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Response inhibition is a main function of cognitive control and its neural substrates have

been studied extensively. However, it is still a question whether previous brain imaging

investigations were successful in isolating specific response inhibition activation. In the

current study we attempted to pinpoint response inhibition in the brain using a Go/No-go

task and fMRI, by contrasting rare-No-go trials with prevalent-No-go trials. Although inhi-

bition is required in all No-go trials, task variants with rare-No-go cases (25%) create a

prepotent response which elicits a strong demand for inhibition, while task variants with

prevalent-No-go cases (75%) require very little inhibition effort. Since the neural activation

in this design is extracted solely from No-go trials, differing only in the extent of inhibitory

demand, the analysis avoids contamination of the data with motor effects or visual factors.

Using this experimental design we highlight the contribution of the parietal cortex (bilat-

erally) to inhibitory processes, while casting doubts about the specificity of frontal activation

in such processes. Future studies are required to verify that bilateral intraparietal sulcus and

left temporo-parietal junction activations could be markers of inhibitory control.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Response inhibition is a major cognitive-motor effortful pro-

cess, in the realm of executive control, which has been

extensively studied over the years (see Dempster, 1995, for a

historical perspective). Nevertheless, inhibition is still a very

broad term, and taxonomy of inhibitory processes is a matter

of continuous debate (Aron, 2011; Diamond, 2014; Friedman &

Miyake, 2004; Harnishfeger, 1995; Nigg, 2000). One such
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rved.
important process is the inhibition of a prepotent response,

which is a well-defined construct within the wide range of

inhibition-related processes (MacLeod, Dodd, Sheard, Wilson,

& Bibi, 2003). It is of particular interest because it plays a key

role in cognitive development (Williams, Ponesse, Schachar,

Logan, & Tannock, 1999) and is associated with age-related

declines (Kramer, Humphrey, Larish, Logan, & Strayer, 1994).

Moreover, deficits in inhibition of a prepotent response had

been suggested as a hallmark of psychopathologies such as
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attention-deficit/hyperactivity disorder (ADHD, Barkley, 1997;

Nigg, 2001; Wright, Lipszyc, Dupuis, Thayapararajah, &

Schachar, 2014), schizophrenia (Lipszyc & Schachar, 2010),

and obsessive-compulsive disorder (OCD, e.g., Tolin, Witt, &

Stevens, 2014).

A classical experimental task used to invoke response in-

hibition is the Go/No-go task (Donders, 1969) in which par-

ticipants are instructed to make speeded responses to a

specific Go stimulus, while withholding response to any other

stimuli. Critically, the percentage of Go trials in the task ought

to be larger than No-go, in order to build up a prepotent ten-

dency to respond (Casey et al., 1997). This prepotent tendency

is augmented if the task is simple, such that it triggers fast

response latencies. The combination of a bias to respond and

fast response times increases the demand for inhibition when

No-go stimuli are presented. In some cases, these challenging

conditions yield erroneous responses, which are termed

commission errors (or false alarms). The rate of commission

errors is typically used as a behavioral/neuropsychological

index of a participant's proficiency of response inhibition (i.e.,

a low error rate indicates high inhibition capability).

A closely related experimental paradigm is the Stop-Signal

Task (Logan, 1994; Verbruggen & Logan, 2008a). In this task,

responses are made on every trial (typically a two-alternative

forced choice is required in response to visual stimuli), unless

a Stop signal (e.g., an auditory tone) is presented. The time

interval between the presentation of the visual Go stimulus

and the presentation of the Stop signal is varied, in an adap-

tive procedure. The experimental paradigm is specifically

designed to stretch the difficulty of the task by gradually

delaying the Stop signal. The time in which a subject is able to

cancel a response e “Stop-Signal reaction time” (SSRT) e is

used as an index of inhibition capability. In other words, the

Stop-Signal task measures how far into the motor response

planning and execution processes, the response can still be

stopped.

Indeed, both the Stop-Signal task and the Go/No-go task

require inhibition of a prepotent response: they entail sup-

pression of a motor action, where the action is deemed

inappropriate. However, although they are sometimes treated

interchangeably (e.g., Aron & Poldrack, 2005; Nigg, 2000), it

could be argued that they do not tap the exact same mental

mechanism. Using the terminology of Schachar and col-

leagues (Schachar et al., 2007; Verbruggen & Logan, 2008b) e

while the Go/No-go task requires action restraining, the Stop-

Signal task requires action cancellation. Previous findings

have demonstrated that these processes are behaviorally

distinct (Schachar et al., 2007) and have different develop-

mental trajectories (Johnstone et al., 2007). Furthermore, they

share common neural substrates only to a limited extent

(McNab et al., 2008; Rubia et al., 2001; Swick, Ashley,& Turken,

2011; Zheng, Oka, & Bokura, 2008, pp. 1434e1442), and have

different neurochemical modulation (Eagle, Bari, & Robbins,

2008). Action cancellation involves a cognitive stopping

mechanism, but is also heavily dependent on motor func-

tioning in order to cancel the already initiated response. Thus,

the SSRT measure in the Stop-Signal task reflects the combi-

nation of cognitive and motor stopping abilities. In contrast,

the process of action restraint is mainly cognitive, and the

motor challenge in restraint tasks is small. Thus, commission
error rate in a Go/No-go task is a cleaner measure of the

cognitive aspect of response inhibition, as compared with

SSRT in the Stop-Signal task.

