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Herewe describe amethod formeasuring tonotopicmaps and estimating bandwidth for voxels in human prima-
ry auditory cortex (PAC) using a modification of the population Receptive Field (pRF) model, developed for
retinotopic mapping in visual cortex by Dumoulin and Wandell (2008). The pRF method reliably estimates
tonotopic maps in the presence of acoustic scanner noise, and has two advantages over phase-encoding tech-
niques. First, the stimulus design is flexible and need not be a frequency progression, thereby reducing biases
due to habituation, expectation, and estimation artifacts, as well as reducing the effects of spatio-temporal
BOLD nonlinearities. Second, the pRF method can provide estimates of bandwidth as a function of frequency.
We find that bandwidth estimates are narrower for voxels within the PAC than in surrounding auditory respon-
sive regions (non-PAC).

© 2014 Elsevier Inc. All rights reserved.
Introduction

Primate studies suggest that the “core” of the auditory cortex (AC),
identified on the basis of the underlying cellular architecture, contains
up to three subdivisions with borders delineated by tonotopic gradient
reversals: A1, R, and RT (Hackett, 2008; Hackett et al., 1998). In humans,
cytoarchitectonic and chemoarchitectonic studies have localized the AC
core to approximately the medial two-thirds of Heschl's gyrus (HG)
(Dick et al., 2012; Rademacher et al., 2001). Tonotopic organization
within these areas has been measured using intracortical auditory
event-related potentials (Liegeois-Chauvel et al., 1991), surgically
implanted microelectrodes (Howard et al., 1996) and non-invasive
functional imaging (Da Costa et al., 2011, 2013; Formisano et al., 2003;
Humphries et al., 2010; Saenz and Langers, 2014; Striem-Amit et al.,
2011; Talavage et al., 2004).

A number of functional MRI studies have identified two tonotopic
gradients, thought to correspond to human homologues of areas A1
(hA1) and R (hR) that form mirror-image representations reversing at
a low frequency border (Da Costa et al., 2011, 2013; Formisano et al.,
2003; Humphries et al., 2010; Langers and van Dijk, 2012; Moerel
n, Department of Psychology,
et al., 2012; Striem-Amit et al., 2011). The low frequency region is
found close to Heschl's gyrus, and some uncertainty remains as to the
exact orientation of these two maps with reference to the gyrus (see
Saenz and Langers, 2014).

Several tonotopy studies have relied on stimuli comprised of orderly
ascending or descending frequency progressions (e.g. Da Costa et al.,
2011, 2013; Striem-Amit et al., 2011; Talavage et al., 2004), and a
phase-encoding analysis that identifies the “best frequency” of a voxel
by either finding the phase of the sinusoid or time-lagged function
that best-fits the voxel time course (Engel et al., 1994). While such
methods provide a robust method for identifying tonotopically orga-
nized areas, several features of this approach contribute to uncertainty
in interpreting results.

Frequency progression stimuli have the potential to cause habitua-
tion and/or expectation effects. Moreover, the “traveling wave” of
BOLD activity induced across the cortical surface (Engel et al., 1994)
by frequency progressions is likely modulated by spatiotemporal non-
linearities. Previous studies have shown that while the spatial and
temporal summation of BOLD signals can be well approximated by
the linear model; significant nonlinear spatiotemporal interactions do
occur (Binda et al., 2013; Pihlaja et al., 2008; Zenger-Landolt and
Heeger, 2003). Furthermore, estimates of best frequency based on a
small number of presented frequencies tend be biased, especially near
the edge of the stimulus range (Dumoulin andWandell, 2008, Appendix
B). Our data and that of Dumoulin et al. (Dumoulin andWandell, 2008,
Appendix B) suggest that these effects can be somewhat reduced
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by fitting data using a continuous function such as a Gaussian or a sinu-
soid capable of assigning voxels to outside the presented frequency
range rather than using a “winner-take-all” method that assigns a
value based on the highest correlation to the presented frequencies
only, where voxels with a best frequency outside of the stimulus
range are assigned to either the highest or lowest presented frequency.
Thus, frequency progression stimuli, especially when analyzed using
‘winner take all’ methods, have the potential to result in an over-
representation of frequencies near the beginning or the end of the
sweep. Analogous concerns have been described for visual retinotopic
mapping methods (Binda et al., 2013; Dumoulin and Wandell, 2008;
Duncan and Boynton, 2003; Haak et al., 2012), and recently discussed
for tonotopic mapping methods (Langers et al., 2014a,b).

Here, we estimate auditory frequency responses using a population
Receptive Field (pRF) method developed by Dumoulin and Wandell
(2008) that is less susceptible to many of these issues when utilizing a
randomized stimulus, and has the added advantage of providing a
means of estimating the receptive field size or bandwidth of individual
voxels as a function of frequency.
Materials and methods

Subjects

Four right-handed subjects (2 male, 2 female, ages 24–45) partici-
pated in two fMRI sessions. Subjects reported normal hearing and no
history of neurological or psychiatric illness. All procedures, including
recruitment, consenting, and testing, followed the guidelines of the
University of Washington Human Subjects Division and were reviewed
and approved by the Institutional Review Board.
Fig. 1. Stimuli. (A) 3 example frequency blocks containing 8 pure tone bursts (50 or 200 ms). (
(D) The first 120 frequency blocks of a random sequence scan.
Stimulus presentation

Auditory stimuli were generated in MATLAB using the Psychophys-
ics Toolbox (www.psychtoolbox.org). Stimuli were delivered via MRI
compatible insert earphones (S14, Sensimetrics), at a sampling rate of
44.1 kHz,with intensities adjusted to ensureflat frequency transmission
from 100Hz to 8 kHz. Subjects were instructed to keep their eyes closed
during all scans.

