After concluding that the groups do not differ on any of
the GABA+ or Glx measures, we turned to examine whether
neurometabolite levels are associated with sensory sensitiv-
ity or with ASD symptomatology, and whether these associ-
ations differ in direction or magnitude between the groups,
as previously suggested [Brix et al., 2015; Robertson et al.,
2016]. We estimated visual sensitivity by measuring thresh-
olds for contrast detection, a task thought to rely on early
visual cortex computations [Boynton, Demb, Glover, &
Heeger, 1999; Ress & Heeger, 2003], and thresholds for
motion discrimination, a task associated with MT+ activa-
tion [Chen, Lu, Shao, Weng, & Fang, 2017; Schallmo, Mil-
lin, et al., 2019; Turkozer, Pamir, & Boyaci, 2016]. We
correlated these thresholds with GABA+ and Glx measure-
ments in the corresponding ROIs in the visual cortex (left
and right MT+ for motion and occipital for contrast), how-
ever no significant correlations were observed (|r21-38|
< 0.29, uncorrected P > 0.217).

Lastly, we explored correlations of MRS measures with
several clinical scales of ASD symptoms. No correlations
were found with overall autism symptom severity as
quantified using ADOS scores (|r25-29| < 0.27, uncorrected
P > 0.168). GABA+ in left MT+ and Glx in the parietal
region were associated with scores on the SRS, among the
ASD and the NT groups, respectively, however these cor-
relations were not significant after correction for multiple
comparisons (r29 = −0.42, Padj = 0.221; r39 = −0.32,
Padj = 0.268, respectively; FDR correction for 10 correla-
tions per metabolite; Fig. 5A,B). GABA+ in left MT+ was
negatively associated with the total score on the Sensory
Profile questionnaire among the ASD group (r28 = −0.56,
Padj = 0.019; FDR correction for 10 correlations per
metabolite; Fig. 5C). A further exploratory analysis of this
data, including correlations with different subscales of
these questionnaires, is included in the Supplementary
Material (Table SVI). Overall, there is little evidence for

Figure 5. Correlations of MRS measures with clinical scales scores. Glx concentration in the left mid-temporal lobe plotted against
Social Responsiveness Scale (SRS) total score among NT participants (A); GABA+ in left MT+ plotted against SRS total score (B) and Sen-
sory Profile total score (C) among ASD participants. The correlations in the left and middle panels were significant before, but not after,
correcting for multiple comparisons, and hence should be interpreted with caution. i.u., institutional units.
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associations between MRS measures and clinical ASD
symptoms.

Discussion

Imbalance of excitation and inhibition is hypothesized to
be altered in ASD, and dysfunction of glutamatergic and
GABAergic transmission has been suggested as an underly-
ing mechanism. A number of papers [Gaetz et al., 2014;
Harada et al., 2011; Kubas et al., 2012; Rojas et al., 2014]
reported differences in the levels of GABA, as measured
with MRS, in individuals with ASD. These differences are of
interest both as a potential biomarker of ASD and as a target
for pharmacological intervention, and hence have driven
an upsurge of MRS studies in autism in the last 5 years.
However, the range of currently reported results is wide and
inconsistent (see a meta-analysis by Schür et al., 2016 and a
recent review by Ajram et al., 2019). In the current study,
we sought to replicate reported reduced GABA levels in ASD
and extend previous results by including an index for gluta-
mate alongside GABA, including newly examined ROIs,
and testing the functional relevance of GABA and gluta-
mate levels using correlations with behavior and ASD symp-
tomatology. In a relatively large sample of participants,
with gold-standard clinical characterization, we found com-
parable concentrations of GABA+ and Glx, in all of the sen-
sory and sensorimotor cortical areas examined, among
individuals with ASD and NT controls. This null result was
confirmed with a Bayesian analysis, providing moderately
strong evidence for lack of any group differences in GABA+
or Glx, and indicating that the results likely stem from a
true absence of an effect rather than inconclusive or under-
powered data. Furthermore, we found no evidence for a
relationship between neurometabolite levels and psycho-
physical performance and no correlations with autism
symptoms severity. We did observe a correlation between
GABA+ levels and self-reported sensory atypicalities, but
this was limited to only one brain region (left MT+) and
warrants replication and validation in future research.