Imaging studies that aimed to reveal the neural trace of

response inhibition using Go/No-go and Stop-Signal tasks

have suggested involvement of extensive brain regions: lateral

frontal cortex (including superior, middle and inferior frontal

gyri), the insula, the dorsal medial frontal cortex (including

the supplementary and pre-supplementary motor areas), the

anterior cingulate cortex, the inferior parietal cortex, the

precuneus, as well as the striatum (see Criaud & Boulinguez,

2012; Swick et al., 2011 for informative meta-analyses). How-

ever, it is questionable whether all these regions are directly

related to response inhibition, and attempts have been made

to construct more specific hypotheses about the neural sub-

strates of response inhibition.

The region drawing perhaps the most attention in this

debate is the right inferior frontal cortex (hereafter rIFC).

Based upon imaging studies of the Stop-Signal Task and lesion

studies, Aron et al. claimed that response inhibition is local-

ized in the right inferior frontal gyrus (rIFG; Aron, Robbins, &

Poldrack, 2004). Recently, these authors have suggested a

broader account, where rIFC is triggered by unexpected events

and then generates inhibition by rIFC-based fronto-basal-

ganalia networks (Aron, Robbins, & Poldrack, 2014). One type

of criticism about this view is concerned with the role of left

IFC, which is belittled by Aron et al., despite evidence from

left-lateralized patients regarding deficient Go/No-go perfor-

mance (e.g., Kr€amer et al., 2013; Swick, Ashley, & Turken,

2008). The other type of criticism concerns the exact context

in which rIFC is activated: some authors have demonstrated

that rIFC is recruited not only when a prepotent motor

response ought to be withheld, but also in other situations

(discussed below) where inhibitory control is unnecessary

(Swick & Chatham, 2014). Similar debates occur about the role

of anterior insula cortex (AIC) and the pre-supplementary

motor area (pre-SMA) in response inhibition (e.g., Aron,

2011; Cai, Ryali, Chen, Li, & Menon, 2014; Chambers,

Garavan, & Bellgrove, 2009; Mostofsky & Simmonds, 2008;

Wager et al., 2005).

Attempts to clarify the latter issuesweremade by changing

the interpretation of the ‘Stop’ signal in classic Stop-Signal

task designs. For instance, the infrequent ‘Stop’ signal could

indicate a repeated response (“double Go”, Chatham et al.,

2012), a unique response (Erika-Florence, Leech, &

Hampshire, 2014; Hampshire, Chamberlain, Monti, Duncan,

& Owen, 2010) or no change in the required action and so

could be ignored (Sharp et al., 2010). These studies demon-

strated that recruitment of prefrontal cortex and particularly

of rIFG did not differ between these novel conditions and the

classic stop-trials. Thus, it transpires that prefrontal regions

are not triggered exclusively by the mere inhibition process,

but instead may be engaged in the detection of unexpected

stimuli, in context monitoring, or are related to attentional

capture (Hampshire, 2015). Additional evidence for this claim

comes from studies which used Go/No-go tasks and manip-

ulated the frequencies of the two types of events (Braver,

Barch, Gray, Molfese, & Snyder, 2001; Meffert, Hwang, Nolan,

Chen, & Blair, 2016; Wijeakumar et al., 2015). These studies

have shown that some of the prefrontal activation in Go/No-
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go tasks, traditionally claimed to reflect inhibitory processes,

is actually attributed to the infrequency of the No-go events

rather than to the inhibition process per se (i.e., these regions

are activated to a similar degree towards the infrequent

stimulus, regardless if the infrequent is the Go or the No-go).

The lack of specificity of prefrontal activation reported in

these previous studies could be due to the experimental

contrast used as a measure of inhibition-related brain acti-

vation. Particularly, in most of these studies the neural

response related to No-go trials is contrasted with the

response to Go trials (or Stop trials contrastedwith Go trials, in

a Stop-Signal task). Thus, the measured signal may capture

several different mental processes besides inhibition. First, it

captures differences in visual properties and processing of the

stimuli. Second, this contrast may reflect the difference be-

tween motor-related brain activity in the case of response

execution, as compared to the case of non-response. As such,

the No-go versus Go contrast is not suitable for disentangling

the neural traces of response inhibition from mechanisms of

stimuli processing, motor planning, as well as motor

execution.

In order to overcome these potential confounds, we

created a design which focuses only on analyses of No-go

related activations. We manipulated the ratio of Go/No-go

stimuli, to create two variants of the task: in one condition,

No-go trials are rare, occurring in 25% of trials. In the other

condition, No-go trials are more frequent, occurring in 75% of

trials. In the rare-No-go condition most stimuli require ac-

tion, so participants tend to respond very often and rapidly.

When a rare No-go stimulus appears, inhibition processes are

called upon in order to restrain the prepotent response. In

contrast with this case, the need for inhibition is diminished

in the prevalent-No-go condition because participants are

not biased towards responding. The present study uses a

design similar to the procedure used by Meffert et al. (2016),

as both experiments include rare and prevalent No-go con-

ditions. However, our approach to data analysis is crucially

different, since Meffert et al. used the problematic compari-

son of No-go trials with Go trials. The novelty of the current

study is in contrasting the rare-No-go condition (“difficult

inhibition”, overriding a prepotent response) with the

prevalent-No-go condition (“easy inhibition”, no prepotent

response), thereby isolating inhibition-related activity while

keeping visual and motor components equal across condi-

tions. We claim that the use of this contrast can isolate and

pinpoint brain regions where neural processes of response

inhibition take place.