Wemeasured fMRI responses to two types of stimulation sequences:
ascending/descending tone progressions and random tone sequences. Both
stimuli were comprised of blocks of pure tone stimuli originally devel-
oped by Da Costa et al. (2011). Each frequency block lasted 2 s and
contained eight pure tone bursts of the same frequency, with each
burst lasting either 50 ms or 200 ms in duration (inter-stimulus inter-
val = 50 ms). Tone durations were alternated in pseudo-randomized
order, switching durations at least 4 times during each 2 s block,
resulting in a “Morse code” like pattern of long and short tones which
served to increase the perceptual salience of the stimuli over the regular
pattern of background scanner noise (Fig. 1A). The choice of 2 s for our
frequency block duration was primarily motivated to facilitate compar-
ison with a traditional progression paradigm used in previous studies.
Inline Supplementary Fig. S1 shows the results of simulations that sug-
gest when the effects of BOLD adaptation (Soltysik et al., 2004) are in-
cluded, the optimal block duration would be between 1 and 5 s.

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.10.060.

After sound system calibration, all stimulus sound intensities were
adjusted according to a standard equal-loudness curve created for insert
earphones (ISO 226) to approximate equal perceived loudness across all
frequencies. Actual sound intensities (65–83 dB SPL) matched the per-
ceived loudness of a 1000 Hz tone (reference frequency) at 70 dB SPL.
B, C) 2 cycles (total 15 cycles per scan) of the ascending and descending tone progressions.

http://www.psychtoolbox.org
http://dx.doi.org/10.1016/j.neuroimage.2014.10.060
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Acoustic noise from the scanner was attenuated by expanding-foam
eartips as well as protective ear muffs placed over the ear following
earphone insertion. Subjects reported hearing all tones to be clearly
and comfortably audible, and of roughly equal loudness across all
frequencies.

Ascending/descending tone progressions
Ascending/descending progressions were identical to those of Da

Costa et al. (2011). The frequencies used were: 88, 125, 177, 250, 354,
500, 707, 1000, 1414, 2000, 2828, 4000, 5657, and 8000 Hz (half-octave
steps). Each frequency blockwas presented for 2 s before progressing to
the next higher (ascending progression, Fig. 1B) or lower (descending
progression, Fig. 1C) frequency until all 14 frequencies had been present-
ed. This 28 s frequency progression was followed by a 4 s silent pause
and this 32 s cycle was repeated 15 times per scan, for total scan dura-
tion of 8 min. For each subject we carried out one ascending/descending
stimulation session, during which subjects listened to 4 ascending pro-
gressions and 2 descending progressions.

Random tone sequences
For the random tone sequences (Fig. 1D), stimuli were arranged

into 240 equally spaced frequency blocks (2 s) ranging from 88 to
8000 Hz. Each block was presented only once per scan and the frequen-
cy block order was randomly shuffled for each scan. Following every 60
frequency blocks was a 12 s silent pause which allowed the pRF algo-
rithm to estimate the baseline fMRI response in response to scanner
noise alone (Zuiderbaan et al., 2012) to improve the accuracy of
bandwidth measurements. The entire scan therefore lasted a total of
8 min 48 s. Each subject participated in a single random tone sequence
scanning session, consisting of 6 scans, each containing a different ran-
dom sequence of the same tones. Our goal in presenting random tone
sequences was to reduce spatial and temporal correlations between
neighboring frequencies in the stimulus sequence, thereby reducing
the influence of spatiotemporal nonlinearities on pRF estimates.

Magnetic resonance imaging

Functional magnetic resonance images were acquired with a 3T
Phillips Achieva scanner (Philips, Eindhoven, The Netherlands) at the
University of Washington Diagnostic Imaging Sciences Center (DISC)
using an 8-channel head coil. Foam padding minimized head motion.

Acquisition sequences
A common issue with tonotopic mapping protocols is the reliability

of frequency measurements estimated in the presence of loud acoustic
scanner noise that can interfere with or mask the hemodynamic
responses to presented stimuli (Langers et al., 2005).While sparse scan-
ning techniques limit the effects of acoustic noise, they require amarked
increase in the amount of scanning time needed as compared to contin-
uous acquisition (Hall et al., 1999; Humphries et al., 2010; though see
Petkov et al., 2006).

In order to examine the reliability of the pRF estimates calculated
in the presence of acoustic scanner noise, data were gathered using
two acquisition sequences: a standard EPI sequence and an attenuated
EPI sequence designed with Philips SofTone software (SofTone factor
of 4.0) to generate quieter scanner noise. Acoustic scanner noise
was recorded from inside the coil for both acquisition types (for both
27 and 35 slices, since the slice number can also influence acoustic
noise) using an MR-compatible fiber-optic microphone (FOMRI-II,
Optoacoustics) placedwithin the scanner bore and saved inWAV format
usingMatlab. The overall A-weighted sound pressure levels (dBA) were
also collected for both acquisition types using a B&K sound level meter
model 2250.

A frequency spectrum of the recorded scanner noise was obtained
for each acquisition type by performing a discrete Fast Fourier Trans-
form and calculating the resulting frequency component magnitudes.
The standard EPI sequence generated an overall louder (122 dBA) audi-
tory scanner noise peaking at approximately 1000 Hz; while the
attenuated EPI sequence generated quieter (105 dBA) scanner noise
peaking at approximately 350 Hz, see Inline Supplementary Fig. S2.

Inline Supplementary Fig. S2 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.10.060.

Each session contained six scans. Three functional scans were col-
lected using the standard EPI sequence (35 slices, TR/TE = 2000/
25 ms, flip angle = 80°, EPI-factor = 51, no slice gap). After discarding
the first 5 timeframes of each functional scan, ascending/descending
session scans consisted of 240 acquisitions at an effective voxel size
of 2.0 × 2.0 × 3.00 mm3 (FOV = 264 × 264 × 105 mm3, matrix
size = 132 × 132 × 35). Random tone sequence scans consisted of 260
volumes at an effective voxel size of 2.33 × 2.33 × 2.33 mm3 (FOV =
224 × 224 × 81.55 mm3, matrix size = 113 × 113 × 35).

