| Week: Date | Topics and slides | Readings | Assignment | Due | 
 | W1: Jan 3 (T) | Course overview 
 Information theory
 | M&S 2.2 
 Probability theory
 Overview of Classification task
 Using Mallet
 Patas and Condor Submit
 | Hw1 |  | 
 | W1: Jan 5 (R) | Decision Tree | Decision Tree Tutorial |  |  | 
 | W2: Jan 10 (T) | Finish Decision Tree 
 |  | Hw2
         (slides) | Hw1 | 
 | W2: Jan 12 (R) | Naive Bayes | M 13.2-13.4 (McCallum and Nigam, 1998)
 |  |  | 
 | W3: Jan 17 (T) | Finish Naive Bayes kNN
 | kNN intro | Hw3
          (slides) | Hw2 | 
 | W3: Jan 19 (R) | Feature Selection | M 13.5 
 | Reading #1: MaxEnt 
 |  | 
| W4: Jan 24 (T) | Chi-square test Unit #1 recap
 | Chi square test tutorial | Hw4
          (slides) | Hw3 | 
 | W4: Jan 26 (R) | MaxEnt I: main concepts | (Berger et al., 1996) (Ratnaparkhi, 1997)
 |  | Reading #1 | 
| W5: Jan 31 (T) | MaxEnt II: modeling and decoding |  | Hw5 (slides) | Hw4 | 
 | W5: Feb 2 (R) | MaxEnt III: Training | (Klein and Manning, 2003) |  |  | 
| W6: Feb 7 (T) | MaxEnt IV: case study and
            beam search | (Ratnaparkhi, 1996) | Hw6
          (slides) | Hw5 | 
 | W6: Feb 9 (R) | CRF | (Sutton and McCallum, 2006) | Reading #2 |  | 
 | W7: Feb 14 (T) | Transformation-based learning | (Brill, 1995) |  | Hw6 | 
 | W7: Feb 16 (R) | Hyperplane SVM I: Linear SVM
 | M 15 | Hw7
          (slides) | Reading #2 | 
 | W8: Feb 21 (T) | Complete SVM I | M 15 | Reading #3 |  | 
 | W8: Feb 23 (R) | SVM II: non-linear SVM | M 15 |  | Hw7 | 
 | W9: Feb 28 (T) | Multi-class classification Using libSVM
 SVM III: Tree kernel
 | (Collins and Duffy, 2001) | Hw8 | Reading #3 | 
 | W9: March 2 (R) | SVM IV: Transductive SVM | (Joachims, 1999) |  |  | 
 | W10: March 7 (T) | Semi-supervised learning | (Zhu, 2008) (McClosky et al., 2006)
 | Hw9 | Hw8 (due 3/8) | 
 | W10: March 9 (R) | Summary |  |  | Hw9 (due 3/15) |