This approach has clear strengths, yet it raises a couple of

concerns. In the rare-No-go condition, the No-go stimuli are

less expected and hence are surprising and more salient than

in the prevalent-No-go condition. These differences are

inherent to the design which aims to elicit a prepotent

response, and thereby create a context where inhibition is

highly demanding. As a result, the No-go signal must be un-

expected. Therefore, differences in expectation and in the

level of surprise or saliency are unavoidable when comparing

No-go trials taken from experimental conditions with

different No-go probabilities and it is consequently expected

that brain regions that are sensitive to salience will be active

in such a comparison. In order to distinguish between brain
activations that reflect inhibition from brain activations that

derive from the effects discussed above, we examined an

analogous contrast based on the Go trials. By subtracting

prevalent-Go trials from rare-Go trials and examining the

overlap with the results of our main contrast e prevalent-No-

go subtracted from rare-No-go, we can identify brain regions

that are activated towards rare stimuli in general, regardless

of stimuli type (i.e., Go or No-go). These regions, activated

more towards rare stimuli than towards prevalent stimuli, are

likely to be involved in saliency detection, violation of

expectation, or attentional capture. On the other hand, re-

gions where activation is unique to the rare-No-go

versus prevalent-No-go contrast are likely to be related to

the inhibition process itself.

Awhole brain approachwas undertaken in order to expand

the search beyond the obvious suspect regions e IFG/AIC/pre-

SMA, and to mark new candidate regions which take part in

response inhibition. Such regions may later be used as neural

markers, to investigate atypicalities of response inhibition,

which have been markedly reported in several neuropsychi-

atric disorders, as previously described.
2. Methods

2.1. Participants

23 healthy volunteers (8 men and 15 women) aged between 19

and 37 participated in the study. All were right-handed with

normal or corrected vision (glasses were replaced in the

scanner with MRI-compatible goggles). Participants had no

prior history of neurological or psychiatric disorders, no

learning disability, and no contraindication to MRI scanning.

To assure the absence of attention difficulties, participants

completed the Adult ADHD Self-Report Scale (ASRS), a short

screening scale for use in the general population (Kessler

et al., 2005). All Participants scored within 1 SD of normal

population's mean, as reported for the Hebrew version (Zohar

& Konfortes, 2010). Three participants were excluded from the

analysis: two due to a technical failure in the scanner, and the

third due to excessive movement in the scanner (over 2 mm).

This resulted in a final sample of 20 participants (7 men, 13

women; mean age 27.4, SD 4.5). The study conformed to the

Declaration of Helsinki and was approved by the ethics com-

mittees of Sheebamedical center and of Tel-Aviv University in

Israel. All participants provided written informed consent.

2.2. Go/No-go task

Participants were instructed to respond quickly when a Go

stimulus e a red square e was presented in the center of a

screen, and to withhold response to all other stimuli. No-go

stimuli in the task were squares in other colors (blue, green,

or yellow), red shapes other than squares (a circle, a triangle,

or a star), or other shapes in other colors (all possible combi-

nations of the shapes and colors mentioned above). We are

mostly interested in No-go trials, where participants must

withhold response.We used two variants of the task: rare-No-

go and prevalent-No-go. In the rare-No-go condition, 75% of

trials were Go trials and only 25% were No-go trials. In this

http://dx.doi.org/10.1016/j.cortex.2016.12.012
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case, the participant is responding in most trials, and the de-

mand for withholding a response when the rare No-go trials

occur is high. In the prevalent-No-go condition the ratio is

inverted e 25% of trials are Go trials and 75% are No-go trials.

In this condition, there is no bias to respond; hence the need

for inhibition is greatly reduced. In both conditions 1/3 of the

No-go trials were same-color different-shape items, 1/3 were

same-shape different-color items, and 1/3 were different-

shape different-color items (which shared neither shape nor

color with the Go stimulus). Each stimulus was presented

centrally on its own for 100 msec, and the inter-stimulus-

interval (ISI) varied from 1.8 sec to 12 sec, with a mean ISI of

2.75 sec. Stimuli and ISI's were randomly intermixed

throughout the block, with a constraint of nomore than 3 rare

events consecutively (e.g., in the rare-No-go condition, there

could not bemore than three No-go stimuli one after another).

A graphical description of the task is presented in Fig. 1. Each

block consisted of 164 trials, and lasted a total of 8 min. Re-

action times (RT) were recorded from the onset of the stim-

ulus, and average RT as well as standard deviation of RT were

computed for correct responses only. Accuracy measures

included the rate of omission errors (misses) and the rate of

commission errors (false alarms). The latter serves as the

main performance index of response inhibition.

2.3. Experimental procedure

Before attending the fMRI session, participants conducted the

experimental task in laboratory environment, on a separate

day, in order to get familiar with the task. During the fMRI
Fig. 1 e Experimental design. Illustration of the Go/No-go task,

Participants were instructed to respond quickly when a Go stim

screen, and to withhold response to all other stimuli. Trials occ

Rare-No-go (25% No-go stimuli and 75% Go stimuli) and B) Preval

consisted of 164 trials, a total of 4 runs, order of conditions coun

full description of the task.
scan, participants performed 4 runs of the task, two runs of

rare-No-go and two runs of prevalent-No-go, interspersed by

an anatomical T1-weighted scan. The order of block types

(rare- and prevalent-No-go) was counterbalanced across par-

ticipants. After completion of the experimental runs, addi-

tional scans were acquired, which are not further described in

the current paper: a functional resting state scan, a diffusion

weighted scan, and functional runs of an additional task. The

total period of time in the scanner was approximately 90 min.

The stimuli were projected onto a screen and viewed by a

mirror mounted on the head coil. Responses were collected

via an MRI-compatible response box.