The other three scans were collected utilizing the Philips SofTone
parameter, which reduces acoustic noise by controlling the shape of
the gradient waveform independent of the amplitude. This change in
the gradient waveform required either the number of slices to be re-
duced or the TR to be lengthened. We chose to maintain the 2 s TR
and reduce the number of slices while increasing the voxel size tomain-
tain roughly similar volume coverage (27 slices, TR/TE = 2000/25 ms,
flip angle = 76°, EPI-factor = 39, no slice gap). Both ascending/
descending session and random tone sequence scans consisted of 260
volumes at an effective voxel size of 2.75 × 2.75 × 3.00 mm3 (FOV =
220 × 220 × 81 mm3, matrix size = 80 × 80 × 27).

Voxel volume differed across ascending/descending standard
EPI sequences (12 mm3) and random tone standard EPI sequences
(12.65 mm3). This change was made to provide a compromise voxel
size which had an intermediate in-plane resolution (2.33 × 2.33 mm2)
in between that of the standard (2.0 × 2.0 mm2) and attenuated (2.75
× 2.75 mm2) EPI sequences, and was also chosen to create isotropic
voxels. However, by replicating all analyses described below using
only attenuated EPI acquisition sequences, we confirmed that differ-
ences in voxel size were not responsible for any observed differences
between ascending/descending and random tone sequences.

For the attenuated sequencewe used a significantly larger voxel vol-
ume (22.69 mm3), which likely increased signal to noise (by a factor of
~1.6) at the cost of lower spatial resolution (Triantafyllou et al., 2005).
However this decrease in non-physiological signal to noise seemed
not to have a dramatic effect on pRF estimate reliability, see Inline Sup-
plementary Table S2.

MR pre-processing
For analysis, data were resampled into 1 × 1 × 1 mm3 volumetric

space. Standard pre-processing of fMRI data was carried out using
BrainVoyager QX software (version 2.3.1 Brain Innovation B. V.,
Maastricht, The Netherlands), including 3D motion correction and
high-pass filtering (cut-off: 2 cycles per scan). Functional data were
aligned to the T1-weighted anatomical image acquired in the same
session (MPRAGE, 1 × 1 × 1 mm3). The anatomical images acquired in
the two sessions were aligned to each other and to each subject's 3D
Talairach-normalized anatomical dataset. The BrainVoyager QX
automatic segmentation routine was used to reconstruct the cortical
surface at the white–gray matter border (with hand-editing to mini-
mize segmentation errors) and the resulting smooth 3D surface was
partially inflated.

Voxel selection
For each subject, large regions of interest (ROIs) were selected from

the partially inflated left and right hemisphere cortical surface meshes
using drawing tools within BrainVoyager QX. ROI borders were drawn
generously to include all voxels within a contiguous region of auditory
cortex between the lateral border on the crownof the superior temporal
gyrus, themedial borderwithin the fundus of the lateral sulcus, the pos-
terior border of the supramarginal gyrus, and the anterior border of the

http://dx.doi.org/10.1016/j.neuroimage.2014.10.060
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most anterior portion of the temporal lobe. Surface ROIs for each subject
are shownhere in Inline Supplementary Fig. S3. These surface ROIswere
then mapped back into the brain volume and expanded to include
voxels from −1 to 3 mm around the gray–white matter boundary to
assure that inaccuracies in the definition of the gray–white matter
boundary did not affect the selection of voxels for data analysis. Rather
than projecting this surface ROI into the functional volumes, we chose
to index the voxels in anatomical space (at the cost of increased compu-
tation time). Preprocessed time-course data for each 3D anatomical
voxel within the volume ROI were then exported to Matlab for further
analysis.

Inline Supplementary Fig. S3 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.10.060.
PAC ROI
A functionally defined PAC ROI corresponding to hA1 and hRdefined

on the basis of the tonotopic gradients and informed by the underlying
anatomy (illustrated by the solid black lines in Figs. 2, 3, 5, and 7), was
generated to compare bandwidth data across regions. A contiguous
patch of cortical surface containing two primary tonotopic gradients
centered on low frequencies on HG was manually selected for each
hemisphere of individual subjects (Da Costa et al., 2011, 2013). Anterior
and posterior borders drawn along the outer high-frequency represen-
tationswere primarily based on the tonotopicmaps generated using the
random tone sequences and pRF analysis. Quantitative comparisons of
the size and similarity of PAC ROI identifications when using either
the phase-encoding analysis or the pRF analysis are shown in Inline
Fig. 2. Tonotopicmaps for the left hemisphere of Subject 3 (first row) and Subject 4 (second row
phase-encoding (left panels), descending tone progressions (2 scans) analyzed using phase-enco
ed towards the ascending tone progressions) analyzed using the pRF method (right panels). Fre
lowest frequency value (88 Hz) through blue corresponding to the highest frequency (8000 Hz
blue. The borders of the PAC ROIs are designated by the solid black lines. The crowns of gyri are i
old of 0.10 was used, unless otherwise stated.
Supplementary Fig. S4. ROI similarity was assessed using the Jaccard
similarity coefficient (Jaccard, 1912) according to the equation:

J A;Bð Þ ¼ A∩Bj j
A∪Bj j ð1Þ

where the size of the intersection between voxels included in ROI A and
ROI B is divided by the size of the union of voxels included in ROI A and
ROI B.

Inline Supplementary Fig. S4 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.10.060.

Lateral and medial borders were conservatively drawn to include
only the medial two-thirds of Heschl's gyrus (Rademacher et al.,
2001). Auditory responsive regions outside of this ROI are referred to
as non-PAC.