Findings from multiple lines of research using methods
other than MRS, including genetics, cytoarchitecture,
and recordings in rodent models, provide compelling evi-
dence for alterations in GABA and glutamate neurotrans-
mission in ASD. Our results are seemingly inconsistent
with this wide literature. However, MRS, although pro-
viding a direct quantification of GABA and glutamate
in vivo, captures a different, possibly broader, aspect of
the system than that measured with other techniques.
Both GABA and glutamate are amino acids abundant in
the nervous system, playing a prominent role as neuro-
transmitters, but also found in the brain as transmitter
precursors and as metabolites. MRS provides an overall
measure of these compounds, that is not necessarily a
direct reflection of the neurotransmitter GABA/glutamate

pool, and does not correspond to specific synaptic activ-
ity [Myers, Nutt, & Lingford-Hughes, 2016; Stagg,
Bachtiar, & Johansen-berg, 2011]. Thus, while no differ-
ences have been detected in this study between the MRS
measures of GABA+ or Glx in ASD and NT, this does not
preclude the possibility that underlying neurotransmitter
levels differ, only that such differences could not be
detected with the current methods. A further limitation
of this measurement that could be contributing to these
null findings is the contamination of the GABA signal in
the MEGA-PRESS sequence by coedited macromolecules
[Mullins et al., 2014; Shungu et al., 2016], contributing
up to 50% of the MRS signal. Techniques such as MEGA-
PRESS with macromolecule suppression [Edden, Puts, &
Barker, 2012; Mikkelsen, Harris, Edden, & NAJ, 2018]
may provide a clearer picture of GABA in ASD. In addi-
tion, the MEGA-PRESS sequence is optimized for the
detection of GABA. For glutamate, the peak at 3.75 ppm
in the edited spectrum reflects the combined measure-
ment of multiple metabolites, with a main contribution
of glutamate, alongside glutamine and glutathione sig-
nals (hence referred to as Glx). This combined signal
might conceal underlying effects in these three different
metabolites, especially if these effects have opposite direc-
tions. Furthermore, MRS in 3T scanners is limited to low
spatial resolution, with voxel size of approximately
27 cm3. Findings in a mouse model of ASD show that E/I
imbalance is region-specific [Gonçalves et al., 2017], and
it could be that we do not have the spatial resolution to
capture this with the current MRS methods.

In the current study, we included young adult participants
only, ranging from 18 to 30 years of age, to avoid heteroge-
neity resulting from age differences and developmental stage
which could have been contributing to inconsistencies in
cross-sectional studies with children. The null results that we
report here are in line with several recent studies with adults.
First, Robertson and colleagues [2016] and Port and col-
leagues [2017] reported no differences in adults with ASD in
GABA+ in a medial occipital region and in the left superior
temporal gyrus, respectively, in ROIs overlapping with those
investigated in the current study. Others have recently
reported equivalent GABA+ in frontal areas and in subcorti-
cal regions: Pretzsch and colleagues reported equivalent
levels ofGABA+ andGlx in the dorsomedial prefrontal cortex
and in the basal ganglia in adults with ASD and controls, in a
baseline measurement before cannabidiol administration
[Pretzsch et al., 2019]. Similarly, Ajram and colleagues
reported no baseline differences in GABA+\Glx ratio in the
medial prefrontal cortex before Riluzole treatment [Ajram
et al., 2017]. Horder et al. [2018] found lower Glx in adults
with ASD in the striatum, but no differences in the medial
prefrontal and no differences in GABA+ in either region; and
Kirkovski et al. [2018] reported no differences in the dorsolat-
eral prefrontal cortex and in the right superior temporal sul-
cus. The overall pattern of results summarized here, from the
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current study and others, is that there are no differences in
GABA levels in adults with ASD. Considering these findings
in light of reports of lower GABA+ in children (notably, only
in some studies but not in others; Brix et al., 2015; Carvalho
Pereira et al., 2018; Cochran et al., 2015; Drenthen et al.,
2016; Goji et al., 2017) raises the possibility that alterations
that are observed in childhood in ASD become more typical
by adulthood. And indeed, GABA and glutamate balance
and function change throughout the development [Corrigan
et al., 2013; Ito et al., 2017; Luján, Shigemoto, & López-
Bendito, 2005]. However, developmental studies are suscep-
tible to further methodological challenges, including mea-
surement noise and subject motion during scanning [Power
et al., 2014; Yuan et al., 2009], as well as developmental
effects on brain size and tissue composition [Giedd &
Rapoport, 2010]. Since motion and tissue composition have
not been accounted for in many previous studies with chil-
dren, group differences in measured MRS signal could be
attributed to group differences in brain development, differ-
ences in the ratio of CSF, gray and white matters in a given
region [Maes et al., 2018], or differences in data quality,
rather than stemming from true differences in neuro-
metabolite levels.
Throughout the MRS scans, participants were watching