2.4. fMRI data acquisition

Images were acquired on a 3T MRI (Magnetom Prisma,

Siemens Medical Inc., Erlangen, Germany) scanner at

SCAN@TAU center in Tel-Aviv University, using a 64-channel

head coil. While participants completed the Go/No-go task,

236 functional images were collected using a single-shot 2D

gradient-echo echo-planar sequence with the following pa-

rameters: slice thickness ¼ 3.6 mm, 33 transverse slices in

ascending interleaved order, TR ¼ 2 sec, TE ¼ 35 msec, flip

angle ¼ 90�, matrix 96 � 96, FOV ¼ 192 mm, for a voxel-wise

resolution of 2 � 2 � 3.6 mm. Additionally, an MPRAGE

(high-resolution T1-weighted anatomical scan) was collected.

The parameters for MPRAGEwere the following: TR¼ 1.75 sec,

TE ¼ 2.61 msec, T1 ¼ 900 msec, FOV ¼ 220 � 220,

matrix ¼ 220 � 220, axial plane, slice thickness ¼ 1 mm, 160

slices, for an isotropic voxel resolution of 1 mm3.
in which participants were shown a series of stimuli.

ulus e a red square e was presented in the center of a

urred in a randomized order within two types of blocks: A)

ent-No-go (75% No-go stimuli and 25% Go stimuli). Each run

terbalanced across participants. See Methods section for a
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2.5. fMRI preprocessing and analysis

FMRI data processing was carried out using FEAT (FMRI Expert

AnalysisTool)Version6.00,partofFSL (FMRIB'sSoftwareLibrary,

www.fmrib.ox.ac.uk/fsl, version 5.0; Jenkinson, Beckmann,

Behrens, Woolrich, & Smith, 2012). The first 3 volumes from

each scan were discarded to allow for T1 equilibrium effects.

The last 3 volumes fromeachscanwerediscardedaswell, due to

high prevalence of subject movements in this time range (while

stimuli were no longer presented). Structural scans were skull

stripped using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/,

S�egonne et al., 2004). Registration of the functional data to the

high resolution structural image was carried out using the

boundary based registration algorithm (BBR; Greve & Fischl,

2009). Registration of the high resolution structural image to

standard (Montreal Neurological Institute e MNI) space was

carried out using FLIRT (Jenkinson, Bannister, Brady, & Smith,

2002; Jenkinson & Smith, 2001) and was then further refined

using FNIRT nonlinear registration (Andersson, Jenkinson, &

Smith, 2007a, 2007b). The following pre-statistics processing

was applied to the functional data: motion correction using

MCFLIRT (Jenkinson et al., 2002); non-brain removal using

BET (Smith, 2002); spatial smoothing using a Gaussian kernel of

full-width-half-maximum of 5 mm; grand-mean intensity

normalization of the entire 4D dataset by a singlemultiplicative

factor; highpass temporal filtering (Gaussian-weighted least-

squares straight line fitting, with sigma ¼ 25.0 sec).

Time-series statistical analysis was carried out using FILM

with local autocorrelation correction (Woolrich, Ripley, Brady,

& Smith, 2001). Standard GLM fitting was conducted for all

subjects. The following events were modeled in each run

using a boxcar regressor convolved with a canonical double

gamma hemodynamic response function: correct Go, correct

No-go, omissions, and commission errors. Null events were

not modeled and therefore constitute an implicit baseline.

Events were modeled at the time of stimulus onset with

duration of .1 sec. The six motion parameters and temporal

derivatives of all regressors were included as covariates of no

interest to improve statistical sensitivity. The second level

analysis, combining runswithin subject, was carried out using

a fixed effects model, by forcing the random effects variance

to zero in FLAME (FMRIB's Local Analysis of Mixed Effects)

(Beckmann, Jenkinson, & Smith, 2003; Woolrich, 2008;

Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004). In

order to isolate inhibition-specific activation, a rare-No-go

minus prevalent-No-go contrast was computed for each subject.

As described above, response inhibition is highly challenging

in the rare-No-go, but substantially less so in the prevalent-

No-go. Hence the contrast between No-go events in the two

conditions reflects the inhibitory process. Additionally, a rare-

Go minus prevalent-Go contrast was computed and overlapped

with the latter contrast. The purpose of this procedure was to

differentiate shared brain regions across the above Go andNo-

go contrasts showing increased activity when infrequent

stimuli in general are presented, from brain regions showing

increased activity particularly when rare-No-go stimuli are

presented and inhibition is called upon.

Group analysis was carried out using FLAME (FMRIB's Local
Analysis of Mixed Effects) stage 1 (Beckmann et al., 2003;
Woolrich, 2008; Woolrich et al., 2004). Z (Gaussianised T/F)

statistic images were thresholded using clusters determined

by Z > 2.3 and a (corrected) cluster significance threshold of

p¼ .05 (Worsley, 2001). Activation clusters are reported in MNI

coordinates, using Cluster command in FSL. For visualization

of results, statistical maps were projected onto an average

cortical surface with the use of multifiducial mapping using

CARET software (Van Essen, 2005) (http://brainvis.wustl.edu/

wiki/index.php/Caret:Download).

To verify that the results are not driven from the mere

difference in the number of trials included in each regressor

(number of No-go trials in the prevalent-No-go condition was

3 times the number of No-go trials in the rare-No-go condi-

tion), we repeated the analysis while listing only a random

selection of 1/3 of the prevalent-No-go trials in the No-go re-

gressor, and including an additional regressor for the rest of

No-go trials, which was not used in the next level of analysis.