Analyses

Phase-encoding analyses
Phase-encoding analyses on the ascending/descending tone progres-

sionswere based onDaCosta et al. (2011). Using Brain Voyager, a hemo-
dynamic time course was predicted in response to the first 2 s sound
block of each stimulus cycle, based on that individuals estimated hemo-
dynamic response function (HDR, see below for how this was estimat-
ed). It was assumed that there was no response to the remainder of
the stimulus cycle. This cyclical model function was shifted successively
in time in 2 s increments (corresponding to the TR) to generate 14 time-
lagged functions. Linear correlation was applied (between all 14 time-
). Mapswere calculated using either: ascending tone progressions (4 scans) analyzed using
ding (middle panels), or ascending/descending tone progressions (6 scans, thereforeweight-
quency center (f0) values are color-coded along a gradient, with red corresponding to the
). Low-pass (LP) voxels are colored dark red, while high-pass (HP) voxels are colored dark
ndicated by the dashed black lines. Across allfigures/analyses the same correlation thresh-
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Fig. 3. Tonotopic maps calculated using random tone progressions analyzed using the pRF
method. Frequency center (f0) values are color-coded along a gradient, with red corre-
sponding to the lowest frequency value (88Hz) throughblue corresponding to thehighest
frequency (8000 Hz). Low-pass (LP) voxels are colored dark red, while high-pass (HP)
voxels are colored dark blue. The borders of the PAC ROIs are designated by the solid
black lines. The crowns of gyri are indicated by the dashed black lines. Across all figures/
analyses the same correlation threshold of 0.10 was used, unless otherwise stated.
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lagged functions and the measured fMRI time course) on a per-voxel
basis. Each voxel was then color coded according to the lag function
resulting in the highest correlation value with its time course
(“winner-take-all”). Lag values were then separately averaged for as-
cending progression scans (4 scans) and the descending progression
scans (2 scans) for each voxel within the ROI and were exported to
MATLAB (Mathworks, version 7.11). As in the pRF analysis, only voxels
with a correlation threshold of 0.10were considered “tonotopic” and in-
cluded for further analysis.

pRF analyses
Our pRF model computes the population receptive field for individ-

ual voxels based on a linear temporal model of the fMRI BOLD response
time course. All population receptive field (pRF) analyses were carried
out using custom software written in MATLAB.

The pRF analysis beginswith a definition of the stimulus time course
s(f,t), provided to the model as a matrix of binary values marking the
presence or absence of auditory stimulation over frequency and time.
To generate a hemodynamically blurred stimulus time course r(f,t),
the stimulus time course was convolved with the estimated hemody-
namic response function modeled as a gamma function h(t):

h tð Þ ¼
t−δ
τ

� � n−1ð Þe−
t−δ
τð Þ

τ n−1ð Þ! ð2Þ

with the initial parameters n = 3, tau (τ) = 1.5, and delay (δ) = 1.8,
based on Boynton et al. (1996). The hemodynamic response function
(HDR) parameters tau and delaywere subsequently optimized for indi-
vidual subjects (as described below).

r f ; tð Þ ¼ s f ; tð Þ � h tð Þ ð3Þ

We estimated the population response using a one-dimensional
Gaussian function g(f),defined over log frequency. The frequency center
( f0) corresponds to the best frequency, while the standard deviation (σ)
was used to estimate bandwidth by transforming the values into oc-
taves and then calculating the full width half maximum (FWHM) of
theGaussian function. To create the predicted time series, we calculated
the linear sum of the overlap between the input stimulus after hemody-
namic blurringwith the Gaussian receptive field for each basis function,
g(f):

p tð Þ ¼
Z

r f ; tð Þg fð Þ df ð4Þ

Model fits for each voxel were obtained by finding values that max-
imized the correlation between the predicted and actual fMRI time-
courses. The initial parameters for frequency centers (f0) spanned the
range of the stimulus from 88 to 8000 Hz, and initial standard deviation
(σ) values ranged from0.5 to 4. The best fitting parameters from this set
were then used as initial parameters for a nonlinear search algorithm
(Matlab's fminsearch function) which uses unconstrained nonlinear
minimization to find the pRF model parameters f0 and σ that maximize
the correlation between the pRF predicted time-series and the BOLD
data.

We then estimated each individual subject's auditory HDR by hold-
ing f0 and σ fixed and finding the best fitting parameters for τ and δ.
To limit computational time this estimatewas only carried out on a sub-
set of voxels (1 out of every 6) within the anatomically defined ROI,
after checking that restricting our estimation to a subset of voxels did
not have an appreciable effect on the estimated HDR. Median (across
all voxels with a fitted correlation value above 0.25) τ and δ parameters
were used to provide the estimate of that individual's HDR. We then it-
eratively fit the pRF parameters (f0 and σ) for all voxels within the ROI,
using the individually fitted HDR parameters. Individual HDR parame-
ters are reported in Inline Supplementary Table S1.

Inline Supplementary Table S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.10.060.

The procedure described above had someminor modifications from
the original implementation of Dumoulin and Wandell (2008). First,
similar to Zuiderbaan et al. (2012) we jointly fit individual HDR and
pRF parameters using a single dataset (rather than estimating the HDR

http://dx.doi.org/10.1016/j.neuroimage.2014.10.060
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using a separate dataset). Second, we convolved the hemodynamic re-
sponse function before calculating overlap with the pRF rather than af-
terwards. This is mathematically identical but significantly reduces
computation time, since once the HDR parameters have been estimated
the convolution of the stimulus image with the HDR only has to be
carried out once. Finally, we maximized the correlation between the
predicted, p(t), and the obtained time courses rather than minimizing
root mean squared error. The amplitude of each Gaussian pRF was esti-
mated after fitting, based on the linear regression between the predict-
ed and obtained time courses.

After fitting, only voxels that met the following criteria were
retained for further analyses: (1) the correlation between the observed
fMRI response time-course and that predicted by the best-fitting pRF
(our goodness-of-fit index) was higher than 0.10 and (2) the standard
deviation (σ) of the best fitting pRF was between 0.01 and 2 in log
frequency space, or .0332 and 6.64 in octaves (chosen based on the res-
olution and the range of the frequencies presented). These limits were
chosen because at bandwidths below 0.0332 the voxel would respond
to a single presented frequency, and with bandwidths above 6.64 the
voxel would respond similarly to all frequencies presented.