a movie of their choice. This approach was chosen to
maximize comfort and wakefulness and to reduce head
motion and stress, which could be particularly challeng-
ing for individuals with ASD. This sensory stimulation is
likely to cause functional changes in the dynamics of
neurometabolism in the cortex. While these stimuli-
driven fluctuations could be detected in high-field func-
tional MRS, as shown in recent studies [Chen et al., 2017;
Ip, Emir, Parker, Campbell, & Bridge, 2019], the evidence
for such changes effecting MRS measures collected in 3T
is limited, and the size of these effects is small [Apšvalka
et al., 2015; Kurcyus et al., 2018]. Hence, we believe that
while the movies introduce a certain amount of noise to
our measurements, the benefit of increasing subject com-
pliance, which is critical for achieving high-quality data
(i.e., by reducing head motion and facilitating comple-
tion of a long scanning session), is greater than the cost,
particularly in the case of group comparisons.
Another aspect to consider in the interpretation of the

current results is the regions examined. We placed the MRS
voxels in sensory and sensorimotor areas, following the
recent emphasis on sensory perception abnormalities in
ASD [Robertson & Baron-Cohen, 2017], and using well-
established locations for consistency with previous MRS
studies. There are some indications for neurometabolite
concentration differences in ASD in other cortical regions,
including the frontal lobe and the cingulate cortex, in sub-
cortical structures such as the thalamus, and in the cerebel-
lum. Specifically, a recent study with over a hundred
children reported decreased levels of GABA and increased
levels of glutamate in the anterior cingulate cortex and in

the left cerebellum [Ito et al., 2017]. However, replications
are warranted to provide further support for these findings.

Importantly, the cohort of participants in this study
included some participants using psychotropic medica-
tion, which could be influencing the neurometabolite
levels. Our analysis of medication effects indicated no dif-
ferences in GABA+ or Glx levels between those partici-
pants using regular medication to those who were not,
and no differences between ASD and NT when excluding
any participants using medication. However, the power
of these analyses is low due to the small number of partic-
ipants in each subgroup, and further larger studies, or
stricter exclusion criteria, are required to draw definitive
conclusions about the effects of medication.

To conclude, our results show no differences in cortical
levels ofGABA+ andGlx inASDasmeasuredwithMRS, repli-
cating and expanding previous studies in adult samples, and
do not provide support for altered E/I balance in autism.
However, the current findings do not preclude the role of
disrupted neurotransmission in the disorder nor the poten-
tial benefit from pharmacological manipulation of the
GABAergic and glutamatergic systems. While MRS might
not be suitable for detecting baseline differences in GABA or
glutamate, it has been shown to track changes in
neurometabolite levels following pharmacological manipu-
lation in both rats [Waschkies et al., 2014] and humans
[Ajram et al., 2017; Pretzsch et al., 2019; Zhang et al., 2020],
as well as changes inmetabolite levels in response to sensory
stimuli [Apšvalka et al., 2015; Ip et al., 2019; Kurcyus et al.,
2018]. Future studies using such causal manipulations of
neurotransmitter levels withMRSmay provide greater clarity
regarding their potential role in the pathophysiology of ASD.
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