All other details of analysis were as previously described. We

repeated this procedure five times, to verify that results do not

depend on a specific selection of trials.
3. Results

3.1. Behavioral results

Behavioral data were examined using paired samples t-tests.

Reaction times for Go trials were significantly faster in the

rare-No-go condition (493 msec) as compared with the

prevalent-No-go condition [539 msec; t(19) ¼ �6.55, p < .001,

Cohen's d ¼ .77]. This reflects the increased tendency to

respond in the rare-No-go condition. Commission errors were

significantly more prevalent in this condition [average of 4%

versus .4%, in the rare-No-go versus prevalent-No-go,

respectively; t(19) ¼ 5.92, p < .001, Cohen's d ¼ 1.76], indicating

that inhibition was indeedmore demanding in the rare-No-go

condition. The standard deviation of reaction times did not

differ between conditions (62 msec and 56 msec, in the rare-

No-go and the prevalent-No-go, respectively), indicating

similar levels of sustained attention (Johnson et al., 2007;

Shalev, Ben-Simon, Mevorach, Cohen, & Tsal, 2011). Omis-

sion errors were negligible (1% in both conditions). These re-

sults confirm our predictions, assuring that task selection has

been appropriate, and that the frequency manipulation suc-

cessfully creates a “difficult inhibition” condition (rare-No-go)

and an “easy inhibition” condition (prevalent-No-go).

3.2. fMRI results

Although our experiment was designed for contrasting rare-

No-go trials versus prevalent-No-go trials, we first wanted to

make sure that the data is compatible with previous studies in

the literature. To this end, we applied the classical contrast of

No-go versus Go trials in the rare-No-go condition. In line with

the extensive literature, this contrast yielded activation in

bilateral IFG, as part of a widespread fronto-parietal activation

(see Fig. 2 and Table 1), includingmiddle frontal gyrus, bilateral

dorsolateral prefrontal cortex (DLPFC) and right superior pari-

etal lobule. In addition, widespread activation was obtained in

http://www.fmrib.ox.ac.uk/fsl
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bilateral occipito-temporal regions. However, as was explained

earlier, various cognitive, perceptual and motor mechanisms

could have been confounding this classical contrast.

In order to isolate brain activity which is uniquely associ-

ated with inhibition we used the contrast of No-go trials from

the two different occurrence rates: the response to prevalent-

No-go trials was subtracted from the response to rare-No-go

trials. This contrast yielded clusters of activation in parietal

regions, including the right and left intraparietal sulcus (IPS),

in the left temporo-parietal junction (TPJ), and also in the right

inferior temporal gyrus (see Fig. 3A and Table 1). It is inter-

esting to note that these clusters are partially overlapping

with the results of the traditional contrast, but clearly they are

much more localized. In addition, activation in the IPS and in

the TPJ occurred also in segments which were not revealed in

the traditional contrast.

Next, in order to identify and disregard regions involved in

the identification of infrequent stimuli irrespective of the need

for inhibition, we computed an analogous contrast of the Go

trials: the activity thatwasmeasuredduring thepresentationof

prevalent-Go trials was subtracted from the response for rare-

Go trials, and then overlapped with the results of the main

contrast of No-go trails (Fig. 4). While the comparison of rare

versus prevalent Go trials resulted in a largely distributed

network of activations, the conjunctionof rare versusprevalent

contrasts across Go and No-go trials yielded activation in

anterior portions of the IPS (yellow clusters in Fig. 4a). Impor-

tantly, more posterior portions of the IPS, as well as regions in

the TPJ and in right inferior temporal gyrus (red cluster in

Fig. 4a), were only activated in the rare-No-go versus prevalent-

No-go contrast, indicating involvement in inhibition per se.
Fig. 2 e Activation in the classical contrast: No-go versus Go. W

middle frontal gyrus, dorsolateral prefrontal cortex and right su

whole-brain multiple comparisons and projected onto an avera

represents the z-score.
A subtle point to note regarding all the contrasts discussed

previously is that they compare different numbers of trials. By

definition, the number of trials in the prevalent condition is

larger than in the rare condition by a factor of three, hence the

activation revealed by subtraction of these conditions might

be contaminated by power differences. In order to control for

this possibility, we repeated the main analysis including only

a subset of the prevalent No-go trials. At the 1st level analysis,

we randomly selected 1/3 of the trials to be included in the No-

go regressor, and listed all other No-go stimuli in an additional

(fifth) regressor of no interest. On the next level of analysis we

computed again the rare-No-go minus prevalent-No-go

contrast, using only the first No-go regressor described

above. To corroborate the findings and to confirm that results

do not depend on a specific subsample of trials, this analysis

was repeated five times, using a different random selection of

trials in each repetition. A similar pattern of results was ob-

tained throughout the analyses: activation in bilateral anterior

segments of the IPS was replicated in all repetitions, whereas

activation in the more posterior segment of left IPS and in the

left TPJ was replicated in majority of repetitions but not in all

(3/5 and 4/5, respectively). In opposed to that, activation in

right inferior temporal regions, which was evident in the

original analysis (using all the trials), did not appear in any of

the repetitions. This analysis confirmed that the activation

seen in the parietal cortex is indeed attributable to the

fundamental difference in inhibitory demands between rare-

and prevalent-No-go conditions, and ruled out the possibility

that it reflects the varying statistical power in the different

conditions (see Fig. 3B). This modified analysis narrows down

even more the localized results of the current study,
idespread fronto-parietal activation, including bilateral IFG,

perior parietal lobule. Statistical maps are corrected for

ge cortical surface using CARET (R ¼ Right). The color
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Table 1 e Clusters of activation.