Unlike the “winner-take-all” phase-encoded analysis, the pRF
method is not limited to fitting frequency centers within the range of
frequencies (88 and 8000 Hz) presented in the stimulus. However
frequency center estimates outside this range are likely to be somewhat
inaccurate. We included well-fit voxels with frequency center values
beyond the imposed frequency cutoffs in Figs. 2 and 3 and the histo-
grams in Fig. 4, but simply categorized them as high-pass (HP) or low-
pass (LP).
Fig. 4. Probability histograms of frequency center (f0) values for voxels in left and right hemisph
progressions analyzed using phase-encoding (first panel), descending progressions analyzed usi
the pRF method (third panel), or random tone progressions analyzed using the pRF method (fo
colors correspond to the individual subjects.
Comparison of different acquisition sequences
The consistency across the two acquisition sequenceswas calculated

as a Pearson correlation coefficient (rxy) across the frequency center
and bandwidth estimates from three random tone sequence scans of
both acquisition types. We additionally computed mean (across sub-
jects) “non-attenuated” correlation coefficients (rx′y′) for both frequen-
cy center and bandwidth values according to the equation:

rx0y0¼ rxyffiffiffiffiffiffiffiffi
rxxryy

p ð5Þ

where rxx and ryy are the correlation coefficients across single scans of
the same acquisition type. Non-attenuated correlation provides a mea-
surement of the correlation across two different scan types having fac-
tored out measurement error as estimated using scans of the same
acquisition type (Muchinsky, 1996; Spearman, 1904).

Effect of frequency center distribution on bandwidth estimates
Since pRF bandwidth estimates are dependent on the distribution of

frequency centers of the underlying receptive fields, we estimated the
effects of systematic frequency gradients and hemodynamic spatial
blurring on bandwidth values estimated from the random tone sequence
scans. For each subject, we estimated the slope of the change in fre-
quency center within each voxel, based on the frequency centers of
neighboring voxels. For every voxel for which the pRF model was suc-
cessfully fit, we found the neighboring voxels within a 3 mm radius
(results were not highly dependent on the choice of radius). We
then assumed that the frequency sweep within the voxel of interest
eres, stacked across subjects for the tonotopicmaps of Figs. 2 and 3 calculated for ascending
ng phase-encoding (second panel), ascending/descending tone progressions analyzed using
urth panel). The number of voxels is normalized so each subject contributes equally. The

image of Fig.�4


Table 1
Correlation coefficients between frequency center (f0) values estimated using different
stimulus sequences (A: ascending progressions, D: descending progressions, AD: ascending/
descending progressions; R: random tone sequences) and analysis methods (PE: phase-
encoding; pRF: pRF analysis). In each case correlation coefficients were calculated after
having calculated frequency centers using scans collapsed across acquisition type. Separat-
ing data acquired using standard vs. attenuated acquisition EPI sequences did not change
the pattern of results (data not shown).

Subject

Sl S2 S3 S4

PEA vs pRFAD 0.713 0.857 0.682 0.861
PED vs pRFAD 0.805 0.861 0.758 0.830
pRFAD vs pRFR 0.534 0.892 0.765 0.785
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consisted of a linear gradient between its best fitting frequency and
those of its neighbors to predict the increase in bandwidth size due
these factors.

Estimation accuracy
A bootstrapping procedure (to remove variability due to selection of

the subset of scans to be included in the estimate) was carried out
whereby the standard error of the frequency center or bandwidth was
repeatedly estimated for 2–6 of the random tone sequence scans, irre-
spective of acquisition type. Estimation variability was calculated in
terms of both standard error of the mean (SEM) and the relative stan-
dard error (RSE) of the mean frequency center or mean bandwidth es-
timate according to the equation:

RSE ¼ 100 � STD
x

ffiffiffi
n

p� � ð6Þ

where STD is the standard deviation of the frequency center or band-
width estimate (corrected for biases due to being a small sample using
Cochran's theorem), n is the number of scans included in the estimate
and x is either the mean frequency center or mean bandwidth estimate
(Cochran, 1934).

Double Gaussian model
Data were also fit with a double Gaussian center surround model

(Zuiderbaan et al., 2012). The surround bandwidth was constrained
(using a cost function) to be larger than the center bandwidth and to
be less than 6.64 octaves. The amplitude of the surround was not
constrained to be negative. The difference in fit between the single
and double Gaussian model was assessed using a nested model F-test.
The original single Gaussian model had 2 free parameters (frequency
center and bandwidth, with the amplitude fixed at 1) while the double
Gaussian model had 2 additional parameters describing the width and
the amplitude of the “surround”.

Results

Tonotopic maps as a function of both stimulus and analysis methods

Fig. 2 shows tonotopicmaps using the ascending and descending tone
progressions on the left hemisphere cortical surfacemesh for two typical
subjects. Phase-encoded maps were generated using either an average
of four scans of the ascending tone progressions (left panel) or an average
of two scans of the descending tone progressions (middle panel). Maps
using the pRF method for ascending and descending tone progressions
(right panel), were generated from all six (equally weighted) functional
scans. Separate maps for the right hemisphere of these subjects are
shown in Inline Supplementary Fig. S5.

Inline Supplementary Fig. S5 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.10.060.

Tonotopic maps generated using the random tone sequences and the
pRFmethod from an average of six (equally weighted) functional scans
are shown for both hemispheres of all four subjects in Fig. 3. All maps
are based on scans from both the standard and attenuated EPI acquisi-
tion protocols since, as described below, frequency center estimates
were highly correlated across the two types of acquisition protocol.
The frequency center values of individual voxels are color-coded along
a gradient, with red corresponding to the lowest frequency value
(88 Hz) through blue corresponding to the highest frequency tested
(8000 Hz), as in Fig. 1. Low-pass (LP) voxels are colored dark red,
while high-pass (HP) voxels are colored dark blue. Across all figures/
analyses the same correlation threshold of 0.10 was used.

