PHYS 321, Winter 2006
Electromagnetism I - Electrostatics

Class schedule



The schedule below will be modified as we go along.
Be sure to read the listed sections from Griffiths, or other material if indicated, before class.
The collection days for homework are indicated by the links in the rightmost column.  You should follow these links rather than relying on the abbreviated lists of questions given in this table.

 

10.30 Class

Topics

Read

Problems from Griffiths

wk1 W Jan 4 Introduction.  History of electromagnetism s  r, h The first class
  F Jan 6 Vector fields revision. Div and curl. Fluid analogy Ch.1 Hone your vector calculus
wk2 M Jan 9 Integral and differential properties of vector fields       
  T Jan 10      Examples in vector calculus   1.49b, 1.56, 1.60de, 1.61
  W Jan 11 Helmholtz theorem. Coulomb's law and electric field 2.1   
  F Jan 13 Curl and div of E. Gauss's law for electrostatics 2.2 HW1  1.46,49a,53,55,60abc,62
wk3 M Jan 16                               MLK Day    
  T Jan 17      Examples finding fields from charge distributions    2.4, 2.14, 2.16, 2.44
  W Jan 18 Applications of Gauss's law. Electric potential 2.2.3    
  F Jan 20 Poisson and Laplace equations. Green's functions 2.3 HW2  2.2,6,15,18,26,43
wk4 M Jan 23 Energy in electrostatics 2.4   
  T Jan 24      Examples of finding energy and potential   2.33, 2.35, 2.48
  W Jan 25 Boundary conditions. Surface charge 2.3.5   
  F Jan 27 Fields in and around conductors. Self-capacitance 2.5 HW3  2.27,30,32,34,36
wk5 M Jan 30 Capacitors. Electrostatic pressure 2.5.4   
    T Jan 31      Examples with capacitors and related concepts   2.37, 2.50, 3.2
    W Feb 1 Laplace's equation.  Uniqueness. 3.1   
    F Feb 3 Method of images 3.2 HW4  2.38,39,40,52, 3.1
wk6 M Feb 6                      Midterm 1   11.30-12.120, Gould 220     
  T Feb 7      Examples of image charge analysis   3.8, 3.35
  W Feb 8 More image charge situations.  Spheres, corners 3.2   
  F Feb 10 General solution of Laplace: Eigenfunction analysis 3.3 HW5  3.6,7,9,10,34
wk7 M Feb 13 Cartesian coordinates; Fourier analysis 3.3.1  
  T Feb 14      Examples of eigenfunction enalysis   3.14,3.17
  W Feb 15 Spherical coordinates.  Legendre polynomials 3.3.2  
  F Feb 17 Multipole expansion; monopole, dipole, quadrupole 3.4 HW6   3.12,13,15,16,HW6.1,2
wk8 M Feb 20                             Presidents Day       
  T Feb 21      Example dipole and spherical problems   3.19,26,27
  W Feb 22 Energy and force on dipoles 4.1.3  
  F Feb 24 Induced dipoles 4.1 HW7  3.18,21,22,28,29
wk9 M Feb 27 Electric polarization, bound charge, displacement field 4.2,3  
  T Feb 28      Example calculations of P, D and E   4.10,4.15
  W Mar 1                     Midterm 2 11.30-12.120, PAB A114       
  F Mar 3 Dielectric boundaries.  Linear dielectrics; susceptibility 4.4 HW8   3.40,41,4.8,9,11,13,17
wk10 M Mar 6 Point charge near dielectric.  Capacitor with dielectric 4.4.2  
  T Mar 7      Examples with various dielectric configurations      4.18,20,27
  W Mar 8 Energy in dielectric systems.  Forces on dielectrics 4.4.3,4  
  F Mar 10 Loose ends   HW9   4.19,24,26,28,32
wk11 W Mar 13                      Final exam   2.30-4.20 pm, Gould 220    

 

Last modified: 2/27/2006 5:30 PM