Brain region Hemisphere N
voxels

Max
Z-stat

x y z

[No-go minus Go] in the rare-No-go condition

Lateral occipital cortex, occipital fusiform gyrus, temporal-occipital fusiform gyrus, inferior

temporal gyrus, cuneal cortex, central opercular cortex (R), insular cortex (R), angular gyrus

(R), middle temporal gyrus (R)

R/L 81,463 4.7 �47 �53 �14

Precentral gyrus, postcentral gyrus, superior parietal lobule, precuneous, juxtapositional

lobule (R)

R/L 49,201 4.7 51 �17 57

IFG, middle frontal gyrus, precentral gyrus, postcentral gyrus L 10,068 3.9 �48 13 38

IFG, middle frontal gyrus, precentral gyrus R 4,396 3.8 55 32 23

Superior temporal gyrus, middle temporal gyrus, Central opercular cortex L 2,594 3.4 �51 �33 3

[rare-No-go minus prevalent-No-go]

IPS R 8,187 3.7 43 �49 50

IPS L 2,126 3.3 �38 �42 48

TPJ L 5,835 4.0 �43 �43 43

Inferior temporal gyrus R 2,070 3.3 50 �51 �8

N Voxels: number of activated voxels per cluster; Max Z-stat: maximum z-statistic for each cluster; x, y, and z areMNI coordinates for the peak of

each cluster. R ¼ right; L ¼ left. IFG ¼ inferior frontal gyrus; IPS ¼ intraparietal sulcus; TPJ ¼ temporo-parietal junction.

Fig. 3 e Activation for Rare-No-go versus Prevalent-No-go (A) where all trials are included in the analysis (B) where the

number of trials is equal across conditions. The figure presents one result out of five repetitions of the analysis (see more

details in the Results, Section 3.2). Significant activation was obtained in bilateral IPS and in left TPJ in both analyses.

Statistical maps are corrected for whole-brain multiple comparisons and projected onto an average cortical surface using

CARET (R ¼ Right). The color represents the z-score.
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highlighting the importance of bilateral IPS and of left TPJ in

response inhibition.
4. Discussion

Brain imaging experiments typically utilize a differential

signal, measured as a contrast between responses obtained

under two different conditions, such that common
components are subtracted out. However, when the con-

trasted conditions differ on a number of levels such as during

Go and during No-go events, the outcome of subtraction be-

tween them reflects many differences which are not canceled

out in the subtraction (as demonstrated in our study, Fig. 2).

We argue that the classical difference between No-go and Go

trials includes activation related to motor planning and

execution in the response to Go stimuli, which is absent in the

No-go trials. Furthermore, visual and perceptual differences

http://dx.doi.org/10.1016/j.cortex.2016.12.012
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Fig. 4 e Ruling out a possible confound of stimulus frequency and highlighting inhibition-specific activation clusters.

Contrasts of Rare versus Prevalent stimuli, overlaid on a single image to illustrate overlap, with No-go contrast in red and Go

contrast in green. Overlapping regions appear yellow, indicating response to infrequent stimuli irrespective of trial type (Go/

No-go). Regions that appear pure red in the image represent unique activation towards rare-No-go, interpreted as reflecting

inhibitory processes. Statistical maps were binarized and projected onto an average cortical surface using CARET (R ¼ Right).
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between the No-go and Go signals are also reflected in the

subtraction between them. Hence, we suggest that tracking

inhibition-related signal should be based solely on No-go tri-

als, where withholding of a response is the main cognitive

challenge. Our experimental design extracts a differential

signal by modulating the intensity of inhibition activity in the

brain, such that activation under rare-No-go condition (where

a prepotent response ought to be inhibited) is contrasted with

activation under prevalent-No-go condition (which includes

the same stimuli and requires the same null response). Since

the need for inhibition is diminishedwhenNo-go events occur

very often, this is an adequate baseline for extracting a clean

differential signal of neural activity representing response

inhibition. In this way, visual, perceptual, and motor proper-

ties of No-go trials are kept equal across conditions, while the

demand for inhibition is substantially higher in the rare-No-

go condition. Thus, contrasting rare-No-go trials with

prevalent-No-go trials isolates inhibition-related activation.

Using this methodological approach, we were able to

highlight in the current study the contribution of parietal re-

gions to inhibition of a prepotent response. The clusters of

activation obtained were spatially well-defined and focused,

localized in bilateral IPS and in left TPJ. Although IPS and TPJ

activations are briefly mentioned among other brain regions

in some previous reports of response inhibition in fMRI

(Bledowski, Prvulovic, Goebel, Zanella, & Linden, 2004;

Chikazoe et al., 2009; Wager et al., 2005 for IPS involvement;

Nakata et al., 2008; Rothmayr et al., 2011; Van der Meer,

Groenewold, Nolen, Pijnenborg, & Aleman, 2011 for TPJ), it

has not been consistent across studies and did not attract

much attention in the response inhibition debate, which

tends to revolve mainly around frontal regions. This seem-

ingly inconsistency of our results with previous findings is

likely attributed to the general differences between the classic

approach and the current one, as explained earlier. Thus, by

manipulating the frequency of Go and No-go stimuli, we were

able to reveal the role of IPS and TPJ in inhibition, which was

overlooked by previous studies.
Moreover, results were validated by an additional analysis

equating the number of trials accounted for in each condition.

This kind of analysis is important because statistical power

increases as the number of trials per subject is increased.