Across both stimulus types and analysis methods, clear mirror-
symmetric tonotopic gradients, corresponding to the PAC subdivisions
hA1 and hR, are visible. These mirror-symmetric gradients reversed at
a low frequency border, centered either on the crown of HG (Subject 1
and 3 in Fig. 3) or within the sulcus intermedius (SI) between the dupli-
cations of HG (Subject 2 and 4 in Fig. 3). This low frequency region was
flanked both caudally (hA1) and rostrally (hR) by high frequency re-
gions creating a “high–low–low–high” gradient reversal extending
across HG. In certain cases, areas hA1 and hR appear to be oriented in
a V-shape (Subject 2 and 4 in Fig. 3) with the high frequency endpoints
situatedmoremedially than the low frequency center. Themaps gener-
ated for ascending and descending progressions and analyzed with either
phase-encoding or pRF analysis are very similar, as can be seen in Fig. 2
and Table 1.While the general position of the gradient reversalwas very
consistent across ascending/descending and the random tone sequence
stimuli, there are noticeable differences in the distribution of frequen-
cies between the maps even when both are analyzed using the pRF
method (Figs. 2 and 3 and Table 1).

Fig. 4 shows stacked (across subjects) probability histograms of
frequency center (f0) values estimated for both stimulus types and anal-
ysis methods, collapsed across acquisition protocols. The histograms for
the ascending and descending tone progression stimuli show a strong
double peak with very strong representations of higher and lower
frequencies—this double peak was visible when these data were ana-
lyzed using either “winner-take-all” phase encoding or the pRF analysis.
This double peak was also robust to the choice of threshold—remaining
equally salient across thresholds ranging between 0.1 (Fig. 4) through
0.35. This double peak was even more noticeable in single scan data.
Because the ”winner-take-all”model did not allow for lag values greater
than 14 or less than 1, noise within individual scans is not zero mean.
That pushes f0 away from the boundary values (towards the center)
when averaging across multiple scans. In contrast, the histogram for
the random tone sequence stimuli has a different shape, with a heavier
representation of mid-range frequencies. In addition, as might be
expected from the approximate range of human hearing (20 Hz–
20 kHz) and primate physiology data (Cheung et al., 2001) a reasonable
proportion of voxels were characterized as high pass (HP), while few
voxels were characterized as low pass (LP).

pRF measurements of bandwidth

Bandwidth measurements from random tone sequences are shown
in Fig. 5. Bandwidth estimates are not reported for the ascending/
descending sequences for reasons discussed below. Bandwidth maps
were generated from an average of all six random tone sequence func-
tional scans using both the standard and attenuated EPI acquisition pro-
tocols since, as described below, the two types of acquisition protocol
produced similar bandwidth estimates. For bandwidths between 1
and 8 octaves, color coding of the bandwidth map is linear. Narrow
bandwidths (b1 octave)were color coded as red, and broad bandwidths
(N8 octaves) were coded as blue.

We did not find a significant correlation between bandwidth and
frequency center values (r= 0.046). Nor did we find a clear bandwidth
gradient running orthogonal to the tonotopic gradient for any individu-
al subjects (using a gradient analysis similar to that used by Petkov et al.
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Fig. 6. Bandwidths are narrower within the PAC than in outlying non-PAC areas. As de-
scribed in the main text, a 2-way ANOVA found a significant main effect of cortical area
(PAC vs. non PAC) on mean bandwidth value.

Fig. 5.Bandwidthmaps for all four subjects. Bandwidth values are color-coded along a gra-
dient with red corresponding to the narrow bandwidth values (b1 octave) through blue
corresponding to the broader bandwidth values (N8 octaves).
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(2006), data not shown). However, as shown in Fig. 6, we did find that
bandwidth values were smaller in the PAC than in non-PAC regions. A
2-way ANOVA testing Area (PAC vs. Non-PAC) × Hemisphere (Left
vs. Right) found a significant main effect of Area [F (1, 12) = 16.36
p = 0.002] on mean bandwidth value. There were no significant main
effect of Hemisphere [F (1, 12) = 0.54, p b 0.476] and no significant
interaction of Area vs Hemisphere [F (1, 12) = 0.07, p b 0.8017].
While bandwidths were overall narrower in PAC than in surrounding
non-PAC areas, our findings do not support the use of bandwidths as
the sole criteria for defining PAC borders since therewas significant het-
erogeneity of bandwidths within our tonotopically defined PAC ROI.

We estimated the effects of systematic frequency gradients and
hemodynamic spatial blurring on bandwidth size. These estimates pre-
dicted that shifts in frequency preference as a function of distance across
the cortical surface are likely to have increased our bandwidth estimates
by a median value of ~10%.

Finally, we found a positive correlation between activation levels
(GLM t-value, Inline Supplementary Figs. S6 and S7) and bandwidth
estimates (random tone sequences only), as shown in Inline Supplemen-
tary Fig. S8. Broader tuning results in a higher activation level across the
duration of the sound condition, leading to stronger responses in the
sound vs. silence contrast.

Inline Supplementary Figs. S6, S7 and S8 can be found online at
http://dx.doi.org/10.1016/j.neuroimage.2014.10.060.
Comparison of different acquisition sequences

Tonotopic maps and bandwidth maps looked very similar across
standard and attenuated EPI sequences. Fig. 7 shows an example from
Subject 3, generated from the random tone sequences and fitted using
the pRF analysis technique. The scatter plots of Fig. 8 directly compare
frequency center and bandwidth values between the two acquisition
sequences across all voxels that met our selection criteria for all four
subjects. Neither the maps, nor the scatter plots show any obvious
mis-estimation of frequency values near the peak of the scanner noise.
Individual subject correlation coefficients between three scans of the at-
tenuated EPI sequence and three scans of the standard EPI sequences
are shown in Table 2. Themean (across subjects) non-attenuated corre-
lation coefficient (which represents the correlation after parsing out
measurement error) between standard and attenuated sequences was
0.813 (varying between 0.742 and 0.965 across subjects) for frequency
centers and0.726 (varying between 0.566 and0.813 across subjects) for
bandwidth estimates. Mean correlation coefficients between single
scans of the same or different type of EPI sequence are shown in Inline
Supplementary Table S2.

Inline Supplementary Table S2 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.10.060.

While frequency center and bandwidth estimates were similar
across the two acquisition sequences, further testing, including present-
ing stimuli using a sparse sequence, will be necessary to determine the
extent to which acoustic scanner noise affects pRF estimation.

http://dx.doi.org/10.1016/j.neuroimage.2014.10.060
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http://dx.doi.org/10.1016/j.neuroimage.2014.10.060
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Fig. 7. (A) Tonotopic maps for example Subject 3 calculated using random tone progres-
sions averaged across separate data sets of three scans using a standard EPI sequence
and an attenuated EPI sequence, analyzed using the pRF method. Color coding is the
same as Fig. 3. (B) Bandwidthmaps for the same data and analysis. Color coding as in Fig. 5.

Table 2
Correlation coefficients for frequency center (f0) values and bandwidth estimates from
random tone sequence data collected using standard vs. attenuated acquisition protocols
for all subjects. In each case correlation coefficientswere calculated after having calculated
pRFs using all three scans of a given acquisition type.

Subject Frequency (fo) Bandwidth

S1 0.716 0.590
S2 0.745 0.401
S3 0.797 0.484
S4 0.711 0.560
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Estimation accuracy

Fig. 9 shows pRF estimation variability as a function of the number
of scans included in the estimate, for both frequency center (f0) and
bandwidth. PRF estimation variability is presented in terms of standard
error (SEM) of the mean frequency center (f0) or mean bandwidth
estimate (leftward y-axis) and the percentage standard error (% STE)
Fig. 8. Scatter plots showing the correlation of frequency center (f0) (left panel) or bandwidth
single voxel whose correlation (between the predicted and obtained time-course, calculated ac
threshold of 0.1 for both acquisition sequences. The colors correspond to the individual subjec
of the mean frequency center (f0) or mean bandwidth estimate (right-
ward y-axis).

Frequency estimates were remarkably reliable—with only 2 scans
(less than 9 min each) the estimated standard error was less than 5%
of the estimated frequency center (f0), suggesting that a single scan is
adequate to obtain a basic tonotopic map. Unsurprisingly, we find that
bandwidth estimates were less accurate than frequency estimates: for
our dataset a full session was required to obtain bandwidth estimates
with standard error variability of less than 25%. Although we corrected
for overlap in the sampled distributions using the Cochran correction,
given the small number of scans on which these simulations were car-
ried out, these estimates should be considered a rough guideline and
may underestimate variance.
Double Gaussian model

The difference between the single and double Gaussian model
was assessed using a nested model F test that examined the percentage
of voxels that were fit significantly better using a double Gaussian
model. In 2 of the four subjects less than 5% of voxels were better
fit by the double Gaussian model—suggesting that the model did not
provide any additional explanatory power. For Subjects 1 and 3, 14%
and 17% of voxels respectivelywere significantly betterfit with the dou-
ble Gaussian model. For voxels that were significantly better fit by the
double Gaussian model, Subject 1 had a median improvement of 33%
(goodness-of-fit value of 0.24 for the single Gaussian model and 0.32
for the double Gaussian model). Subject 3 had a median improvement
of 36% (goodness-of-fit value of 0.22 for the single Gaussian model
and 0.30 for the double Gaussian model). For these better fit voxels,
the median amplitude of the inhibitory surround compared to the
center amplitude (fixed at 1) was −0.51 for Subject 1 and −0.50 for
Subject 3 (note that the surround was not constrained to be negative).
values (right panel) between the two acquisition sequences. Each data point represents a
ross the three scans of standard the attenuated acquisition protocols) was larger than our
ts.
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Fig. 9. Estimated standard error of frequency (f0) (left panel) and bandwidth (right panel) estimates as a function of the number of scans. The x-axis represents the number of scans in-
cluded in the estimate, the leftward y-axis represents the standard error of the mean, and the rightward y-axis represents the relative standard error, as described in the main text. The
colored markers correspond to the individual subjects. The mean (across subjects) is shown in black and error bars represent standard error across subjects.
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Discussion

We show here that a modified version of Dumoulin and Wandell's
(2008) pRF technique can be used to generate tonotopic and bandwidth
maps of human auditory cortex. When using traditional ascending/
descending tone progressions this method results in tonotopic maps
that are very similar to those obtained using traditional phase-
encoding analysis methods. However, unlike phase-encoding methods,
the pRF method does not require an orderly sequence; instead, func-
tional maps of auditory cortex may be derived from responses to a
wide array of stimuli, including random or pseudo-random sequences.
While maps generated using random tone progressions identified
roughly similar tonotopic areas as those obtained using ascending/
descending tone progressions, the exact boundaries of these areas, and
the representation of frequencies within these areas were somewhat
different.

One advantage of the ascending/descending tone progression stimuli
is that the maps generated from these stimuli are very robust. This
makes progression stimuli well suited for determining whether an
area is tonotopic and/or providing rough estimates of area boundaries
based on frequency reversals when scan time is limited. However, as
previously described, ascending/descending tone progressions are suscep-
tible to habituation and/or expectation effects (Kastner et al., 1999) as
well as other types of spatiotemporal nonlinearities (Pihlaja et al.,
2008; Zenger-Landolt and Heeger, 2003) due to the “traveling wave”
of BOLD activity on the cortical surface. This “traveling wave” improves
signal to noise: goodness-of-fit index values were higher for ascending/
descending tone progressions than for random tone sequences. However
these effects also result in an over-emphasis of frequencies near the be-
ginning or the end of the sweep (Binda et al., 2013; Dumoulin and
Wandell, 2008; Duncan and Boynton, 2003; Haak et al., 2012; Langers
et al., 2014a,b). We therefore do not report bandwidth estimates for
the ascending/descending sequences as these effects can result in anover-
estimation of receptive field size, probably due to spatiotemporal blur-
ring. Additionally the ascending/descending sequences had a half-octave
separation between frequency blocks. This under-sampling made it im-
possible to accurately estimate narrower bandwidths (estimated band-
widths became infinitely small). In contrast, random tone sequences do
not suffer from these biases and likely provide a more accurate method
for measuring the finer-scale tonotopic and bandwidth organization.