When conditions differ in the number of trials, they differ also

in statistical power. Therefore, activation in contrasts such as

rare-versus prevalent-No-go (as in the current study) or No-go

versus Go (as in classic experiments), might reflect power

differences rather than mere differences in cognitive pro-

cesses. In order to overcome this potential bias, we applied a

technique of sub-sampling the trials in the frequent condition.

While this method is not common in fMRI experiments, it is

well established in EEG (Luck, 2014). This analysis further as-

sures the specificity and validity of the activation in the pa-

rietal cortex that was recorded in the current experiment.

One potential limitation of the present design (which is also

relevant for previous studies assessing the classical contrast of

No-go versus Go) is that our frequencymanipulationmay have

alsoaffected the relative salienceof theNo-go trials. Stimuli can

be salient due to either perceptual properties, novelty of the

stimulus, unattended location, and most importantly for the

current investigatione saliencycanarise fromlowfrequencyof

the stimuli and/or from violation of expectation. Indeed, both

IPS and TPJ have been previously suggested to be involved in

detection and processing of salient stimuli (Boehler,

Appelbaum, Krebs, Chen, & Woldorff, 2011; Corbetta &

Shulman, 2002; Downar, Crawley, Mikulis, & Davis, 2002; Geng

& Mangun, 2008, pp. 1584e1601; Indovina & MacAluso, 2007;

Kincade, Abrams, Astafiev, Shulman, & Corbetta, 2005;

Mevorach, Shalev, Allen, & Humphreys, 2009) but also with its

suppression (DiQuattro&Geng, 2011;Mevorach, Hodsoll, Allen,

Shalev,&Humphreys, 2010). It has also specifically been shown

that inferior parietal activation ismodulated by probability and

expectation (Doricchi, MacCi, Silvetti, & MacAluso, 2010; Vink,

Kaldewaij, Zandbelt, Pas, & du Plessis, 2015; Zandbelt,

Bloemendaal, Neggers, Kahn, & Vink, 2013). However, in the

case of prepotent responses, it is hard to disentangle inhibition

fromsaliencyandexpectation, because theNo-go stimuli ought

http://dx.doi.org/10.1016/j.cortex.2016.12.012
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to be unexpected and salient in order to challenge inhibition. In

the current experiment, No-go trials in the rare-No-go condi-

tion are less expected than in the prevalent-No-go condition,

and hence possibly more salient. Therefore, it could be argued

that the activation detected in the IPS/TPJ in the current study

reflects stimulus-driven orienting of attention ormodulation of

expectation rather than the implementation of response inhi-

bition. To rule out this alternative account of the current find-

ings, in an additional analysis we identified brain regions

responding to saliencyby looking at the response to rare stimuli

in general: rare-Go trials and rare-No-go trials, and comparing it

to the response to prevalent-Go and prevalent-No-go, respec-

tively. The analysis demonstrated that the left TPJ andposterior

right IPS, as well as some smaller clusters in anterior right IPS

and in left IPS, are uniquely modulated by the demand for in-

hibition and do not respond more to rare salient stimuli when

they do not require inhibition. Thus, we conclude that while

rare-No-go stimuli are indeed salient, the effects we identified

are attributable to inhibition over and above a possible sensi-

tivity of the reported brain regions to salience or expectancy.

Among many other attention functions previously associ-

ated with the parietal cortex (c.f. Wojciulik & Kanwisher,

1999), of particular relevance to the current study are find-

ings relating IPS and TPJ activity to interference control and

conflict resolution (Chmielewski & Beste, 2016; Derrfuss,

Brass, Neumann, & von Cramon, 2005; Mecklinger, Weber,

Gunter, & Engle, 2003; Zysset, Müller, Lohmann, & von

Cramon, 2001). Interference control is sometimes described

in terms of perceptual inhibition: inhibition of irrelevant dis-

tractors, or inhibition of irrelevant dimensions of a stimulus.

While these accounts of inhibition are clearly distinguished

from inhibition of a prepotent response, it may be the case

that these processes rely on shared neural mechanisms, and

that the IPS and TPJ are implicated both in perceptual inhibi-

tion and in motor inhibition.

The role played by the IPS and TPJ here may also speak to

the recent taxonomy of proactive and reactive control (Aron,

2011; Braver, 2012). The framework of dual-mechanisms of

control (Braver, 2012) for instance, postulates a qualitative

distinction between these two modes of control: proactive

control is the maintenance of goal-relevant information that

operates in an anticipatory manner during the task, whereas

reactive control reflects transient stimulus-driven attention.

In Stop-Signal tasks, a common interpretation is that proac-

tive control governs the Go trials whereas reactive control

takes action when Stop signal occurs (Cai et al., 2016;

Zandbelt et al., 2013). When the probability of Stop signals

is varied in these tasks, a higher rate of Stop trials results in

slower reaction times for Go trials and in more successful

stops (Jahfari, Stinear, Claffey, Verbruggen, & Aron, 2009;

Ramautar, Kok, & Ridderinkhof, 2004; Vink et al., 2005;

Zandbelt & Vink, 2010). On the basis of these findings, it is

claimed that higher prevalence of Stop trials engages more

proactive control. However, it is not unequivocal that

increased proactive processing in these scenarios is associ-

ated with inhibition per se. Indeed, even in the context of a

stop-signal task it is hard to ascertain whether proactive

processes (driven by pre-cues) that affect the action poten-

tials prior to trial onset, are indicative of action inhibition or
facilitation (e.g., Claffey, Sheldon, Stinear, Verbruggen, &

Aron, 2010). It is also not clear that the occurrence of a rare

no-Go trial is solely associated with a reactive process which

does not incorporate (at least to some degree) pre-stimulus

readiness to inhibit a response. This means that the

possible association between high probability stop signal

trials and proactive inhibition cannot be easily generalized to

the current study's paradigm, as the No-go trials in our task

are not easily ascribed to either proactive or reactive

schemes.