The organization of tonotopic gradients and tuning bandwidth

Like previous studies, we identified two tonotopic gradients,
thought to correspond to hA1 and hR (Da Costa et al., 2011, 2013;
Formisano et al., 2003; Langers and van Dijk, 2012; Moerel et al.,
2012). These “high–low–low–high” mirror-symmetric gradients fol-
lowed the morphology of the cortex, with the more posterior gradient
corresponding to hA1 and the more anterior gradient corresponding
to hR (Da Costa et al., 2011, 2013; Humphries et al., 2010; Langers and
van Dijk, 2012).

Ours is the first fMRI study to examine bandwidth using the tradi-
tional psychoacoustic approach of randomly presented pure tones. A va-
riety of plausible organizations for bandwidth have been suggested in
the literature, for example: (1) bandwidth varies systematically with
best frequency (Cheung et al., 2001; Recanzone et al., 1999), (2) band-
width gradients run orthogonal to tonotopic gradient (Kayser et al.,
2007a; Petkov et al., 2006), and (3) tuning widths are narrower within
the PAC than surrounding non-PAC regions (Moerel et al., 2012; Petkov
et al., 2006; Seifritz et al., 2006).

While we did not find a significant correlation between band-
width and frequency center values nor a clear bandwidth gradient, we
did find that bandwidth values were significantly smaller within PAC
than in surrounding non-PAC regions. This is consistent with evidence
from animal electrophysiology (Rauschecker et al., 1995; Tian and
Rauschecker, 1994) and neuroimaging (Kayser et al., 2007a; Petkov
et al., 2006). Additionally, a recent human study by Moerel et al.
(2012) found some indication that bandwidths were narrower along
HG. Here we find that the area of narrow bandwidths extends beyond
the gyrus itself. However, there was some heterogeneity of bandwidths
within our tonotopically defined PAC, with regions of broad bandwidth
consistently containedwithin the PACborders. Therefore, unlikeMoerel
et al. (2012) we do not limit the PAC borders to the areas of narrowest
tuning bandwidth.

One caveat is that bandwidth estimates are more variable than
frequency estimates, even when based on a full session of data. We
believe that this is not a limitation of our particular methods, since
the reliability of our frequency estimates compares favorably with
previous studies using similar techniques (Da Costa et al., 2011;
Humphries et al., 2010; Moerel et al., 2012; Petkov et al., 2006;
Striem-Amit et al., 2011). Thus, it is likely that additional methodologi-
cal advances might reveal further topographical structure in bandwidth
organization.

What do auditory population receptive fields represent?

It is not straightforward to extrapolate single neuron tuning-width
data from responses within human fMRI voxels, since voxel-level
BOLD signals include the responses of hundreds of thousands of neu-
rons collectively across cortical layers and neuronal types (104–105

image of Fig.�9


438 J.M. Thomas et al. / NeuroImage 105 (2015) 428–439
neurons per cubic mm in cortex). As described in Dumoulin and
Wandell (2008), pRF estimates depend on the average receptive field
of the population of neurons that drive the BOLD response. This popula-
tionmay be a biased sample of the underlying population. For example,
the neurons driving the response may depend on the properties of the
stimulus being used—it is possible that different pRF estimates will be
obtained using band pass noise or naturalistic stimuli (Moerel et al.,
2012) than with our pure tone frequency stimulus.

Dumoulin andWandell (2008) found that pRF estimates of visual re-
ceptive field size were systematically larger than single unit recording
estimates, but were relatively closely matched to local field potential
(LFP) estimates of receptive field size. Similarly, our bandwidth esti-
mates were generally larger than those from single-unit recordings,
which have been shown to range between one tenth of an octave to
wider than five octaves in primates (Cheung et al., 2001; Recanzone
et al., 1999), but were consistent with those measured using auditory
field potentials (Kayser et al., 2007b).
The use of forward models to examine auditory processing

Similar to other “forward models”, the pRF method models the re-
sponse properties of individual voxels, an approach that is becoming
increasingly popular, see Naselaris et al. (2011) for a review. One advan-
tage of such forward models is that they allow for flexibility in the
choice of stimulus sequence. As previously mentioned, Moerel et al.
(2012) used a forward model to examine tonotopic organization using
naturalistic stimuli and found that the regions that showed preferential
responses to human voice and speechwere tuned to the lower range of
the frequency spectrum. This tuning was apparent using both natural
sound and simple tone stimuli. In our case we took advantage of this
stimulus flexibility to examine tonotopic mapping using a more tradi-
tional psychoacoustic approach, using stimuli that consisted of random-
ly ordered pure tones.

A second advantage of forward models is that they allow for the
modeling of tuning properties of individual voxels. In our case, be-
cause we were specifically interested in frequency tuning and band-
width, we used a very simple model, assuming a Gaussian in log
space. In contrast, Moerel et al. (2012) used a two-stage model that
allowed them to directly estimate the spectral tuning of the voxel.
However, to quantify frequency and bandwidth tuning a Gaussian
was fit to this spectral response profile—thereby reducing their
model to a close equivalent of ours. More recently, this same group
did away with fitting a Gaussian to characterize multi-peaked spec-
tral tuning profiles, as opposed to single bandwidth value (Moerel
et al., 2013).

It is also possible to create more complex pRF models than a simple
Gaussian—an approach intermediate between the spectral tuning
model and the simple Gaussian pRF model we focus on in this paper.
The improved fits for the double Gaussian model found within a subset
of voxels in 2 of our 4 subjects suggest that some additional power may
be obtained by permitting more complex frequency response profiles
than a simple Gaussian (Zuiderbaan et al., 2012). Other interesting fu-
ture directions will include presenting multiple tones at once, thereby
allowing measurement of response saturation (Kay et al., 2013) and
the inclusion of alternative temporal response profiles including onset
and offset responses (Harms andMelcher, 2003). One of the advantages
of the pRF approach is that it provides an elegant framework within
which to assess whether more complex models can provide additional
insight into auditory BOLD responses.

The pRFmethod describedhere also provides a naturalmethodology
to examine differences in tuning as a function of various factors known
to affect auditory processing such as attention (Da Costa et al., 2013),
auditory training (Jäncke et al., 2001;Menning et al., 2000), musical ex-
perience (Pantev andHerholz, 2011), or loss of vision early in life (Elbert
et al., 2002).
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