Perhaps it is therefore not surprising that the brain acti-

vations we report here are typically associated with both

proactive (IPS) and reactive (TPJ) attention control (see also the

distinction between dorsal and ventral attention networks;

Corbetta & Shulman, 2002). The IPS has been previously

demonstrated to be activated in proactive control (Mevorach,

Humphreys, & Shalev, 2009) immediately before stimuli

onset. On the other hand, left TPJ involvement has been

speculated to engage in reactive control (DiQuattro & Geng,

2011). Therefore, while the proactive/reactive framework is

highly relevant to the issue of inhibition, it is not quite clear

how these terms should be applied to the current task, and the

results are inconclusive in respect to this issue. Clearly, the

specific role of the IPS and of TPJ in response inhibition, and

the way it interacts with other brain circuits in the context of

inhibition, is a matter for further exploration.

While parietal activations were evident in our results,

frontal regions (IFG in particular) were conspicuously absent

in the critical contrast we report in the current study. The IFG

was, in fact, activated in our study too, but this activation was

apparent when processing of No-go trials was compared with

Go trials, in line with previous extensive literature. Impor-

tantly, however, it was not modulated by the extent of

inhibitory demand e i.e., IFG activation for rare-No-go trials is

similar to that of prevalent-No-go trials. The latter finding is

consistent with the results of Meffert et al (Meffert et al., 2016),

who implemented a full factorial analysis including rare and

prevalent Go and No-go conditions, and obtained a main ef-

fect of stimulus (No-go vs Go) in the IFG, but not an interaction

effect with frequency e indicating that IFG is activated more

in No-go events than in Go events, but is notmodulated by the

frequency of trials (and therefore is not sensitive to the degree

of inhibitory demand). However, while Meffert et al. interpret

the invariance of IFG to frequency as a support for IFG

involvement in inhibition, we argue that it weakens this view:

response inhibition is defined in the current study as over-

riding of a prepotent response (e.g., Casey et al., 1997; Nigg,

2000). Thus, a brain region specifically related to inhibitory

control should be showing greater activation in response to

rare-No-go trials (where inhibitory demand is high) than to

prevalent-No-go trials (where inhibitory demand is low). Such

a difference has not been observed in the IFG, in either the

current study or Meffert et al.'s study, and this contradicts the

specificity of IFG activity in inhibitory control.

Additional evidence challenging the role of IFG in such

inhibitory control comes from an important meta-analysis by

Criaud & Boulinguez (Criaud & Boulinguez, 2012), where Go/

No-go studies using equiprobable stimuli (50% Go and 50%

No-go trials) were compared to studies using low probability
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of No-go stimuli. The results of the meta-analysis revealed no

effect of No-Go probability in the IFG, i.e., its activation is

similar in studies where No-go events are equiprobable (50%)

and in studies where No-go events are rare (<50%). There

again, if the IFGwas implicated in response inhibition per se, it

should have been activated to a lesser extent in the equi-

probable designs, where the tendency to respond is dimin-

ished. Together with the current results, these findings

support the claim that the IFG is not a module of response

inhibition, but rather is involved in more general cognitive

processes occurring in Go/No-go and Stop-Signal tasks. An

influential alternative explanation to the findings of IFG acti-

vation to No-go/Stop events is that it belongs to domain-

general regions of the cortex, which support a variety of

novel or demanding tasks, sometimes referred to as the

multiple-demand cortex or the task-activation ensemble (Cole

& Schneider, 2007; Duncan, 2010; Fedorenko, Duncan, &

Kanwisher, 2013; Hampshire & Sharp, 2015).

Another important point to be discussed is the selection of

experimental tasks in the study of response inhibition. The

meta-analysis by Criaud & Boulinguez (Criaud & Boulinguez,

2012) revealed that IFG is susceptible to effects of stimulus

complexity and of working memory demands, and that this is

the case also for the insula and for the pre-SMA. This, again,

may fit with the idea of IFG in a multiple demand network

rather than inhibition per se. This does not imply that all these

regions do not play a role in response inhibition, but rather

points out that task designs are often non-optimal for dis-

tinguishing response inhibition from other attentional

mechanisms, and highlight the importance of task selection

(see also Simmonds, Pekar, & Mostofsky, 2008). In the current

study we chose a simple version of a Go/No-go task (Shalev

et al., 2011): the Go stimulus is unique and easily distin-

guishable from the No-go stimuli, and the mapping of stimuli

to response is consistent (i.e., is not updated during the task

according to previous trials), thus minimizing perceptual

complexity and working memory load. This selection of a

simple task, along with themanipulation of No-Go probability

produce an appropriate design in order to pinpoint response

inhibition, conforming to the recommendations of Criaud and

Boulinguez, and is another advantage of the current study.

To conclude, the current study applies a novel approach for

isolating response inhibition-related activity in neuroimaging,

and suggests that bilateral IPS and left TPJ could be a markers

of inhibitory control. In future studies this marker could be

utilized to investigate atypicalities of response inhibition, and

to further investigate the interaction of brain activity with

behavioral measures and with symptoms of difficulty in

response inhibition (i.e., impulsivity).
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